Advances in Precision Therapeutics and Gene Therapy Applications for Retinal Diseases: Impact and Future Directions
Abstract
1. Introduction
2. Approved Gene Therapies for IRDs
2.1. Leber Congenital Amaurosis (LCA) Resulting from RPE65 Mutation
2.2. Retinitis Pigmentosa (RP)
2.3. Choroideremia
2.4. Stargardt Disease
2.5. X-Linked Retinoschisis (XLRS)
2.6. Age-Related Macular Degeneration (AMD)
3. Gene Therapy Design Issues
3.1. Modes of Delivery
3.2. Gene Replacement Against Editing
4. The Efficacy of Gene Therapy for Eye Diseases
4.1. Therapy for Gene Replacement
4.2. Treatments Based on CRISPR
4.3. The Impact of Immune Response and Cell Lifespan on the Outcome
5. Availability of Gene Therapy for Eye Conditions
5.1. Current FDA- and EMA-Approved Treatments
5.2. Current Clinical Trials
6. Trials in Gene Therapy: Difficulties
6.1. Scarcity of Specialized Centers
6.2. High Costs and Insurance Restraints
6.3. Regulatory and Ethical Barriers
7. Gene Therapy Approaches for Ocular Conditions
7.1. Viral-Vector-Mediated Distribution
7.1.1. Adeno-Associated Virus (AAV)
- Genomic capacity: The single-stranded AAV genome size is restricted to roughly 4.7 kb, limiting the delivery of longer coding or regulating sequences. Larger genes, such as ABCA4 or USH2A, are accommodated by dual vector strategies (such as split-intein or overlapping genomes) and minimal promoter designs [58].
- While AAV vectors are usually well tolerated, preexisting anti-AAV antibodies can neutralize vector particles. Intravenous delivery may also cause mild inflammation. Reduced seroreactivity and transient immunosuppression regimens have been developed to improve transduction efficiency and enable re-dosing [51].
7.1.2. Adenovirus
- AdV capsids interact with Toll-like receptors (TLR2 and TLR9) on retinal microglia and retinal pigment epithelial (RPE) cells, releasing proinflammatory cytokines (IL-6 and TNF-α) and activating complements [62].
- Transient expression: AdV’s inflammatory response speeds up vector clearance and transduced cell destruction, thus restricting transgene expression to a one-to-four-week range [51].
- High-titer anti-AdV antibodies develop quickly and can impede efficient re-dosing and raise the risk of immune-complex-mediated toxicity [63].
- Higher doses of AdV are linked to spikes in intraocular pressure and anterior chamber inflammation, which calls for careful dosage optimization and maybe prophylactic immunosuppression [63].
7.1.3. Lentivirus
7.2. Non-Viral Gene Distribution Techniques
7.2.1. Chemical Controllers
- Liposomes, or lipoplexes: Capturing DNA or RNA, cationic and PEGylated liposomes shield the cargo from nucleases and encourage endocytic absorption. Preclinical ocular studies have shown minimal inflammation and efficient corneal and retinal transduction [65].
- Polymeric nanoparticles (polyplexes): Low-toxicity in vivo biodegradable polymers, including PLGA, chitosan, and PEI, create complexes that allow controlled release and improve cellular absorption [65].
- Dendrimers and peptide vectors: PAMAM dendrimers and cell-penetrating peptides (e.g., TAT) show good safety profiles and help in translocation of nucleic acids across ocular barriers [65].
- Pegylated RNA aptamers: Representing a non-viral anti-angiogenic therapy, pegylated RNA aptamers bind to VEGF with great specificity and can be chemically modified for prolonged intraocular retention [63].
7.2.2. Physical-Based Techniques
- Electroporation and iontophoresis: The temporary permeabilization of cell membranes by electrical or ionic currents greatly increases the absorption of naked nucleic acids in corneal and retinal tissues [65].
- Gene gun delivery: Localized corneal transfection is made possible by DNA-coated microparticles being driven into ocular surface cells without clearly damaging any tissue [65].
- Ultrasound-mediated delivery: Targeting specific areas of the posterior segment, focused ultrasonic energy combined with microbubble cavitation improves permeability and endocytic absorption [65].
8. Routes of Administration
- Subretinal injection: Using vectors injected into the subretinal space under the neurosensory retina, this technique achieves high transduction of RPE and photoreceptors in an immune-privileged compartment. The method carries hazards, including detachment, hemorrhage, and transient inflammation, and calls for vitreoretinal expertise [51].
- Intravitreal injection: Targeting inner retinal neurons mostly, this minimally invasive technique, known as intravitreal injection, sends vectors into the vitreous cavity. But local immune responses and diffusion barriers, like the internal limiting membrane, may limit access to the outer retina. Having said that, the engineered capsids, such as AAV7m8, can increase photoreceptor tropism.
- Suprachoroidal delivery: Using vectors between the sclera and choroid, this method—known as suprachoroidal delivery—allows for extensive outer retinal coverage. Though long-term efficacy and safety are still under research, it could lower humoral responses when compared to intravitreal approaches [51].
9. Gene Therapy Costs for Eye Diseases
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RP | Retinitis pigmentosa |
XLRP | X-linked retinitis pigmentosa |
LCA | Leber congenital amaurosis |
XLRS | X-linked retinoschisis |
nAMD | Neovascular age-related macular degeneration |
GA | Geographic atrophy |
DME | Diabetic macular edema |
CI-DME | Central involving diabetic macular edema |
DR | Diabetic retinopathy |
IVI | Intravitreal injection |
SRI | Subretinal injection |
SCSI | Suprachoroidal space injection |
Gene Therapy Code Descriptions | |
MCO-010 | Optogenetic therapy using multi-characteristic opsin (Nanoscope Therapeutics) |
vMCO-I | Variant of MCO-010; optogenetic therapy (Nanoscope Therapeutics) |
OCU400-301 | NR2E3-based gene modifier therapy for IRDs (Ocugen) |
GS030-DP | Optogenetic therapy plus stimulation device (GenSight Biologics) |
ZM-02 | AAV-based therapy (Zam Therapeutics) |
rAAV.hPDE6A | AAV therapy delivering PDE6A gene for RP |
AAV2/5-hPDE6B | AAV2/5 vector delivering PDE6B gene for RP |
Ultevursen | Antisense oligonucleotide targeting USH2A (ProQR) |
SPVN06 | Neuroprotective AAV gene therapy (SparingVision) |
VG901 | Investigational gene therapy (Vico Therapeutics) |
CPK850 | AAV8-based gene therapy for RPE65 mutations (Novartis) |
QR-1123 | Antisense oligo targeting RHO-P23H mutation (ProQR) |
AAV5 hRKp.RPGR | AAV5 vector with RPGR gene under RK promoter |
4D-125 | RPGR-targeting gene therapy by 4D Molecular Therapeutics |
AGTC-501 | AAV-based gene therapy for RPGR mutations (AGTC) |
FT-002 | F-star Therapeutics pipeline candidate; retinal focus |
rAAV2tYF-GRK1-RPGR | Modified AAV2 vector for RPGR delivery under GRK1 promoter |
OPGx-001 | AAV gene therapy targeting GUCY2D (Opus Genetics) |
Sepofarsen | Antisense oligonucleotide targeting CEP290 (ProQR) |
EDIT-101 | CRISPR/Cas9 genome editing for CEP290 (Editas Medicine) |
rAAV2-CBSB-hRPE65 | AAV2 vector delivering RPE65 under synthetic promoter |
AAV2-hRPE65v2 | Optimized RPE65 gene therapy (Luxturna) |
HG004 | Gene therapy from HuidaGene Therapeutics |
FT-001 | F-star Therapeutics candidate |
LX101 | AAV-based gene therapy for AMD/IRD (Luxna Biotech) |
Voretigene neparvovec | FDA-approved RPE65 gene therapy (Luxturna) |
PUMCH-E101 | Gene editing therapy from PUMCH |
ACDN-01 | AavantiBio-associated candidate; RPGR-related |
JWK006 | JW Therapeutics gene therapy |
ATSN-201 | Atsena Therapeutics gene therapy for MYO7A (USH1B) |
ZM-01 | Zam Therapeutics pipeline candidate |
JWK002 | JW Therapeutics pipeline therapy |
IVB102 | Investigational therapy by Iveric Bio |
rAAV2tYF-PR1.7-hCNGB3 | AAV2 variant for CNGB3 delivery for achromatopsia |
AGTC-402 | Gene therapy for CNGB3-associated achromatopsia |
rAAV.hCNGA3 | AAV therapy delivering CNGA3 for achromatopsia |
4D-110 | AAV-based therapy by 4DMT for RPE65 |
RTx-015 | Optogenetic therapy by Ray Therapeutics |
BIIB111 | Biogen gene therapy for choroideremia (CHM) |
BIIB112 | Biogen gene therapy for CNGB3 (achromatopsia) |
NGGT001 | NeuroGene gene therapy |
ZVS101e | Zvesda Therapeutics pipeline candidate |
VGR-R01 | Gene therapy candidate from Vigeneron |
NG101 AAV | NeuroGene investigational AAV therapy |
FT-003 | F-star Therapeutics gene therapy candidate |
LX102 | Gene therapy from Luxna Biotech |
SKG0106 | Gene therapy from Syngene Korea |
ADVM-022 | AAV.7m8-aflibercept gene therapy for wet AMD (Adverum) |
KH658 | KH Life Sciences gene therapy |
RGX-314 | AAV8 vector expressing anti-VEGF Fab (Regenxbio) |
ABBV-RGX-314 | RGX-314 program in partnership with AbbVie |
RRG001 | Gene therapy from Ray Therapeutics or Regenxbio |
4D-150 | Dual transgene AAV for VEGF-A and VEGFR1 (4DMT) |
EXG202 | Exegenesis Bio gene therapy candidate |
HG202 | HuidaGene RNA-targeted gene therapy |
CRISPR-Cas13 RNA-editing | RNA-targeted editing therapy using Cas13 enzyme |
EXG102-031 | Exegenesis gene therapy for retinal degeneration |
CRISPR-Cas13 (hfCas13Y) | High-fidelity Cas13 variant for RNA editing |
GT005 | AAV therapy for dry AMD targeting complement factor I |
Elamipretide | Mitochondria-targeted peptide for AMD (Stealth BioTherapeutics) |
Ixo-vec | AAV8 vector expressing aflibercept (Iveric Bio) |
References
- Nguyen, X.-T.-A.; Moekotte, L.; Plomp, A.S.; Bergen, A.A.; Van Genderen, M.M.; Boon, C.J.F. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. IJMS 2023, 24, 7481. [Google Scholar] [CrossRef] [PubMed]
- McClements, M.E.; Elsayed, M.E.A.A.; Major, L.; De La Camara, C.M.-F.; MacLaren, R.E. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol. Diagn. Ther. 2024, 28, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and Safety of Voretigene Neparvovec (AAV2-hRPE65v2) in Patients with RPE65-Mediated Inherited Retinal Dystrophy: A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Daruich, A.; Rateaux, M.; Batté, E.; De Vergnes, N.; Valleix, S.; Robert, M.P.; Bremond Gignac, D. 12-Month Outcomes after Voretigene Neparvovec Gene Therapy in Paediatric Patients with RPE65-Mediated Inherited Retinal Dystrophy. Br. J. Ophthalmol. 2025, 109, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Gadre, G.A.; Patil, P.; Shirke, D.B.; Sarwate, R.; Kundap, R. Emerging Therapies in Retinal Diseases: From Gene Therapy to Stem Cell Interventions. IJRITCC 2023, 11, 381–386. [Google Scholar] [CrossRef]
- Mahaling, B.; Low, S.W.Y.; Ch, S.; Addi, U.R.; Ahmad, B.; Connor, T.B.; Mohan, R.R.; Biswas, S.; Chaurasia, S.S. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023, 15, 2005. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, N.G.; Abboud, E.B.; Nowilaty, S.R.; Alkuraya, H.; Alhommadi, A.; Cai, H.; Hou, R.; Deng, W.-T.; Boye, S.L.; Almaghamsi, A.; et al. Treatment of Retinitis Pigmentosa Due to MERTK Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Results of a Phase I Trial. Hum. Genet. 2016, 135, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez De La Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial Results from a First-in-Human Gene Therapy Trial on X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.M.; Black, G.C.M.; et al. Retinal Gene Therapy in Patients with Choroideremia: Initial Findings from a Phase 1/2 Clinical Trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.L.; Jolly, J.K.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Black, G.C.; Webster, A.R.; Lotery, A.J.; Holder, G.E.; et al. Visual Acuity after Retinal Gene Therapy for Choroideremia. N. Engl. J. Med. 2016, 374, 1996–1998. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, I.S.; Hoang, S.C.; Radziwon, A.; Binczyk, N.M.; Seabra, M.C.; MacLaren, R.E.; Somani, R.; Tennant, M.T.S.; MacDonald, I.M. Two-Year Results After AAV2-Mediated Gene Therapy for Choroideremia: The Alberta Experience. Am. J. Ophthalmol. 2018, 193, 130–142. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Fischer, M.D.; Gow, J.A.; Lam, B.L.; Sankila, E.-M.K.; Girach, A.; Panda, S.; Yoon, D.; Zhao, G.; Pennesi, M.E. Subretinal Timrepigene Emparvovec in Adult Men with Choroideremia: A Randomized Phase 3 Trial. Nat. Med. 2023, 29, 2464–2472. [Google Scholar] [CrossRef]
- Sun, D.; Sun, W.; Gao, S.-Q.; Lehrer, J.; Naderi, A.; Wei, C.; Lee, S.; Schilb, A.L.; Scheidt, J.; Hall, R.C.; et al. Effective Gene Therapy of Stargardt Disease with PEG-ECO/pGRK1-ABCA4-S/MAR Nanoparticles. Mol. Ther.—Nucleic Acids 2022, 29, 823–835. [Google Scholar] [CrossRef] [PubMed]
- HAAS, J. Uber Das Zusammenvorkommen von Veraderungen Der Retina Und Chorioidea. Arch. Augenheilked 1898, 37, 343–348. [Google Scholar]
- Hahn, L.C.; Van Schooneveld, M.J.; Wesseling, N.L.; Florijn, R.J.; Ten Brink, J.B.; Lissenberg-Witte, B.I.; Strubbe, I.; Meester-Smoor, M.A.; Thiadens, A.A.; Diederen, R.M.; et al. X-Linked Retinoschisis. Ophthalmology 2022, 129, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.C.; Öztürk, B.E.; Lee, T.; Fortuny, C.; Visel, M.; Dalkara, D.; Schaffer, D.V.; Flannery, J.G. Retinoschisin Gene Therapy in Photoreceptors, Müller Glia or All Retinal Cells in the Rs1h−/− Mouse. Gene Ther. 2014, 21, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.L.; DeAngelis, M.M. Epidemiology of Age-Related Macular Degeneration (AMD): Associations with Cardiovascular Disease Phenotypes and Lipid Factors. Eye Vis. 2016, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-Target Effects in CRISPR/Cas9-Mediated Genome Engineering. Mol. Ther.—Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Steyer, B.; Shahi, P.K.; Mueller, K.P.; Valiauga, R.; Edwards, K.L.; Bacig, C.; Steltzer, S.S.; Srinivasan, S.; Abdeen, A.; et al. Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. Am. J. Hum. Genet. 2020, 107, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.-F.; Slakter, J.S.; et al. Pegcetacoplan for the Treatment of Geographic Atrophy Secondary to Age-Related Macular Degeneration (OAKS and DERBY): Two Multicentre, Randomised, Double-Masked, Sham-Controlled, Phase 3 Trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Patel, S.S.; Staurenghi, G.; Tadayoni, R.; Danzig, C.J.; Eichenbaum, D.A.; Hsu, J.; Wykoff, C.C.; Heier, J.S.; Lally, D.R.; et al. Efficacy and Safety of Avacincaptad Pegol in Patients with Geographic Atrophy (GATHER2): 12-Month Results from a Randomised, Double-Masked, Phase 3 Trial. Lancet 2023, 402, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J. Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol. Ther. 2017, 25, 1076–1094. [Google Scholar] [CrossRef] [PubMed]
- Dudus, L.; Anand, V.; Acland, G.M.; Chen, S.-J.; Wilson, J.M.; Fisher, K.J.; Maguire, A.M.; Bennett, J. Persistent Transgene Product in Retina, Optic Nerve and Brain after Intraocular Injection of rAAV. Vis. Res. 1999, 39, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.R.; Kamphuis, W.; Eggers, R.; Symons, N.A.; Blits, B.; Niclou, S.; Boer, G.J.; Verhaagen, J. Intravitreal Injection of Adeno-Associated Viral Vectors Results in the Transduction of Different Types of Retinal Neurons in Neonatal and Adult Rats: A Comparison with Lentiviral Vectors. Mol. Cell. Neurosci. 2002, 21, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, M.; Schön, C.; Occelli, L.M.; Rossi, A.; Meumann, N.; Boyd, R.F.; Bartoe, J.T.; Siedlecki, J.; Gerhardt, M.J.; Babutzka, S.; et al. Novel AAV Capsids for Intravitreal Gene Therapy of Photoreceptor Disorders. EMBO Mol. Med. 2021, 13, e13392. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; Da Silva Cunha, A.; Woo, S.J.; Kwon, Y.J. Molecular Genetics and Emerging Therapies for Retinitis Pigmentosa: Basic Research and Clinical Perspectives. Prog. Retin. Eye Res. 2018, 63, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. IJMS 2022, 23, 4883. [Google Scholar] [CrossRef] [PubMed]
- Gumerson, J.D.; Alsufyani, A.; Yu, W.; Lei, J.; Sun, X.; Dong, L.; Wu, Z.; Li, T. Restoration of RPGR Expression in Vivo Using CRISPR/Cas9 Gene Editing. Gene Ther. 2022, 29, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Vats, A.; Sahel, J.-A.; Chen, Y.; Byrne, L.C. Gene Augmentation Prevents Retinal Degeneration in a CRISPR/Cas9-Based Mouse Model of PRPF31 Retinitis Pigmentosa. Nat. Commun. 2022, 13, 7695. [Google Scholar] [CrossRef] [PubMed]
- Trapani, I.; Puppo, A.; Auricchio, A. Vector Platforms for Gene Therapy of Inherited Retinopathies. Prog. Retin. Eye Res. 2014, 43, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Ashtari, M.; Wellman, J.; Marshall, K.A.; Cyckowski, L.L.; Chung, D.C.; McCague, S.; Pierce, E.A.; Chen, Y.; Bennicelli, J.L.; et al. AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness. Sci. Transl. Med. 2012, 4, 120ra15. [Google Scholar] [CrossRef] [PubMed]
- Solinís, M.Á.; Del Pozo-Rodríguez, A.; Apaolaza, P.S.; Rodríguez-Gascón, A. Treatment of Ocular Disorders by Gene Therapy. Eur. J. Pharm. Biopharm. 2015, 95, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; High, K.A.; Auricchio, A.; Wright, J.F.; Pierce, E.A.; Testa, F.; Mingozzi, F.; Bennicelli, J.L.; Ying, G.; Rossi, S.; et al. Age-Dependent Effects of RPE65 Gene Therapy for Leber’s Congenital Amaurosis: A Phase 1 Dose-Escalation Trial. Lancet 2009, 374, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Kempf, M.; Bartz-Schmidt, K.U.; Dimopoulos, S.; Reichel, F.; Jung, R.; Kelbsch, C.; Kohl, S.; Kortüm, F.C.; Nasser, F.; et al. Spatial and Temporal Resolution of the Photoreceptors Rescue Dynamics after Treatment with Voretigene Neparvovec. Br. J. Ophthalmol. 2022, 106, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Sengillo, J.D.; Gregori, N.Z.; Sisk, R.A.; Weng, C.Y.; Berrocal, A.M.; Davis, J.L.; Mendoza-Santiesteban, C.E.; Zheng, D.D.; Feuer, W.J.; Lam, B.L. Visual Acuity, Retinal Morphology, and Patients’ Perceptions after Voretigene Neparovec-Rzyl Therapy for RPE65-Associated Retinal Disease. Ophthalmol. Retin. 2022, 6, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, B.; Künzel, S.H.; Preising, M.N.; Scholz, J.P.; Chang, P.; Holz, F.G.; Herrmann, P. Single Center Experience with Voretigene Neparvovec Gene Augmentation Therapy in RPE65 Mutation–Associated Inherited Retinal Degeneration in a Clinical Setting. Ophthalmology 2024, 131, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Ku, C.A.; Igelman, A.D.; Huang, S.J.; Vasconcelos, H.; Da Palma, M.M.; Bailey, S.T.; Lauer, A.K.; Weleber, R.G.; Yang, P.; Pennesi, M.E. Improved Rod Sensitivity as Assessed by Two-Color Dark-Adapted Perimetry in Patients with RPE65-Related Retinopathy Treated With Voretigene Neparvovec-Rzyl. Trans. Vis. Sci. Tech. 2023, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Gange, W.S.; Sisk, R.A.; Besirli, C.G.; Lee, T.C.; Havunjian, M.; Schwartz, H.; Borchert, M.; Sengillo, J.D.; Mendoza, C.; Berrocal, A.M.; et al. Perifoveal Chorioretinal Atrophy after Subretinal Voretigene Neparvovec-Rzyl for RPE65-Mediated Leber Congenital Amaurosis. Ophthalmol. Retin. 2022, 6, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.D.; Simonelli, F.; Sahni, J.; Holz, F.G.; Maier, R.; Fasser, C.; Suhner, A.; Stiehl, D.P.; Chen, B.; Audo, I.; et al. Real-World Safety and Effectiveness of Voretigene Neparvovec: Results up to 2 Years from the Prospective, Registry-Based PERCEIVE Study. Biomolecules 2024, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhao, P.Y.; Branham, K.; Schlegel, D.; Fahim, A.T.; Jayasundera, T.K.; Khan, N.; Besirli, C.G. Real-World Outcomes of Voretigene Neparvovec Treatment in Pediatric Patients with RPE65-Associated Leber Congenital Amaurosis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Russell, S.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Drack, A.V.; Simonelli, F.; Leroy, B.P.; Reape, K.Z.; High, K.A.; et al. Durability of Voretigene Neparvovec for Biallelic RPE65-Mediated Inherited Retinal Disease. Ophthalmology 2021, 128, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, B. Long-Term Experience with Gene Augmentation Therapy in Patients with Inherited Retinal Disease Associated with Biallelic Mutations in RPE65. Med. Genet. 2025, 37, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Wellman, J.; Marshall, K.A.; McCague, S.; Ashtari, M.; DiStefano-Pappas, J.; Elci, O.U.; Chung, D.C.; Sun, J.; Wright, J.F.; et al. Safety and Durability of Effect of Contralateral-Eye Administration of AAV2 Gene Therapy in Patients with Childhood-Onset Blindness Caused by RPE65 Mutations: A Follow-on Phase 1 Trial. Lancet 2016, 388, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Bommakanti, N.; Young, B.K.; Sisk, R.A.; Berrocal, A.M.; Duncan, J.L.; Bakall, B.; Mathias, M.T.; Ahmed, I.; Chorfi, S.; Comander, J.; et al. Classification and Growth Rate of Chorioretinal Atrophy after Voretigene Neparvovec-Rzyl for RPE65-Mediated Retinal Degeneration. Ophthalmol. Retin. 2024, 8, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kessel, L.; Christensen, U.C.; Klemp, K. Inflammation after Voretigene Neparvovec Administration in Patients with RPE65-Related Retinal Dystrophy. Ophthalmology 2022, 129, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Borchert, M.; Lee, T.C.; Nagiel, A. Subretinal Deposits in Young Patients Treated with Voretigene Neparvovec-Rzyl for RPE65-Mediated Retinal Dystrophy. Br. J. Ophthalmol. 2023, 107, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Reichel, F.F.; Seitz, I.; Wozar, F.; Dimopoulos, S.; Jung, R.; Kempf, M.; Kohl, S.; Kortüm, F.C.; Ott, S.; Pohl, L.; et al. Development of Retinal Atrophy after Subretinal Gene Therapy with Voretigene Neparvovec. Br. J. Ophthalmol. 2023, 107, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Rasoulinejad, S.A.; Maroufi, F. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Mol. Biotechnol. 2021, 63, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A.; et al. Development of a Gene-Editing Approach to Restore Vision Loss in Leber Congenital Amaurosis Type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Aleman, T.S.; Jayasundera, K.T.; Ashimatey, B.S.; Kim, K.; Rashid, A.; Jaskolka, M.C.; Myers, R.L.; Lam, B.L.; Bailey, S.T.; et al. Gene Editing for CEP290-Associated Retinal Degeneration. N. Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef] [PubMed]
- Ghoraba, H.H.; Akhavanrezayat, A.; Karaca, I.; Yavari, N.; Lajevardi, S.; Hwang, J.; Regenold, J.; Matsumiya, W.; Pham, B.; Zaidi, M.; et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. OPTH 2022, 16, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Prado, D.A.; Acosta-Acero, M.; Maldonado, R.S. Gene Therapy beyond Luxturna: A New Horizon of the Treatment for Inherited Retinal Disease. Curr. Opin. Ophthalmol. 2020, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Lubinga, S.J.; Banken, R.; Rind, D.; Cramer, G.; Synnott, P.G.; Chapman, R.H.; Khan, S.; Carlson, J. Cost Utility of Voretigene Neparvovec for Biallelic RPE65-Mediated Inherited Retinal Disease. Value Health 2019, 22, 161–167. [Google Scholar] [CrossRef]
- Levin, A.V. Ethical Considerations in Gene Therapy. Ophthalmic Genet. 2016, 37, 249–251. [Google Scholar] [CrossRef]
- Li, J.; Walker, S.; Nie, J.; Zhang, X. Experiments That Led to the First Gene-Edited Babies: The Ethical Failings and the Urgent Need for Better Governance. J. Zhejiang Univ. Sci. B 2019, 20, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, S.; Chen, J.; Li, W. After He Jiankui’s Case: Chinese Legislative Modifications in Human Embryo Gene Editing. Hum. Gene Ther. 2022, 33, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Olaghere, J.; Williams, D.A.; Farrar, J.; Büning, H.; Calhoun, C.; Ho, T.; Inamdar, M.S.; Liu, D.; Makani, J.; Nyarko, K.; et al. Scientific Advancements in Gene Therapies: Opportunities for Global Regulatory Convergence. Biomedicines 2025, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Lebherz, C.; Maguire, A.; Tang, W.; Bennett, J.; Wilson, J.M. Novel AAV Serotypes for Improved Ocular Gene Transfer. J. Gene Med. 2008, 10, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.A.; Shalaev, E.; Karami, T.K.; Cunningham, J.; Slater, N.K.H.; Rivers, H.M. Pharmaceutical Development of AAV-Based Gene Therapy Products for the Eye. Pharm. Res. 2019, 36, 29. [Google Scholar] [CrossRef] [PubMed]
- Bordet, T.; Behar-Cohen, F. Ocular Gene Therapies in Clinical Practice: Viral Vectors and Nonviral Alternatives. Drug Discov. Today 2019, 24, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Aldhamen, Y.A.; Seregin, S.S.; Amalfitano, A. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm. Front. Immunol. 2011, 2, 40. [Google Scholar] [CrossRef]
- Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T.; Guyer, D.R.; Adamis, A.P. Pegaptanib, a Targeted Anti-VEGF Aptamer for Ocular Vascular Disease. Nat. Rev. Drug Discov. 2006, 5, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kharisova, C.B.; Kitaeva, K.V.; Solovyeva, V.V.; Sufianov, A.A.; Sufianova, G.Z.; Akhmetshin, R.F.; Bulgar, S.N.; Rizvanov, A.A. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025, 13, 365. [Google Scholar] [CrossRef] [PubMed]
- Bloquel, C.; Bourges, J.L.; Touchard, E.; Berdugo, M.; BenEzra, D.; Behar-Cohen, F. Non-Viral Ocular Gene Therapy: Potential Ocular Therapeutic Avenues. Adv. Drug Deliv. Rev. 2006, 58, 1224–1242. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Li, D.; Wang, N.; Gruber, J.; Lo, A.W.; Conti, R.M. The Estimated Annual Financial Impact of Gene Therapy in the United States. Gene Ther. 2023, 30, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Darrow, J.J. Luxturna: FDA Documents Reveal the Value of a Costly Gene Therapy. Drug Discov. Today 2019, 24, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Jayasundera, K.T.; Abuzaitoun, R.O.; Lacy, G.D.; Abalem, M.F.; Saltzman, G.M.; Ciulla, T.A.; Johnson, M.W. Challenges of Cost-Effectiveness Analyses of Novel Therapeutics for Inherited Retinal Diseases. Am. J. Ophthalmol. 2022, 235, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Huygens, S.A.; Versteegh, M.M.; Vegter, S.; Schouten, L.J.; Kanters, T.A. Methodological Challenges in the Economic Evaluation of a Gene Therapy for RPE65-Mediated Inherited Retinal Disease: The Value of Vision. PharmacoEconomics 2021, 39, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Buessing, M.; O’Connell, T.; Pitluck, S.; Ciulla, T.A. Cost-Effectiveness of Voretigene Neparvovec-Rzyl vs Standard Care for RPE65-Mediated Inherited Retinal Disease. JAMA Ophthalmol. 2019, 137, 1115. [Google Scholar] [CrossRef] [PubMed]
- Witkowsky, L.; Norstad, M.; Glynn, A.R.; Kliegman, M. Towards Affordable CRISPR Genomic Therapies: A Task Force Convened by the Innovative Genomics Institute. Gene Ther. 2023, 30, 747–752. [Google Scholar] [CrossRef] [PubMed]
Ocular Disease | Gene Therapy Code | Route of Administration | Study Name | Study Type | Phase | Sponsor | Trial Number |
---|---|---|---|---|---|---|---|
RP | MCO-010 | IVI | REMAIN | Observational | - | Nanoscope Therapeutics Inc. | NCT06162585 |
RP | vMCO-I | IVI | EXTEND | Observational | - | Nanoscope Therapeutics Inc. | NCT05921162 |
RP | OCU400-301 | SRI | liMeliGhT | Interventional | III | Ocugen | NCT06388200 |
RP | GS030-DP | IVI | PIONEER | Interventional | I/II | GenSight Biologics | NCT03326336 |
RP | ZM-02 | IVI | MOON | Interventional | I | Zhongmou Therapeutics | NCT06292650 |
RP due to PDE6A | rAAV.hPDE6A | SRI | Pigment | Interventional | I/II | STZ eyetrial | NCT04611503 |
RP due to PDE6B | AAV2/5-hPDE6B | SRI | - | Interventional | I/II | eyeDNA Therapeutics | NCT03328130 |
RP/Usher Syndrome Type 2 | Ultevursen | IVI | LUNA | Interventional | II | Laboratoires Thea | NCT06627179 |
RP due to RHO, PDE6A, or PDE6B gene | SPVN06 | SRI | PRODYGY | Interventional | I/II | SparingVision | NCT05748873 |
RP due to CNGA1 | VG901 | IVI | - | Interventional | I | ViGeneron GmbH | NCT06291935 |
RP due to RLBP1 | CPK850 | SRI | - | Interventional | I/II | Novartis Pharmaceuticals | NCT03374657 |
Autosomal dominant RP due to P23H | QR-1123 | IVI | AURORA | Interventional | I/II | ProQR Therapeutics | NCT04123626 |
XLRP | AAV5 hRKp.RPGR | SRI | - | Interventional | II | Janssen Research & Development, LLC | NCT06646289 |
XLRP | 4D-125 | IVI | - | Interventional | I/II | 4D Molecular Therapeutics | NCT04517149 |
XLRP | AGTC-501 | SRI | SKYLINE | Interventional | II | Beacon Therapeutics | NCT06333249 |
XLRP | AGTC-501 | SRI | - | Interventional | II/III | Beacon Therapeutics | NCT04850118 |
XLRP due to RPGR | AAV5-hRKp.RPGR | SRI | - | Observational | - | Janssen Research & Development, LLC | NCT04312672 |
XLRP due to RPGR | AAV5-hRKp.RPGR | SRI | - | Interventional | III | Janssen Research & Development, LLC | NCT04794101 |
XLRP due to RPGR | AGTC-501 | SRI | DAWN | Interventional | II | Beacon Therapeutics | NCT06275620 |
XLRP due to RPGR | FT-002 | Intraocular injection | - | Interventional | I | Frontera Therapeutics | NCT05874310 |
XLRP due to RPGR | rAAV2tYF-GRK1-RPGR | IVI | HORIZON | Interventional | I/II | Beacon Therapeutics | NCT03316560 |
XLRP due to RPGR | FT-002 | SRI | - | Interventional | I/II | Frontera Therapeutics | NCT06492850 |
LCA5 | OPGx-001 | SRI | LCA5-IRD | Interventional | I/II | Opus Genetics Inc. | NCT05616793 |
LCA 10 | Sepofarsen | IVI | ILLUMINATE | Interventional | II/III | ProQR Therapeutics | NCT03913143 |
LCA10 | Sepofarsen | IVI | HYPERION | Interventional | III | Laboratoires Thea | NCT06891443 |
LCA 10 | EDIT-101 | SRI | - | Interventional | I/II | Editas Medicine Inc. | NCT03872479 |
LCA due to RPE 65 | rAAV2-CBSB-hRPE65 | SRI | - | Interventional | I | University of Pennsylvania | NCT00481546 |
LCA due to RPE65 | AAV2-hRPE65v2 | SRI | - | Interventional | III | Spark Therapeutics Inc. | NCT00999609 |
LCA due to RPE 65 | HG004 | NA | STAR | Interventional | I/II | HuidaGene Therapeutics Co., Ltd. | NCT05906953 |
LCA due to RPE 65 | HG004 | SRI | LIGHT | Interventional | I | Xinhua Hospital, Shanghai Jiao Tong University School of Medicine | NCT06088992 |
LCA due to RPE 65 | FT-001 | SRI | - | Interventional | I/II | Frontera Therapeutics | NCT05858983 |
LCA due to RPE 65 | LX101 | SRI | - | Interventional | NA | Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine | NCT06024057 |
LCA due to RPE65 | Voretigene neparvovec | SRI | - | Interventional | III | Novartis Pharmaceuticals | NCT04516369 |
LCA due to RPE65 | LX101 | SRI | - | Interventional | I/II | Innostellar Biotherapeutics Co., Ltd | NCT06196827 |
RDH12 retinopathy | PUMCH-E101 | IVI | - | Interventional | I | Peking Union Medical College Hospital | NCT06749639 |
Stargardt Disease | ACDN-01 | SRI | STELLAR | Interventional | I/II | Ascidian Therapeutics Inc. | NCT06467344 |
Stargardt Disease | MCO-010 | IVI | SUSTAIN | Observational | - | Nanoscope Therapeutics Inc. | NCT06048185 |
Stargardt Disease | JWK006 | SRI | - | Interventional | I/II | West China Hospital | NCT06300476 |
XLRS | ATSN-201 | SRI | LIGHTHOUSE | Interventional | I/II | Atsena Therapeutics Inc. | NCT05878860 |
XLRS | ZM-01 | IVI | - | Interventional | I | Zhongmou Therapeutics | NCT06066008 |
XLRS | JWK002 | SRI | - | Interventional | I | West China Hospital | NCT06345898 |
XLRS | IVB102 | IVI | - | Interventional | I | InnoVec Biotherapeutics Inc. | NCT06289452 |
Achromatopsia | rAAV2tYF-PR1.7-hCNGB3 | SRI | A Clarity Clinical Trial | Interventional | I/II | Beacon Therapeutics | NCT02599922 |
Achromatopsia due to CNGA3 | AGTC-402 | SRI | A Clarity Clinical Trial | Interventional | I/II | Beacon Therapeutics | NCT02935517 |
Achromatopsia due to CNGA3 | rAAV.hCNGA3 | SRI | Colourbridge | Interventional | I/II | STZ eyetrial | NCT02610582 |
Choroideremia | 4D-110 | IVI | - | Interventional | I | 4D Molecular Therapeutics | NCT04483440 |
RP, Choroideremia | RTx-015 | IVI | ENVISION | Interventional | I | Ray Therapeutics Inc. | NCT06460844 |
Choroideremia XLRP | BIIB111 BIIB112 | SRI SRI | SOLSTICE | Interventional | III | NightstaRx Ltd., a Biogen Company | NCT03584165 |
Bietti Crystalline Corneoretinal Dystrophy | NGGT001 | SRI | - | Interventional | I/II | NGGT (Suzhou) Biotechnology Co., Ltd. | NCT06706427 |
Bietti’s Crystalline Dystrophy | ZVS101e | SRI | - | Interventional | III | Chigenovo Co., Ltd. | NCT06743646 |
Bietti’s Crystalline Dystrophy | VGR-R01 | SRI | - | Interventional | III | Shanghai Vitalgen BioPharma Co., Ltd. | NCT06699108 |
nAMD | NG101 AAV | SRI | - | Interventional | I/II | Neuracle Genetics Inc. | NCT05984927 |
nAMD | FT-003 | Intraocular Injection | - | Interventional | I | Frontera Therapeutics | NCT05611424 |
nAMD | FT-003 | Intraocular injection | - | Interventional | I/II | Frontera Therapeutics | NCT06492863 |
nAMD | LX102 | SRI | - | Interventional | I | Innostellar Biotherapeutics Co., Ltd | NCT06198413 |
nAMD | SKG0106 | IVI | - | Interventional | I | Youxin Chen | NCT06213038 |
nAMD | SKG0106 | IVI | - | Interventional | I/II | Skyline Therapeutics (US) Inc. | NCT05986864 |
nAMD | KH631 | Intraocular injection | - | Interventional | I | Chengdu Origen Biotechnology Co., Ltd. | NCT05657301 |
nAMD | KH631 | SRI | - | Interventional | I/II | Chengdu Origen Biotechnology Co., Ltd. | NCT05672121 |
nAMD | ADVM-022 | IVI | OPTIC-EXT | Observational | - | Adverum Biotechnologies Inc. | NCT04645212 |
nAMD | KH658 | SCSI | - | Interventional | I/II | Chengdu Origen Biotechnology Co., Ltd. | NCT06458595 |
nAMD | RGX-314 | SCSI | AAVIATE | Interventional | II | AbbVie | NCT04514653 |
nAMD | RGX-314 | SRI | RGX-314 SRLTFU | Interventional | II | AbbVie | NCT03999801 |
nAMD | RGX-314 | SRI | ASCENT | Interventional | III | AbbVie | NCT05407636 |
nAMD | LX102 | SRI | VENUS | Interventional | II | Innostellar Biotherapeutics Co., Ltd. | NCT06196840 |
nAMD | LX102 | SRI | - | Interventional | I | Innostellar Biotherapeutics Co., Ltd. | NCT06198413 |
nAMD | ABBV-RGX-314 | SRI | ATMOSPHERE | Interventional | II/III | AbbVie | NCT04704921 |
nAMD | RRG001 | SRI | - | Interventional | I/II | Shanghai Refreshgene Technology Co., Ltd. | NCT06141460 |
nAMD | 4D-150 | IVI | - | Interventional | I/II | 4D Molecular Therapeutics | NCT05197270 |
nAMD | EXG202 | IVI | - | Interventional | I | Hangzhou Jiayin Biotech, Ltd. | NCT06888492 |
nAMD | HG202 CRISPR-Cas13 RNA-editing | SRI | SIGHT-I | Interventional | I | HuidaGene Therapeutics Co., Ltd. | NCT06031727 |
nAMD | KH658 | SCSI | - | Interventional | I | Chengdu Origen Biotechnology Co., Ltd. | NCT06825858 |
nAMD | EXG102-031 | SRI | Everest | Interventional | I | Exegenesis Bio | NCT05903794 |
nAMD | EXG102-031 | SRI | Everest LTFU | Interventional | I | Exegenesis Bio | NCT06817343 |
nAMD | HG202 CRISPR-Cas13 (hfCas13Y) | SRI | BRIGHT | Interventional | I | HuidaGene Therapeutics Co., Ltd. | NCT06623279 |
GA due to AMD | GT005 | NA | ORACLE | Interventional | II | Gyroscope Therapeutics Limited | NCT05481827 |
nAMD | 4D-150 | IVI | - | Interventional | III | 4D Molecular Therapeutics | NCT06864988 |
nAMD | ADVM-022 | IVI | LUNA | Interventional | II | Adverum Biotechnologies Inc. | NCT05536973 |
Dry AMD | Elamipretide | SC | ReNEW | Interventional | III | Stealth BioTherapeutics Inc. | NCT06373731 |
nAMD | Ixo-vec | IVI | ARTEMIS | Interventional | III | Adverum Biotechnologies Inc. | NCT06856577 |
DME | FT-003 | Intraocular injection | - | Interventional | I/II | Frontera Therapeutics | NCT06492876 |
DME | FT-003 | Intraocular injection | - | Interventional | I | Frontera Therapeutics | NCT05916391 |
DME | 4D-150 | IVI | - | Interventional | II | 4D Molecular Therapeutics | NCT05930561 |
DME | SKG0106 | IVI | - | Interventional | I | Wang Min | NCT06237777 |
DR without CI-DME | RGX-314 | SCSI | ALTITUDE® | Interventional | I | AbbVie | NCT04567550 |
DME | ADVM-022 | IVI | INFINITY-EXT | Observational | - | Adverum Biotechnologies Inc. | NCT05607810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlEissa, M.M.; Alhawsawi, A.A.; Alonazi, R.; Magharbil, E.; Aljahdali, A.; AlBalawi, H.B.; Alali, N.M.; Hameed, S.; Abu-Amero, K.K.; Magliyah, M.S. Advances in Precision Therapeutics and Gene Therapy Applications for Retinal Diseases: Impact and Future Directions. Genes 2025, 16, 847. https://doi.org/10.3390/genes16070847
AlEissa MM, Alhawsawi AA, Alonazi R, Magharbil E, Aljahdali A, AlBalawi HB, Alali NM, Hameed S, Abu-Amero KK, Magliyah MS. Advances in Precision Therapeutics and Gene Therapy Applications for Retinal Diseases: Impact and Future Directions. Genes. 2025; 16(7):847. https://doi.org/10.3390/genes16070847
Chicago/Turabian StyleAlEissa, Mariam M., Abrar A. Alhawsawi, Raghad Alonazi, Enas Magharbil, Abeer Aljahdali, Hani B. AlBalawi, Naif M. Alali, Syed Hameed, Khaled K. Abu-Amero, and Moustafa S. Magliyah. 2025. "Advances in Precision Therapeutics and Gene Therapy Applications for Retinal Diseases: Impact and Future Directions" Genes 16, no. 7: 847. https://doi.org/10.3390/genes16070847
APA StyleAlEissa, M. M., Alhawsawi, A. A., Alonazi, R., Magharbil, E., Aljahdali, A., AlBalawi, H. B., Alali, N. M., Hameed, S., Abu-Amero, K. K., & Magliyah, M. S. (2025). Advances in Precision Therapeutics and Gene Therapy Applications for Retinal Diseases: Impact and Future Directions. Genes, 16(7), 847. https://doi.org/10.3390/genes16070847