Gene-Sex Interaction in Non-Syndromic Orofacial Cleft Subtypes: A Case-Control Study Among the Vietnamese Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Recruitment
2.2. Single-Nucleotide Polymorphism Selection
2.3. DNA Extraction and Genotyping
2.4. Statistical Analysis
3. Results
3.1. WNT3 rs3809857
3.2. NOG rs227731
3.3. Gene-Gene-Sex Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Natsume, N.; Kawai, T.; Le, H. In Vietnam, many congenital anomalies are believed to result from the scattering of defoliants, including dioxin. Cleft Palate Craniofac. J. 1998, 35, 183. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, E.; Dochy, F.; De Leenheer, E.; Van Hoecke, H. The impact of cleft lip and/or palate on parental quality of life: A pilot study. Int. J. Pediatr. Otorhinolaryngol. 2019, 126, 109598. [Google Scholar] [CrossRef] [PubMed]
- Marazita, M.L. The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate. Annu. Rev. Genom. Hum. Genet. 2012, 13, 263–283. [Google Scholar] [CrossRef]
- Awotoye, W.; Comnick, C.; Pendleton, C.; Zeng, E.; Alade, A.; Mossey, P.A.; Gowans, L.J.J.; Eshete, M.A.; Adeyemo, W.L.; Naicker, T.; et al. Genome-wide Gene-by-Sex Interaction Studies Identify Novel Nonsyndromic Orofacial Clefts Risk Locus. J. Dent. Res. 2021, 101, 465–472. [Google Scholar] [CrossRef]
- Carlson, J.C.; Nidey, N.L.; Butali, A.; Buxo, C.J.; Christensen, K.; Deleyiannis, F.W.D.; Hecht, J.T.; Field, L.L.; Moreno-Uribe, L.M.; Orioli, I.M.; et al. Genome-wide interaction studies identify sex-specific risk alleles for nonsyndromic orofacial clefts. Genet. Epidemiol. 2018, 42, 664–672. [Google Scholar] [CrossRef]
- Tran, D.L.; Imura, H.; Mori, A.; Suzuki, S.; Niimi, T.; Ono, M.; Sakuma, C.; Nakahara, S.; Nguyen, T.T.H.; Pham, P.T.; et al. Association of MEOX2 polymorphism with nonsyndromic cleft palate only in a Vietnamese population. Congenit. Anom. 2018, 58, 124–129. [Google Scholar] [CrossRef]
- Mani, P.; Jarrell, A.; Myers, J.; Atit, R. Visualizing canonical Wnt signaling during mouse craniofacial development. Dev. Dynam. 2010, 239, 354–363. [Google Scholar] [CrossRef]
- Vijayan, V.; Ummer, R.; Weber, R.; Silva, R.; Letra, A. Association of WNT Pathway Genes with Nonsyndromic Cleft Lip with or Without Cleft Palate. Cleft Palate Craniofac. J. 2018, 55, 335–341. [Google Scholar] [CrossRef]
- Marchini, M.; Hu, D.; Lo Vercio, L.; Young, N.M.; Forkert, N.D.; Hallgrímsson, B.; Marcucio, R. Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Front. Cell Dev. Biol. 2021, 9, 644099. [Google Scholar] [CrossRef]
- Ferretti, E.; Li, B.; Zewdu, R.; Wells, V.; Hebert Jean, M.; Karner, C.; Anderson Matthew, J.; Williams, T.; Dixon, J.; Dixon Michael, J.; et al. A Conserved Pbx-Wnt-p63-Irf6 Regulatory Module Controls Face Morphogenesis by Promoting Epithelial Apoptosis. Dev. Cell. 2011, 21, 627–641. [Google Scholar] [CrossRef]
- Maili, L.; Letra, A.; Silva, R.; Buchanan, E.P.; Mulliken, J.B.; Greives, M.R.; Teichgraeber, J.F.; Blackwell, S.J.; Ummer, R.; Weber, R.; et al. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate. Birth. Defects. Res. 2020, 112, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Juriloff, D.M.; Harris, M.J. Mouse genetic models of cleft lip with or without cleft palate. Birth. Defects. Res. A Clin. Mol. Teratol. 2008, 82, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Ryan, R.C.; Zhang, Z.; Bullard, S.A.; Bush, J.O.; Maltby, K.M.; Lidral, A.C.; Jiang, R. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Dev. Dyn. 2006, 235, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Xiong, W.; Wang, Y.; Matsui, M.; Yu, X.; Chai, Y.; Klingensmith, J.; Chen, Y. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Dev. Biol. 2010, 347, 109–121. [Google Scholar] [CrossRef][Green Version]
- Mangold, E.; Ludwig, K.U.; Birnbaum, S.; Baluardo, C.; Ferrian, M.; Herms, S.; Reutter, H.; de Assis, N.A.; Chawa, T.A.; Mattheisen, M.; et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat. Genet. 2010, 42, 24–26. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Yang, S.; Liu, Q.; Lin, J.; Zhang, H. Associations between the NOGGIN rs227731 polymorphism and NSCL/P risk may be associated with ethnicities: A meta-analysis. Birth. Defects. Res. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Wang, B.Q.; Gao, S.T.; Chen, K.; Xu, Z.Q.; Sun, J.M.; Xia, Y.; Lv, Z.T. Association of the WNT3 polymorphisms and non-syndromic cleft lip with or without cleft palate: Evidence from a meta-analysis. Biosci. Rep. 2018, 38, BSR20181676. [Google Scholar] [CrossRef]
- Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Carinci, F.; Scapoli, L.; Palmieri, A.; Zollino, I.; Pezzetti, F. Human genetic factors in nonsyndromic cleft lip and palate: An update. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 1509–1519. [Google Scholar] [CrossRef]
- Menezes, R.; Letra, A.; Kim, A.H.; Küchler, E.C.; Day, A.; Tannure, P.N.; da Motta, L.G.; Paiva, K.B.S.; Granjeiro, J.M.; Vieira, A.R. Studies with Wnt genes and nonsyndromic cleft lip and palate. Birth. Defects. Res. A Clin. Mol. Teratol. 2010, 88, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.P.; Han, W.T.; Liu, Q.; Li, J.X.; Li, Z.J.; Jiang, M.; Xu, W. Variations in WNT3 gene are associated with incidence of non-syndromic cleft lip with or without cleft palate in a northeast Chinese population. Genet. Mol. Res. 2015, 14, 12646–12653. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi Karibozorg, H.; Masoudian, N.; Saliminejad, K.; Ebadifar, A.; Kamali, K.; Khorram Khorshid, H.R. Association of the WNT3 Variations and the Risk of Non-Syndromic Cleft Lip and Palate in a Population of Iranian Infants. Avicenna. J. Med. Biotechnol. 2018, 10, 168–172. [Google Scholar] [PubMed]
- Zawiślak, A.; Woźniak, K.; Tartaglia, G.; Agirre, X.; Gupta, S.; Kawala, B.; Znamirowska-Bajowska, A.; Grocholewicz, K.; Prosper, F.; Lubiński, J.; et al. Single-Nucleotide Polymorphisms in WNT Genes in Patients with Non-Syndromic Orofacial Clefts in a Polish Population. Diagnostics 2024, 14, 1537. [Google Scholar] [CrossRef]
- Wu, W.; Gu, S.; Sun, C.; He, W.; Xie, X.; Li, X.; Ye, W.; Qin, C.; Chen, Y.; Xiao, J.; et al. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. PLoS ONE 2015, 10, e0136951. [Google Scholar] [CrossRef]
- Kimani, J.W.; Shi, M.; Daack-Hirsch, S.; Christensen, K.; Moretti-Ferreira, D.; Marazita, M.L.; Field, L.L.; Canady, J.W.; Murray, J.C. X-chromosome inactivation patterns in monozygotic twins and sib pairs discordant for nonsyndromic cleft lip and/or palate. Am. J. Med. Genet. Part A 2007, 143, 3267–3272. [Google Scholar] [CrossRef][Green Version]
- Mostowska, A.; Hozyasz, K.K.; Wojcicka, K.; Biedziak, B.; Jagodzinski, P.P. Polymorphic variants at 10q25.3 and 17q22 loci and the risk of non-syndromic cleft lip and palate in the polish population. Birth. Defects. Res. A Clin. Mol. Teratol. 2012, 94, 42–46. [Google Scholar] [CrossRef]
- Suzuki, Y.; Jezewski, P.A.; Machida, J.; Watanabe, Y.; Shi, M.; Cooper, M.E.; Viet, L.T.; Tin, N.T.D.; Hai, H.; Natsume, N.; et al. In a Vietnamese population, MSX1 variants contribute to cleft lip and palate. Genet. Med. 2004, 6, 117–125. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Suzuki, S.; Imura, H.; Niimi, T.; Furukawa, H.; Ta, T.-V.; Tong, S.M.; Nguyen, T.T.; Pham, L.N.G.; Tran, D.L.; et al. Family based and case–control designs reveal an association of TFAP2A in nonsyndromic cleft lip only among Vietnamese population. Mol. Genet. Genomic Med. 2021, 9, e1754. [Google Scholar] [CrossRef]
- Pham, L.N.G.; Niimi, T.; Suzuki, S.; Nguyen, M.D.; Nguyen, L.C.H.; Nguyen, T.D.; Hoang, K.A.; Nguyen, D.M.; Sakuma, C.; Hayakawa, T.; et al. Association between IRF6, TP63, GREM1 Gene Polymorphisms and Non-Syndromic Orofacial Cleft Phenotypes in Vietnamese Population: A Case-Control and Family-Based Study. Genes 2023, 14, 1995. [Google Scholar] [CrossRef]
Genes | SNPs | Alleles | HWEp | MAF | |||
---|---|---|---|---|---|---|---|
Control | NSCLP | NSCLO | NSCPO | ||||
WNT3 | rs3809857 | G>T | 0.1213 | 0.3333 | 0.3031 | 0.2781 | 0.2750 |
NOG | rs227731 | A>C | 0.2636 | 0.3000 | 0.3000 | 0.3689 | 0.2938 |
SNPs | Genotype/ Allele | Case/Control (Males) | Case/ Control (Females) | ORmale 95%CI/ p-Value ** | ORfemale 95%CI/ p-Value ** | Ptrend Males | Ptrend Female |
---|---|---|---|---|---|---|---|
WNT3 Rs3809857 | GG | 48/53 | 35/59 | 1 | 1 | 0.049 | 0.3617 |
GT | 22/46 | 35/50 | 0.53 (0.28–1.00)/0.0496 | 1.18 (0.65–2.15)/0.5894 | |||
TT | 10/21 | 10/11 | 0.53 (0.23–1.23)/0.1340 | 1.53 (0.59–3.97)/0.3780 | |||
G | 118/152 | 105/168 | 1 | 1 | |||
T | 42/88 | 55/72 | 0.61 (0.40–0.95)/0.0293 | 1.22 (0.80–1.87)/0.3571 | |||
Dominant | GG/GT+TT | 0.53 (0.30–0.94)/0.0282 | 1.24 (0.70–2.20)/0.4521 | ||||
Recessive | TT/GG+GT | 0.67 (0.30–1.52)/0.3385 | 1.42 (0.57–3.51)/0.4512 | ||||
NOG rs227731 | AA | 33/56 | 38/53 | 1 | 1 | 0.9239 | 0.9179 |
AC | 44/54 | 38/64 | 1.38 (0.77–2.48)/0.2779 | 0.83 (0.46–1.48)/0.5227 | |||
CC | 3/10 | 4/3 | 0.51 (0.13–1.98)/0.3732 * | 1.86 (0.39–8.80)/0.4575* | |||
A | 110/166 | 114/170 | 1 | 1 | |||
C | 50/74 | 46/70 | 1.02 (0.66–1.57)/0.9297 | 0.98 (0.63–1.52)/0.9283 | |||
Dominant | AA/AC+CC | 1.25 (0.70–2.21)/0.4502 | 0.87 (0.50–1.54)/0.6428 | ||||
Recessive | CC/AA+AC | 0.43 (0.11–1.61)/0.2503 * | 2.05 (0.45–9.43)/0.4408 * |
SNPs | Genotype/ Allele | Case/Control (Males) | Case/ Control (Females) | ORmale 95%CI/ p-Value ** | ORfemale 95%CI/ p-Value ** | Ptrend Males | Ptrend Female |
---|---|---|---|---|---|---|---|
WNT3 Rs3809857 | GG | 43/53 | 42/59 | 1 | 1 | 0.0184 | 0.8983 |
GT | 34/46 | 27/50 | 0.91 (0.50–1.66)/0.7602 | 0.76 (0.41–1.40)/0.3765 | |||
TT | 3/21 | 11/11 | 0.18 (0.05–0.63)/0.0042 * | 1.40 (0.56–3.54)/0.4701 | |||
G | 120/152 | 111/168 | 1 | 1 | |||
T | 40/88 | 49/72 | 0.58 (0.37–0.90)/0.0143 | 1.03 (0.67–1.59)/0.8939 | |||
Dominant | GG/GT+TT | 0.68 (0.39–1.20)/0.1839 | 0.88 (0.50–1.54)/0.6442 | ||||
Recessive | TT/GG+GT | 0.18 (0.05–0.64)/0.0033 *€ | 1.58 (0.65–3.84)/0.3101 | ||||
NOG rs227731 | AA | 30/56 | 27/53 | 1 | 1 | 0.2379 | 0.0436 |
AC | 42/54 | 46/64 | 1.45 (0.80–2.64)/0.2220 | 1.41 (0.78–2.57)/0.2590 | |||
CC | 8/10 | 7/3 | 1.49 (0.53–4.18)/0.4437 | 4.58 (1.10–19.13)/0.0377 * | |||
A | 102/166 | 100/170 | 1 | 1 | |||
C | 58/74 | 60/70 | 1.28 (0.84–1.95)/0.2590 | 1.46 (0.95–2.23)/0.0813 | |||
Dominant | AA/AC+CC | 0.58 (0.33–1.03)/0.0645 | 1.55 (0.86–2.79)/0.1407 | ||||
Recessive | CC/AA+AC | 1.22 (0.46–3.24)/0.6866 | 3.74 (0.94–14.9)/0.0927 * |
SNPs | Genotype/ Allele | Case/Control (Males) | Case/ Control (Females) | ORmale 95%CI/ p-Value ** | ORfemale 95%CI/ p-Value ** | Ptrend Males | Ptrend Female |
---|---|---|---|---|---|---|---|
WNT3 Rs3809857 | GG | 37/53 | 49/59 | 1 | 1 | 0.049 | 0.3617 |
GT | 35/46 | 25/50 | 1.09 (0.59–2.00)/0.7814 | 0.60 (0.33–1.11)/0.1027 | |||
TT | 8/21 | 6/11 | 0.55 (0.22–1.36)/0.1915 | 0.66 (0.23–1.90)/0.4366 | |||
G | 109/152 | 123/168 | 1 | 1 | |||
T | 51/88 | 37/72 | 0.32 (0.53–1.23)/0.3242 | 0.70 (0.44–1.11)/0.1303 | |||
Dominant | GG/GT+TT | 0.92 (0.52–1.62)/0.7717 | 0.61 (0.34–1.09)/0.0930 | ||||
Recessive | TT/GG+GT | 0.52 (0.22–1.25)/0.1401 | 0.80 (0.28–2.27)/0.0930 | ||||
NOG rs227731 | AA | 48/56 | 32/53 | 1 | 1 | 0.9239 | 0.9179 |
AC | 27/54 | 39/64 | 0.58 (0.32–1.06)/0.0781 | 1.01 (0.56–1.83)/0.9756 | |||
CC | 5/10 | 9/3 | 0.58 (0.19–1.83)/0.4141 * | 4.97 (1.25–19.72)/0.0257 * | |||
A | 123/166 | 103/170 | 1 | 1 | |||
C | 37/74 | 57/70 | 0.67 (0.43–1.07)/0.0917 | 1.34 (0.88–2.06)/0.1740 | |||
Dominant | AA/AC+CC | 0.58 (0.33–1.03)/0.0645 | 1.19 (0.67–2.11)/0.5592 | ||||
Recessive | CC/AA+AC | 0.73(0.24–2.23)/0.7852 * | 4.94(1.30–18.87)/0.0145 * |
Genders | Phenotypes | Both Genes | WNT3 | p-Value ** | OR (95%CI) | NOG | p-Value ** | OR (95%CI) |
---|---|---|---|---|---|---|---|---|
Male | NSCLP | 17 | 15 | 0.7366 | 0.86 (0.37–2.02) | 4 | 0.1133 * | 2.91 (0.88–9.64) |
NSCLO | 25 | 12 | 0.2783 | 1.59 (0.69–3.69) | 25 | 0.3178 | 0.68 (0.32–1.44) | |
Control | 38 | 29 | - | - | 26 | - | - | |
Female | NSCLO | 24 | 14 | 0.9312 | 1.04 (0.45–2.40) | 29 | 0.2133 | 0.63 (0.31–1.30) |
NSCPO | 19 | 12 | 0.9252 | 0.96 (0.39–2.33) | 29 | 0.0700 | 0.5 (0.24–1.06) | |
Control | 38 | 23 | - | - | 29 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anh, L.K.; Niimi, T.; Suzuki, S.; Hayakawa, T.; Kitagawa, K.; Sakuma, C.; Imura, H.; Kondo, H.; Tu, N.H.; Son, T.M.; et al. Gene-Sex Interaction in Non-Syndromic Orofacial Cleft Subtypes: A Case-Control Study Among the Vietnamese Population. Genes 2025, 16, 853. https://doi.org/10.3390/genes16080853
Anh LK, Niimi T, Suzuki S, Hayakawa T, Kitagawa K, Sakuma C, Imura H, Kondo H, Tu NH, Son TM, et al. Gene-Sex Interaction in Non-Syndromic Orofacial Cleft Subtypes: A Case-Control Study Among the Vietnamese Population. Genes. 2025; 16(8):853. https://doi.org/10.3390/genes16080853
Chicago/Turabian StyleAnh, Le Kha, Teruyuki Niimi, Satoshi Suzuki, Toko Hayakawa, Ken Kitagawa, Chisato Sakuma, Hideto Imura, Hisataka Kondo, Nguyen Huu Tu, Tong Minh Son, and et al. 2025. "Gene-Sex Interaction in Non-Syndromic Orofacial Cleft Subtypes: A Case-Control Study Among the Vietnamese Population" Genes 16, no. 8: 853. https://doi.org/10.3390/genes16080853
APA StyleAnh, L. K., Niimi, T., Suzuki, S., Hayakawa, T., Kitagawa, K., Sakuma, C., Imura, H., Kondo, H., Tu, N. H., Son, T. M., Ngoc, V. T. N., Thao, T. P., Duc, N. M., Loc, P. N. G., Furukawa, H., Natsume, N., & Natsume, N. (2025). Gene-Sex Interaction in Non-Syndromic Orofacial Cleft Subtypes: A Case-Control Study Among the Vietnamese Population. Genes, 16(8), 853. https://doi.org/10.3390/genes16080853