CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies
Abstract
1. Introduction
2. Current Treatment of Neurodegenerative Diseases
2.1. Alzheimer’s Disease
2.2. Parkinson’s Disease
2.3. Huntington’s Disease
2.4. Amyotrophic Lateral Sclerosis
3. CRISPR Technology
3.1. Principle of CRISPR-Cas9 Technology
Mechanism of Cas9-Based Genome Editing Technology
4. Genome Editing by Using CRISPR-Cas9 System in Neurodegenerative Diseases
4.1. CRISPR/Cas9 in Alzheimer’s Disease
4.2. CRISPR/Cas9 in Huntington’s Disease
4.3. CRISPR/Cas9 in Parkinson’s Disease
4.4. CRISPR/Cas9 in Amyotrophic Lateral Sclerosis
5. CRISPR-Mediated Gene Expression Modulation
CRISPR Activation (CRSIPRa)
6. Preclinical Studies: Gene Expression Modulation for Therapeutic Benefits
7. Comparison of Conventional Therapies and CRISPR Based Interventions
8. Limitations of Therapies of Neurodegenerative Diseases
9. Delivery of CRISPR/Cas Components to the Central Nervous System
9.1. Viral Vectors
9.1.1. Adeno-Associated Virus (AAV)
9.1.2. Lentiviral Vectors
9.2. Non-Viral Delivery Systems
9.2.1. Liposomes and Lipid Nanoparticles (LNPs)
9.2.2. Gold Nanoparticles, Exosomes, and Polymeric Nanocarriers
9.3. Routes of Administration
9.3.1. Intrathecal Injection
9.3.2. Intracerebral and Intravenous Routes
10. Challenges in Drug Delivery and Ethical Considerations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, U.; Piracha, Z.Z.; Tariq, M.N.; Syed, S.; Rauf, M.; Razaq, L.; Iftikhar, M.K.; Maqsood, A.; Ahsan, S.M. Decoding the genetic blueprints of neurological disorders: Disease mechanisms and breakthrough gene therapies. Front. Neurol. 2025, 16, 1422707. [Google Scholar] [CrossRef] [PubMed]
- Armitage, A.; Fonkem, E.J. Supportive care of neurodegenerative patients. Front. Oncol. 2023, 13, 1029938. [Google Scholar] [CrossRef] [PubMed]
- Scheiblich, H.; Trombly, M.; Ramirez, A.; Heneka, M.T. Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol. 2020, 41, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Van Schependom, J.; D’haeseleer, M. Advances in neurodegenerative diseases. J. Clin. Med. 2023, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Singh, K.; Kumar, S.; Bhardwaj, A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr. Gene Ther. 2025, 25, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.; Thummer, R.P. CRISPR and iPSCs: Recent developments and future perspectives in neurodegenerative disease modelling, research, and therapeutics. Neurosci. Res. 2022, 40, 1597–1623. [Google Scholar] [CrossRef] [PubMed]
- Karimian, A.; Gorjizadeh, N.; Alemi, F.; Asemi, Z.; Azizian, K.; Soleimanpour, J.; Malakouti, F.; Targhazeh, N.; Majidinia, M.; Yousefi, B. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci. 2020, 259, 118165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-Y.; Liu, J.; Zhu, Z.; Su, C.-F.; Sreenivasmurthy, S.G.; Iyaswamy, A.; Lu, J.H.; Chen, G.; Song, J.X.; Li, M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Pharmacol. Res. 2021, 133, 110968. [Google Scholar] [CrossRef] [PubMed]
- Besin, V.; Humardani, F.M.; Mulyanata, L.T. Neurogenomics of Alzheimer’s disease (AD): An Asian population review. Curr. Clin. Pharmacol. 2023, 546, 117389. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.C.d.S.; Lima, J.E.B.d.F.; Marchiori, M.F.; Carvalho, I.; Sakamoto-Hojo, E.T. Neuroprotective effects of cholinesterase inhibitors: Current scenario in therapies for Alzheimer’s disease and future perspectives. J. Alzheimers Dis. Rep. 2022, 6, 177–193. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimers Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.F.; Kerber, K.A.; Langa, K.M.; Albin, R.L.; Kotagal, V. Lecanemab: Looking Before We Leap. Neurology 2023, 101, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Chowdhury, N.S. Novel anti-amyloid-beta (Aβ) monoclonal antibody lecanemab for Alzheimer’s disease: A systematic review. Int. J. Immunopharmacol. 2023, 37, 03946320231209839. [Google Scholar] [CrossRef] [PubMed]
- Bogetofte, H.; Alamyar, A.; Blaabjerg, M.; Meyer, M. Levodopa therapy for Parkinson’s disease: History, current status and perspectives. CNS Neurol. Disord. Drug Targets 2020, 19, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Seppänen, P.; Forsberg, M.M.; Tiihonen, M.; Laitinen, H.; Beal, S.; Dorman, D.C. A Systematic Review and Meta-Analysis of the Efficacy and Safety of Rasagiline or Pramipexole in the Treatment of Early Parkinson’s Disease. Park. Dis. 2024, 2024, 8448584. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-Y.; Jenner, P.; Chen, S.-D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Park. Dis. 2022, 12, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Asis, A.; Arbour, N.; Bar-Or, A.; Bove, R.; Di Luca, D.G.; Fon, E.A.; Fox, S.; Gan-Or, Z.; Gommerman, J.L. Disease-modifying therapies for Parkinson disease: Lessons from multiple sclerosis. Nat. Rev. Neurol. 2024, 20, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.-Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 2020, 382, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Stoddard-Bennett, T.; Reijo Pera, R. Treatment of Parkinson’s disease through personalized medicine and induced pluripotent stem cells. Cells 2019, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Perkins, W.; Stark, C.; Kikkeri, S.; Kakazu, J.; Kaye, A.; Kaye, A.D. Deutetrabenazine for the treatment of chorea associated with Huntington’s disease. Health Psychol. Res. 2022, 10, 36040. [Google Scholar] [CrossRef] [PubMed]
- Brogueira Rodrigues, F. Enhancing Clinical Trials Methodology in Huntington’s Disease. Ph.D. Thesis, University College London, London, UK, 2024. [Google Scholar]
- Vadlamani, N.; Ibrahimli, S.; Khan, F.A.; Castillo, J.A.; Amaravadi, K.S.S.; Nalisetty, P.; Khan, S. Efficacy and Safety of Tetrabenazine in Reducing Chorea and Improving Motor Function in Individuals with Huntington’s Disease: A Systematic Review. Cureus 2024, 16, e71476. [Google Scholar] [CrossRef] [PubMed]
- Bashir, H.; Jankovic, J. Deutetrabenazine for the treatment of Huntington’s chorea. Expert Rev. Neurother. 2018, 18, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Claassen, D.O.; Philbin, M.; Carroll, B. Deutetrabenazine for tardive dyskinesia and chorea associated with Huntington’s disease: A review of clinical trial data. Expert Opin. Pharmacother. 2019, 20, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Stoker, T.B.; Mason, S.L.; Greenland, J.C.; Holden, S.T.; Santini, H.; Barker, R.A. Huntington’s disease: Diagnosis and management. Pract. Neurol. 2022, 22, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Mdawar, B.; Ghossoub, E.; Khoury, R.J. Selective serotonin reuptake inhibitors and Alzheimer’s disease. Nat. Rev. Neurol. 2020, 15, 41–46. [Google Scholar] [CrossRef]
- Saft, C.; Burgunder, J.-M.; Dose, M.; Jung, H.H.; Katzenschlager, R.; Priller, J.; Nguyen, H.P.; Reetz, K.; Reilmann, R.; Seppi, K.; et al. Symptomatic treatment options for Huntington’s disease (guidelines of the German Neurological Society). Neurol. Ther. 2023, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Witzel, S.; Maier, A.; Steinbach, R.; Grosskreutz, J.; Koch, J.C.; Sarikidi, A.; Petri, S.; Günther, R.; Wolf, J.; Hermann, A.; et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. J. Neurol. 2022, 79, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, F.; Torazza, C.; Bonifacino, T.; Bonanno, G.; Milanese, M. The key role of astrocytes in amyotrophic lateral sclerosis and their commitment to glutamate excitotoxicity. Int. J. Mol. Sci. 2023, 24, 15430. [Google Scholar] [CrossRef] [PubMed]
- Pioro, E.P. Antioxidant therapy in ALS. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, S5–S15. [Google Scholar] [CrossRef] [PubMed]
- Amado, D.A.; Davidson, B.L. Gene therapy for ALS: A review. Mol. Ther. 2021, 29, 3345–3358. [Google Scholar] [CrossRef] [PubMed]
- Londral, A.; Pinto, A.; Pinto, S.; Azevedo, L.; De Carvalho, M. Quality of life in amyotrophic lateral sclerosis patients and caregivers: Impact of assistive communication from early stages. Muscle Nerve 2015, 52, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Bensimon, G.; Lacomblez, L.; Meininger, V.; ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 1994, 330, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Writing Group; Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017, 16, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Dharmadasa, T.; Kiernan, M.C. Riluzole, disease stage and survival in ALS. Lancet Neurol. 2018, 17, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Kolanu, N.D. CRISPR-Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Glob. Med. Genet. 2024, 11, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Babačić, H.; Mehta, A.; Merkel, O.; Schoser, B. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS ONE 2019, 14, e0212198. [Google Scholar] [CrossRef] [PubMed]
- Modell, A.E.; Lim, D.; Nguyen, T.M.; Sreekanth, V.; Choudhary, A. CRISPR-based therapeutics: Current challenges and future applications. Trends Pharmacol. Sci. 2022, 43, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Hillary, V.E.; Ceasar, S.A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biol. Rep. 2023, 65, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, M.; Zawdie, B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biotechnol. Ther. 2021, 2021, 353–361. [Google Scholar] [CrossRef]
- Yili, F.; Sicheng, L.; Ruodan, C.; Anyong, X. Target binding and residence: A new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. J. Zhejiang Univ. Sci. B 2021, 22, 73. [Google Scholar] [CrossRef]
- Babu, K.; Kathiresan, V.; Kumari, P.; Newsom, S.; Parameshwaran, H.P.; Chen, X.; Liu, J.; Qin, P.Z.; Rajan, R. Coordinated actions of Cas9 HNH and RuvC nuclease domains are regulated by the bridge helix and the target DNA sequence. Nucleic Acids Res. 2021, 60, 3783–3800. [Google Scholar] [CrossRef] [PubMed]
- Karlson, C.K.S.; Mohd-Noor, S.N.; Nolte, N.; Tan, B.C. CRISPR/dCas9-based systems: Mechanisms and applications in plant sciences. Plants 2021, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Tang, T.; Jin, T.; Ding, C.; Zhou, R.; Jiang, W. TRIM65-catalyzed ubiquitination is essential for MDA5-mediated antiviral innate immunity. J. Exp. Med. 2017, 214, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Čermák, T.; Curtin, S.J.; Gil-Humanes, J.; Čegan, R.; Kono, T.J.; Konečná, E.; Belanto, J.J.; Starker, C.G.; Mathre, J.W.; Greenstein, R.L. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 2017, 29, 1196–1217. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Jia, G.; Choi, J.; Ma, H.; Anaya, E.; Ye, C.; Shankar, P.; Wu, H. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 2015, 16, 280. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Wu, J.; VanDusen, N.J.; Li, Y.; Zheng, Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Mol. Ther. Nucleic Acids 2024, 35, 102344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qin, C.; An, C.; Zheng, X.; Wen, S.; Chen, W.; Liu, X.; Lv, Z.; Yang, P.; Xu, W.; et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. J. Cancer 2021, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- De Plano, L.M.; Calabrese, G.; Conoci, S.; Guglielmino, S.P.P.; Oddo, S.; Caccamo, A. Applications of CRISPR-Cas9 in Alzheimer’s disease and related disorders. Int. J. Mol. Sci. 2022, 23, 8714. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.S.; Koubek, E.J.; Sakowski, S.A.; Feldman, E.L. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024, 21, e00427. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Han, Y.; Yang, C.; Lu, S.; Du, J.; Li, H.; Lin, J. CRISPR-Cas9-mediated gene therapy in neurological disorders. Mol. Neurobiol. 2022, 59, 968–982. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Sameei, P.; Mousavi, S.; Ghaderi, K.; Hassani, A.; Hassani, S.; Alipour, S. Application of CRISPR/Cas9 system in the treatment of Alzheimer’s disease and neurodegenerative diseases. Mol. Neurobiol. 2024, 61, 9416–9431. [Google Scholar] [CrossRef] [PubMed]
- Cota-Coronado, A.; Díaz-Martínez, N.F.; Padilla-Camberos, E.; Díaz-Martínez, N.E. Editing the central nervous system through CRISPR/Cas9 systems. Front. Mol. Neurosci. 2019, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Oh, J.; Shim, G.; Cho, B.; Chang, Y.; Kim, S.; Baek, S.; Kim, H.; Shin, J.; Choi, H.; et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, K.E.; Aouida, M.; Gupta, V.; Abdesselem, H.; El-Agnaf, O.M.A. Development of non-viral vectors for neuronal-targeted delivery of CRISPR-Cas9 RNA-proteins as a therapeutic strategy for neurological disorders. Biomater. Sci. 2022, 10, 4959–4977. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lu, Z.; Wang, J.; Hao, Q.; Ji, W.; Wu, Y.; Peng, H.; Zhao, R.; Yang, J.; Li, Y.; et al. Traceable nano-biohybrid complexes by one-step synthesis as CRISPR-Chem vectors for neurodegenerative diseases synergistic treatment. Adv. Mater. 2021, 33, e2101993. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, M. CRISPR-based functional genomics for neurological disease. Nat. Rev. Neurol. 2020, 16, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Raikwar, S.P.; Thangavel, R.; Dubova, I.; Selvakumar, G.P.; Ahmed, M.E.; Kempuraj, D.; Zaheer, S.A.; Iyer, S.S.; Zaheer, A. Targeted gene editing of glia maturation factor in microglia: A novel Alzheimer’s disease therapeutic target. Mol. Neurobiol. 2019, 56, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Dräger, N.M.; Sattler, S.M.; Huang, C.T.; Teter, O.M.; Leng, K.; Hashemi, S.H.; Hong, J.; Aviles, G.; Clelland, C.D.; Zhan, L.; et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 2022, 25, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Leng, K.; Rose, I.V.L.; Kim, H.; Xia, W.; Romero-Fernandez, W.; Rooney, B.; Koontz, M.; Li, E.; Ao, Y.; Wang, S.; et al. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 2022, 25, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.C.; Hardingham, G.E. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 9607. [Google Scholar] [CrossRef] [PubMed]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Teschemacher, A.G.; Kasparov, S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017, 65, 1205–1226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-R.; Huang, J.-B.; Yang, S.-L.; Hong, F.-F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Thapar, N.; Eid, M.A.F.; Raj, N.; Kantas, T.; Billing, H.S.; Sadhu, D. Application of CRISPR/Cas9 in the management of Alzheimer’s disease and Parkinson’s disease: A review. Neurochem. Int. 2024, 86, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Sharma, Y.; Rane, R.; Kumar, D. CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer’s Disease Treatment. CNS Neurol. Disord. Drug Targets 2024, 23, 1405–1424. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Virumbrales, M.; Moreno, C.L.; Kruglikov, I.; Marazuela, P.; Sproul, A.; Jacob, S.; Zimmer, M.; Paull, D.; Zhang, B.; Schadt, E.E.; et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Stem Cell Rep. 2017, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Wadhwani, A.R.; Affaneh, A.; Van Gulden, S.; Kessler, J.A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in Alzheimer disease. Ann. Neurol. 2019, 85, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Ajitkumar, A.; De Jesus, O. Huntington disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology roadmap for flexible sensors. Nat. Electron. 2023, 17, 5211–5295. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.M.; Jiang, X.; Guha, P.; Lausted, C.; Carter, J.A.; Hsu, C.; Labadie, K.P.; Kohli, K.; Kenerson, H.L.; Daniel, S.K.; et al. Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases. Nat. Cancer 2023, 72, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Shin, J.H.; Lee, J.; Kim, D.; Hwang, H.-Y.; Nam, B.G.; Lee, J.; Kim, H.H.; Cho, S.R. DNA double-strand break-free CRISPR interference delays Huntington’s disease progression in mice. Sci. Adv. 2023, 6, 466. [Google Scholar] [CrossRef] [PubMed]
- Oura, K.; Morishita, A.; Tani, J.; Masaki, T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: A review. Int. J. Mol. Sci. 2021, 22, 5801. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, E.; Berretta, N.; Monda, V.; Ledonne, A.; Mercuri, N.B. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. Int. J. Mol. Sci. 2022, 23, 4508. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Rivas-Santisteban, R.; Navarro, G.; Pinna, A.; Reyes-Resina, I. Genes implicated in familial Parkinson’s disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int. J. Mol. Sci. 2021, 22, 4643. [Google Scholar] [CrossRef] [PubMed]
- Cherian, A.; Divya, K.; Vijayaraghavan, A. Parkinson’s disease–genetic cause. Curr. Opin. Neurol. 2023, 36, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Ahfeldt, T.; Ordureau, A.; Bell, C.; Sarrafha, L.; Sun, C.; Piccinotti, S.; Grass, T.; Parfitt, G.M.; Paulo, J.A.; Yanagawa, F.; et al. Pathogenic pathways in early-onset autosomal recessive Parkinson’s disease discovered using isogenic human dopaminergic neurons. Stem Cell Rep. 2020, 14, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Todd, T.W.; Petrucelli, L. Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J. Neurochem. 2016, 138 (Suppl. S1), 145–162. [Google Scholar] [CrossRef] [PubMed]
- Rizea, R.E.; Corlatescu, A.-D.; Costin, H.P.; Dumitru, A.; Ciurea, A.V. Understanding amyotrophic lateral sclerosis: Pathophysiology, diagnosis, and therapeutic advances. Int. J. Mol. Sci. 2024, 25, 9966. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.P.; Azzouz, M.; Shaw, P.J. SOD1-targeting therapies for neurodegenerative diseases: A review of current findings and future potential. Expert Opin. Orphan Drugs 2020, 8, 379–392. [Google Scholar] [CrossRef]
- Duan, W.; Guo, M.; Yi, L.; Liu, Y.; Li, Z.; Ma, Y.; Zhang, G.; Liu, Y.; Bu, H.; Song, X.; et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020, 27, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.A.; Kankel, M.W.; Hana, S.; Lau, S.K.; Zavodszky, M.I.; McKissick, O.; Mastrangelo, N.; Dion, J.; Wang, B.; Ferretti, D.; et al. In vivo genome editing using novel AAV-PHP variants rescues motor function deficits and extends survival in a SOD1-ALS mouse model. Gene Ther. 2023, 30, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Basu, K.; Gaj, K.; Guin, U. CRISPR-based fault tolerance in secure systems. In Proceedings of the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–10. [Google Scholar]
- Meijboom, K.E.; Abdallah, A.; Fordham, N.P.; Nagase, H.; Rodriguez, T.; Kraus, C.; Gendron, T.F.; Krishnan, G.; Esanov, R.; Andrade, N.S.; et al. CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nat. Commun. 2022, 13, 6286. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, N.A.; Scaber, J.; Flynn, R.; Douglas, A.; Barbagallo, P.; Candalija, A.; Turner, M.R.; Sims, D.; Dafinca, R.; Cowley, S.A.; et al. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair. Hum. Mol. Genet. 2020, 29, 2200–2217. [Google Scholar] [CrossRef] [PubMed]
- McCallister, T.X.; Lim, C.K.W.; Singh, M.; Zhang, S.; Ahsan, N.S.; Terpstra, W.M.; Xiong, A.Y.; Zeballos, C.M.A.; Powell, J.E.; Drnevich, J.; et al. A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. Nat. Commun. 2025, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- Kempthorne, L.; Vaizoglu, D.; Cammack, A.J.; Carcolé, M.; Roberts, M.J.; Mikheenko, A.; Fisher, A.; Suklai, P.; Muralidharan, B.; Kroll, F.; et al. Dual-targeting CRISPR-CasRx reduces C9orf72 ALS/FTD sense and antisense repeat RNAs in vitro and in vivo. Nat. Commun. 2025, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- Zeballos, C.M.A.; Moore, H.J.; Smith, T.J.; Powell, J.E.; Ahsan, N.S.; Zhang, S.; Gaj, T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat. Commun. 2023, 14, 6492. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.G.V.; Hornsby, R.; Nascimento, A.L.T.O.; Nally, J.D. Application of CRISPR interference (CRISPRi) for gene silencing in pathogenic species of leptospira. J. Vis. Exp. 2021, e62631. [Google Scholar] [CrossRef] [PubMed]
- Nazemi, M.; Yanes, B.; Martinez, M.L.; Walker, H.J.; Pham, K.; Collins, M.O.; Bard, F.; Rainero, E. The extracellular matrix supports breast cancer cell growth under amino acid starvation by promoting tyrosine catabolism. Cell Rep. 2024, 22, e3002406. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.I.; Rock, J.M. CRISPR interference (CRISPRi) for targeted gene silencing in mycobacteria. In Mycobacteria Protocols; Springer: New York, NY, USA, 2021; pp. 343–364. [Google Scholar] [CrossRef]
- Myrbråten, I.S.; Wiull, K.; Salehian, Z.; Håvarstein, L.S.; Straume, D.; Mathiesen, G.; Kjos, M. CRISPR interference for rapid knockdown of essential cell cycle genes in Lactobacillus plantarum. mSphere 2019, 4, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xiong, Z.; Song, X.; Xia, Y.; Ai, L. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. J. Dairy Sci. 2022, 105, 6499–6512. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.M.; Hopkins, F.F.; Chavez, A.; Diallo, M.; Chase, M.R.; Gerrick, E.R.; Pritchard, J.R.; Church, G.M.; Rubin, E.J.; Sassetti, C.M.; et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2017, 2, 16274. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, D.; Shaposhnikov, R.; Gobaa, S.; Pastorelli, D.; Batt, G.; Magni, P.; Pasotti, L. Design and model-driven analysis of synthetic circuits with the Staphylococcus aureus Dead-Cas9 (sadCas9) as a programmable transcriptional regulator in bacteria. Nat. Commun. 2024, 13, 763–780. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z. Engineering Disease Resistance in Plants Using CRISPR-Cas; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mandegar, M.A.; Huebsch, N.; Frolov, E.B.; Shin, E.; Truong, A.; Olvera, M.P.; Chan, A.H.; Miyaoka, Y.; Holmes, K.; Spencer, C.I.; et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 2016, 18, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Casas-Mollano, J.A.; Zinselmeier, M.H.; Erickson, S.E.; Smanski, M.J. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J. 2020, 3, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Glass, Z.; Huang, M.; Chen, Z.-Y.; Xu, Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020, 234, 119711. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.; Dy, R.L.; McKenzie, R.E.; Watson, B.N.; Taylor, C.; Chang, J.T.; McNeil, M.B.; Staals, R.H.; Fineran, P.C. Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014, 42, 8516–8526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Timofte, R.; Van Gool, L.; Yu, L. CRISPR editing: From visual grounding to pixel-level modification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 1922–1960. [Google Scholar]
- Konstantinidis, E.; Molisak, A.; Perrin, F.; Streubel-Gallasch, L.; Fayad, S.; Kim, D.Y.; Petri, K.; Aryee, M.J.; Aguilar, X.; György, B.; et al. CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Mol. Ther. Nucleic Acids 2022, 28, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Arango, D.; Bittar, A.; Esmeral, N.P.; Ocasión, C.; Muñoz-Camargo, C.; Cruz, J.C.; Reyes, L.H.; Bloch, N.I. Understanding the potential of genome editing in Parkinson’s disease. Int. J. Mol. Sci. 2021, 22, 9241. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Kesari, K.K.; Rachamalla, M.; Mani, S.; Ashraf, G.M.; Jha, S.K.; Kumar, P.; Ambasta, R.K.; Dureja, H.; Devkota, H.P.; et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. Ageing Res. Rev. 2022, 40, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Eş, I.; Gavahian, M.; Marti-Quijal, F.J.; Lorenzo, J.M.; Khaneghah, A.M.; Tsatsanis, C.; Kampranis, S.C.; Barba, F.J. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Trends Food Sci. Technol. 2019, 37, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Chaterji, S.; Ahn, E.H.; Kim, D.-H. CRISPR genome engineering for human pluripotent stem cell research. Theranostics 2017, 7, 4445. [Google Scholar] [CrossRef] [PubMed]
- Zaky, M.Y.; Mohamed, E.E.; Ahmed, O.M. Neurodegenerative Disorders: Available Therapies and Their Limitations. In Nanocarriers in Neurodegenerative Disorders; CRC Press: Boca Raton, FL, USA, 2025; pp. 29–46. [Google Scholar]
- Neganova, M.E.; Aleksandrova, Y.R.; Sukocheva, O.A.; Klochkov, S.G. CRISPR in cancer: Therapeutic prospects and challenges. Semin. Cancer Biol. 2022, 86, 805–833. [Google Scholar] [CrossRef] [PubMed]
- Salomonsson, S.E.; Clelland, C.D. Building CRISPR gene therapies for the central nervous system: A review. JAMA Neurol. 2024, 81, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Bow, D.A.; Blomme, E.A. Absorption, Distribution, Metabolism and Excretion, Pharmacokinetics, and Safety Pharmacology. In Pharmacovigilance; Elsevier: Amsterdam, The Netherlands, 2026; pp. 13–22. [Google Scholar]
- Bennett, C.F.; Krainer, A.R.; Cleveland, D.W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 2019, 42, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Nakevska, Z.; Yokota, T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur. J. Cell Biol. 2023, 102, 151326. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.M.; Cudkowicz, M.E.; Genge, A.; Shaw, P.J.; Sobue, G.; Bucelli, R.C.; Chiò, A.; Van Damme, P.; Ludolph, A.C.; Glass, J.D.; et al. Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2022, 387, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- LeWitt, P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015, 30, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H.; Li, M.; Xu, Z.; Xu, H.; Chen, Y.; Chen, K.; Zheng, W.; Lin, W.; Liu, Z.; et al. Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy. Gene 2024, 927, 148733. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Brown, L.B.C.; Khondaker, I.I.; Bao, G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025, 321, 123314. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, F.; Gao, G. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell 2020, 181, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Chew, W.L.; Tabebordbar, M.; Cheng, J.K.; Mali, P.; Wu, E.Y.; Ng, A.H.; Zhu, K.; Wagers, A.J.; Church, G.M. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 2016, 13, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Kantor, B. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: Current state and perspectives. Viruses 2021, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Mukai, H.; Ogawa, K.; Kato, N.; Kawakami, S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metabol. Pharmacokinet. 2022, 44, 100450. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luly, K.M.; Green, J.J. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1853. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Gromnicova, R.; Loughlin, J.; Sharrack, B.; Male, D. Gold nanocarriers for transport of oligonucleotides across brain endothelial cells. PLoS ONE 2020, 15, e0236611. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Mortensen, K.N.; Deville, C.; Lohela, T.J.; Stæger, F.F.; Sigurdsson, B.; Fiordaliso, E.M.; Rosenholm, M.; Kamphuis, C.; Beekman, F.J.; et al. Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. J. Control. Release 2023, 355, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Sanadgol, N.; Abedi, M.; Hashemzaei, M.; Kamran, Z.; Khalseh, R.; Beyer, C.; Voelz, C. Exosomes as nanocarriers for brain-targeted delivery of therapeutic nucleic acids: Advances and challenges. J. Nanobiotechnol. 2025, 23, 453. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Iqbal, Z.; Lu, J.; Wang, J.; Zhang, H.; Chen, X.; Duan, L.; Xia, J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol. Ther. 2023, 31, 1207–1224. [Google Scholar] [CrossRef] [PubMed]
- Bashyal, S.; Thapa, C.; Lee, S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J. Control. Release 2022, 348, 723–744. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Vijayalakshmi, R.; Kumar Sahu, K.; Sure, P.; Chahal, K.; Yadav, R.; Sucheta; Dubey, A.; Jha, M.; Pradhan, M. Exosome-based macromolecular neurotherapeutic drug delivery approaches in overcoming the blood-brain barrier for treating brain disorders. Eur. J. Pharm. Biopharm. 2024, 199, 114298. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Liu, J.; Wang, N.; Zhang, D.; Qin, C.; Shi, B.; Zheng, M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025, 318, 123138. [Google Scholar] [CrossRef] [PubMed]
- Sadekar, S.S.; Bowen, M.; Cai, H.; Jamalian, S.; Rafidi, H.; Shatz-Binder, W.; Lafrance-Vanasse, J.; Chan, P.; Meilandt, W.J.; Oldendorp, A.; et al. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin. Pharmacol. Ther. 2022, 111, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gunasekar, S.; Xia, Z.J.; Shalin, K.; Jiang, C.; Chen, H.; Lee, D.; Lee, S.; Pisal, N.D.; Luo, J.N.; et al. Gene therapy for CNS disorders: Modalities, delivery and translational challenges. Nat. Rev. Neurosci. 2024, 25, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Nguyen, L.H.; Odisho, A.S.; Maxey, B.S.; Pruitt, J.W.; Girma, B.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. The antisense oligonucleotide nusinersen for treatment of spinal muscular atrophy. Orthop. Rev. 2021, 13, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zapata, D.; Tang, Y.; Teng, Y.; Li, Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022, 291, 121876. [Google Scholar] [CrossRef] [PubMed]
- Daci, R.; Flotte, T.R. Delivery of adeno-associated virus vectors to the central nervous system for correction of single gene disorders. Int. J. Mol. Sci. 2024, 25, 1050. [Google Scholar] [CrossRef] [PubMed]
- Lohia, A.; Sahel, D.K.; Salman, M.; Singh, V.; Mariappan, I.; Mittal, A.; Chitkara, D. Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: Challenges and opportunities. Asian J. Pharm. Sci. 2022, 17, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Rittiner, J.E.; Moncalvo, M.; Chiba-Falek, O.; Kantor, B. Gene-editing technologies paired with viral vectors for translational research into neurodegenerative diseases. Front. Mol. Neurosci. 2020, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.R.; Labhasetwar, V.; Ghorpade, A. Destination Brain: The Past, Present, and Future of Therapeutic Gene Delivery. J. Neuroimmune Pharmacol. 2017, 12, 51–83. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Suh, C.H.; Kim, S.J.; Lemere, C.A.; Lim, J.-S.; Lee, J.-H. Amyloid-related imaging abnormalities in the era of anti-amyloid beta monoclonal antibodies for Alzheimer’s disease: Recent updates on clinical and imaging features and MRI monitoring. Korean J. Radiol. 2024, 25, 726. [Google Scholar] [CrossRef] [PubMed]
- Schaenman, J.M.; Diamond, J.M.; Greenland, J.R.; Gries, C.; Kennedy, C.C.; Parulekar, A.D.; Rozenberg, D.; Singer, J.P.; Singer, L.G.; Snyder, L.D.; et al. Frailty and aging-associated syndromes in lung transplant candidates and recipients. Transpl. Int. 2021, 21, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef] [PubMed]
- Jablonka, E. Epigenetic inheritance and plasticity: The responsive germline. Prog. Biophys. Mol. Biol. 2013, 111, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. J. Clin. Med. 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Höijer, I.; Emmanouilidou, A.; Östlund, R.; van Schendel, R.; Bozorgpana, S.; Tijsterman, M.; Feuk, L.; Gyllensten, U.; den Hoed, M.; Ameur, A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 2022, 13, 627. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, S.; Markoulaki, S.; Blaine, L.J.; Leibowitz, M.L.; Zhang, C.Z.; Jaenisch, R.; Pellman, D. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat. Commun. 2021, 12, 5855. [Google Scholar] [CrossRef] [PubMed]
Current Therapies | CRISPR-Based Interventions | |
---|---|---|
Primary Goal | Symptomatic relief, slow down the progression of diseases | Target the genetic causes to reverse the disease progression |
Approach | Medications, physical therapy, symptom management | Gene editing, targeted genetic modifications |
Target | Symptoms such as motor dysfunction and cognitive decline | Specific genes responsible for neurodegenerative conditions |
Personalization | No. It is a generalized treatment for patient groups | Personalized medicine tailored to individual genetic profiles |
Efficacy | Alleviates symptoms, limited in halting or reversing progression | Potentially high efficacy in correcting genetic mutations and halting progression |
Onset of Action | Immediate symptomatic relief | Long-term genetic correction, may take time to show effects |
Quality of Life | Improves daily functioning and overall well-being | Potentially significant improvements by addressing root causes |
Side Effects | Possible side effects from medications, e.g., increase in disease progression | Risks of off-target effects and immune responses |
Research and Development | Well-established, with decades of clinical data | Rapidly advancing, with several preclinical and some clinical studies |
Current Availability | Widely available and commonly used | Experimental, with limited clinical availability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, A.; Haider, R.; Agnello, L.; Noor, B.; Maqsood, N.; Atif, F.; Ali, W.; Ciaccio, M.; Tariq, H. CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies. Genes 2025, 16, 850. https://doi.org/10.3390/genes16080850
Akbar A, Haider R, Agnello L, Noor B, Maqsood N, Atif F, Ali W, Ciaccio M, Tariq H. CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies. Genes. 2025; 16(8):850. https://doi.org/10.3390/genes16080850
Chicago/Turabian StyleAkbar, Amna, Rida Haider, Luisa Agnello, Bushra Noor, Nida Maqsood, Fatima Atif, Wajeeha Ali, Marcello Ciaccio, and Hira Tariq. 2025. "CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies" Genes 16, no. 8: 850. https://doi.org/10.3390/genes16080850
APA StyleAkbar, A., Haider, R., Agnello, L., Noor, B., Maqsood, N., Atif, F., Ali, W., Ciaccio, M., & Tariq, H. (2025). CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies. Genes, 16(8), 850. https://doi.org/10.3390/genes16080850