Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Sequencing Data Collection
2.2. Assembly and Annotation of Mitogenome
2.3. Repeats Identification and SSRs Analysis
2.4. Gene Rearrangement and RSCU Analysis
2.5. Selective Pressure Analysis
2.6. Analysis of Intracellular Gene Transfer Between Organelles and the Nuclear Genome
2.7. Phylogenetic Tree Construction
3. Results and Discussion
3.1. Mitogenome Characterization of Adansonia
3.2. Repeats and Collinear Analysis in Four Adansonia Mitogenomes
3.3. Relative Synonymous Codon Usage and Select Pressure Analysis for PCGs
3.4. Intracellular Gene Transfer Analysis
3.5. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wickens, G.E. The Baobabs: Pachycauls of Africa, Madagascar and Australia; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Gebauer, J.; El-Siddig, K.; Ebert, G. Baobab (Adansonia digitata L.): A review on a multipurpose tree with promising future in the Sudan. Gartenbauwissenschaft 2002, 67, 155–160. [Google Scholar] [CrossRef]
- Baum, D.A. The Comparative Pollination and Floral Biology of Baobabs (Adansonia-Bombacaceae). Ann. Mo. Bot. Gard. 1995, 82, 322–348. [Google Scholar] [CrossRef]
- Baum, D.A. A Systematic Revision of Adansonia (Bombacaceae). Ann. Mo. Bot. Gard. 1995, 82, 440–471. [Google Scholar] [CrossRef]
- Wan, J.N.; Wang, S.W.; Leitch, A.R.; Leitch, I.J.; Jian, J.B.; Wu, Z.Y.; Xin, H.P.; Rakotoarinivo, M.; Onjalalaina, G.E.; Gituru, R.W.; et al. The rise of baobab trees in Madagascar. Nature 2024, 629, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, C.; Sarah, P.; Anna, H.; Vogl, C.R. The Importance of Baobab (Adansonia digitata L.) in Rural West African Subsistence—Suggestion of a Cautionary Approach to International Market Export of Baobab Fruits. Ecol. Food Nutr. 2010, 49, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Jäckering, L.; Kehlenbeck, K. The Baobab (Adansonia digitata L.) in Southern Kenya–A Study on Status, Distribution, Use and Importance in Taita–Taveta County. Environ. Manag. 2020, 66, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.C.; Osborne, P.E.; Haq, N. Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor. Syst. 2010, 80, 191–201. [Google Scholar] [CrossRef]
- Rahul, J.; Jain, M.K.; Singh, S.P.; Kamal, R.K.; Anuradha; Naz, A.; Gupta, A.K.; Mrityunjay, S.K. Adansonia digitata L. (baobab): A review of traditional information and taxonomic description. Asian Pac. J. Trop. Biomed. 2015, 5, 79–84. [Google Scholar] [CrossRef]
- Silva, M.L.; Rita, K.; Bernardo, M.A.; Mesquita, M.F.; Pintão, A.M.; Moncada, M. Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review. Nutrients 2023, 15, 2170. [Google Scholar] [CrossRef] [PubMed]
- Karimi, N.; Grover, C.E.; Gallagher, J.P.; Wendel, J.F.; Ané, C.; Baum, D.A. Reticulate Evolution Helps Explain Apparent Homoplasy in Floral Biology and Pollination in Baobabs (Adansonia; Bombacoideae; Malvaceae). Syst. Biol. 2020, 69, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, A.; Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kan, S.; Liao, X.; Zhou, J.; Tembrock, L.R.; Daniell, H.; Jin, S.; Wu, Z. Plant organellar genomes: Much done, much more to do. Trends Plant Sci. 2024, 29, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Wang, J.; Nie, L.; Tembrock, L.R.; Zou, C.; Kan, S.; Ma, X.; Wendel, J.F.; Wu, Z. Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species. BMC Biol. 2025, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Gualberto, J.M.; Mileshina, D.; Wallet, C.; Niazi, A.K.; Weber-Lotfi, F.; Dietrich, A. The plant mitochondrial genome: Dynamics and maintenance. Biochimie 2014, 100, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Liu, Y.Y.; Zeng, X.; Wu, P.; Li, Q.M.; Guo, S.X.; Hao, Z.G. Complete mitochondrial genome of Angelica dahurica and its implications on evolutionary analysis of complex mitochondrial genome architecture in Apiaceae. Front. Plant Sci. 2024, 15, 1367299. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Y.; Xie, X.; Wang, Z.; Miao, L.; Yang, Z.; Jiao, Y.; Xie, C.; Liu, J.; Hu, Z.; et al. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. Plant Physiol. 2023, 193, 578–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, J.; Li, J.; Yao, J.; Wang, B.; Ma, Y.; Li, N.; Wang, H.; Wang, T.; Liu, B.; et al. Evolutionary trajectory of organelle-derived nuclear DNAs in the Triticum/Aegilops complex species. Plant Physiol. 2024, 194, 918–935. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Huang, Y.; Liu, M.; Zhou, Y.; Xu, Y.; Mohammed, N.; Qiao, X.; Zuccolo, A.; Xie, W.; Wing, R.A.; et al. Continuous infiltration and evolutionary trajectory of nuclear organelle DNA in Oryza. Genome Res. 2025, 35, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dong, R.; Lan, L.; Li, S.-F.; Gao, W.-J.; Niu, H.-X. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int. J. Mol. Sci. 2020, 21, 707. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Yu, W.; Yang, J.; Song, Y.; dePamphilis, C.W.; Yi, T.; Li, D. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ni, Y.; Lu, Q.; Chen, H.; Liu, C. PMGA: A plant mitochondrial genome annotator. Plant Commun. 2025, 6, 101191. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Ankenbrand, M.J.; Hohlfeld, S.; Hackl, T.; Förster, F.J.P.C.S. AliTV—Interactive visualization of whole genome comparisons. PeerJ Comput. Sci. 2017, 3, e116. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiao, J.; Wu, J.; Zhang, H.; Liu, G.; Wang, X.; Dai, L. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 2012, 419, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Darzentas, N. Circoletto: Visualizing sequence similarity with Circos. Bioinformatics 2010, 26, 2620–2621. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yang, J.; Jing, Y.; Xu, L.; Yu, K.; Fang, X. NGenomeSyn: An easy-to-use and flexible tool for publication-ready visualization of syntenic relationships across multiple genomes. Bioinformatics 2023, 39, btad121. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Schmidt, H.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Gualberto, J.M.; Newton, K.J. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. Annu. Rev. Plant Biol. 2017, 68, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 2013, 200, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Kozik, A.; Rowan, B.; Lavelle, D.; Berke, L.; Schranz, M.E.; Michelmore, R.W.; Christensen, A.C. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019, 15, e1008373. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Luo, W. Comparative analysis of the complete mitochondrial genomes of Firmiana danxiaensis and F. kwangsiensis (Malvaceae), two endangered Firmiana species in China. Planta 2025, 261, 107. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, V.A.C.; Moysés Alves, R.; Silva, S.R.; Ferro, J.A.; Domingues, D.S.; Miranda, V.F.O.; Varani, A.M. Comparative analyses of Theobroma cacao and T. grandiflorum mitogenomes reveal conserved gene content embedded within complex and plastic structures. Gene 2023, 849, 146904. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, H.; Liu, C.; Chu, H.; Yan, Y.; Tang, L. The complete mitochondrial genome of Bombax ceiba. Mitochondrial DNA. Part B Resour. 2018, 3, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Huang, L.; Jia, Y.; Lockhart, P.J.; Fong, Y.; Tian, Y. Identification of Genic SSRs Provide a Perspective for Studying Environmental Adaptation in the Endemic Shrub Tetraena mongolica. Genes 2020, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, Z.; Jiang, J.; Wu, W.; Xin, Y.; Zeng, W. Assembly and comparative analysis of the complete mitogenome of Rubus chingii var. suavissimus, an exceptional berry plant possessing sweet leaves. Front. Plant Sci. 2024, 15, 1504687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qu, G.; Zhang, Y.; Liu, J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: An invaluable traditional Chinese medicine. BMC Plant Biol. 2024, 24, 1055. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, T.; Qin, R.; Liu, H. Complete Mitogenome and Phylogenetic Analysis of the Carthamus tinctorius L. Genes 2023, 14, 979. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lyu, X.; Zhao, F.; Liu, Y. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Res. 2021, 49, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, L.; Lu, L.; Zhu, Y.; Gao, D.; Liu, S. Patterns in Genome-Wide Codon Usage Bias in Representative Species of Lycophytes and Ferns. Genes 2024, 15, 887. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Grover, C.E.; Chen, Z.; Wendel, J.F.; Hua, J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC Plant Biol. 2019, 19, 492. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, S.; Verbruggen, H.; Upham, N.S.; Steenwyk, J.L. Reticulate evolution: Detection and utility in the phylogenomics era. Mol. Phylogenet. Evol. 2024, 201, 108197. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Deng, Q.W.; Qiu, Y.Y.; Liu, C.; Lin, C.F.; Ru, Y.L.; Sun, Y.; Lai, J.; Liu, L.X.; Shen, X.X.; et al. Post-transfer adaptation of HGT-acquired genes and contribution to guanine metabolic diversification in land plants. New Phytol. 2024, 244, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Liu, C.; Shi, Z.; Pang, L.; Chen, C.; Chen, Y.; Pan, R.; Zhou, W.; Chen, X.X.; et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 2022, 185, 2975–2987.e10. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Zhu, Y.; Liu, Y.; Feng, Y.; Lu, R.S.; Li, Y.; Li, P.; Kremer, A.; Lascoux, M.; Chen, J. Genome-wide analyses of introgression between two sympatric Asian oak species. Nat. Ecol. Evol. 2022, 6, 924–935. [Google Scholar] [CrossRef] [PubMed]
Adansonia digitata | Adansonia perrieri | Adansonia rubrostipa | Adansonia za | |
---|---|---|---|---|
Accession | PV591953 | PV591954 | PV591955 | PV591956 |
Length | 607,344 | 507,138 | 517,611 | 575,326 |
All gene | 67 | 59 | 60 | 65 |
CDS Number | 39 | 33 | 34 | 39 |
rRNA Number | 4 | 3 | 3 | 3 |
tRNA Number | 24 | 23 | 23 | 23 |
GC Content | 45.15% | 44.95% | 44.99% | 45.05% |
Mean depth | 99.2× | 113.4× | 94.4× | 109.8× |
Species | Start | End | Period Size | Copy Number | Species | Start | End | Period Size | Copy Number |
---|---|---|---|---|---|---|---|---|---|
Adansonia perrieri | 65,853 | 65,883 | 15 | 2.1 | Adansonia digitata | 32,075 | 32,104 | 15 | 2.1 |
117,449 | 117,516 | 29 | 2.3 | 220,838 | 220,872 | 2 | 18 | ||
169,765 | 169,791 | 10 | 2.7 | 246,795 | 246,840 | 23 | 2 | ||
203,567 | 203,601 | 2 | 18 | 341,385 | 341,420 | 17 | 2.1 | ||
229,520 | 229,565 | 23 | 2 | 429,576 | 429,606 | 14 | 2.2 | ||
301,130 | 301,179 | 25 | 2 | 549,109 | 549,144 | 17 | 2.1 | ||
407,771 | 407,801 | 14 | 2.2 | 584,992 | 585,041 | 25 | 2 | ||
497,972 | 498,007 | 17 | 2.1 | Adansonia za | 65,242 | 65,272 | 15 | 2.1 | |
Adansonia rubrostipa | 20,011 | 20,046 | 17 | 2.1 | 116,867 | 116,934 | 29 | 2.3 | |
57,450 | 57,480 | 14 | 2.2 | 169,164 | 169,190 | 10 | 2.7 | ||
216,871 | 216,920 | 25 | 2 | 192,505 | 192,554 | 25 | 2 | ||
288,485 | 288,530 | 23 | 2 | 228,408 | 228,443 | 17 | 2.1 | ||
314,449 | 314,483 | 2 | 18 | 322,990 | 323,035 | 23 | 2 | ||
348,266 | 348,292 | 10 | 2.7 | 348,954 | 348,988 | 2 | 18 | ||
400,522 | 400,618 | 29 | 3.3 | 475,327 | 475,357 | 14 | 2.2 | ||
452,213 | 452,242 | 15 | 2.1 | 565,540 | 565,575 | 17 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Zhou, F.; Wang, L.; Hu, X.; Li, Z.; Li, X.; Zhou, D.; Wang, H. Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species. Genes 2025, 16, 846. https://doi.org/10.3390/genes16070846
Hu T, Zhou F, Wang L, Hu X, Li Z, Li X, Zhou D, Wang H. Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species. Genes. 2025; 16(7):846. https://doi.org/10.3390/genes16070846
Chicago/Turabian StyleHu, Tingting, Fengjuan Zhou, Lisha Wang, Xinwei Hu, Zhongxiang Li, Xinzeng Li, Daoyuan Zhou, and Hui Wang. 2025. "Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species" Genes 16, no. 7: 846. https://doi.org/10.3390/genes16070846
APA StyleHu, T., Zhou, F., Wang, L., Hu, X., Li, Z., Li, X., Zhou, D., & Wang, H. (2025). Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species. Genes, 16(7), 846. https://doi.org/10.3390/genes16070846