Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology
Highlights
- High-dose HHex significantly preserved novel object recognition and reduced anxiety-like behavior in mice subjected to BCAS-induced chronic cerebral hypoperfusion.
- HHex suppressed CCH-induced astrocyte activation in white matter, attenuating neuroinflammatory responses.
- Integrative network pharmacology and RNA-seq analyses identified Egf, F2, Apob, and F7 as central protein targets of HHex.
- HHex modulated approximately 68% of genes dysregulated by CCH, down-regulating DNA replication pathways and rescuing axonogenesis-related processes.
- Hwanhon decoction extract emerges as a promising multi-target therapeutic candidate for vascular dementia.
- Combining network pharmacology with transcriptomic validation provides a robust framework for elucidating complex herbal medicine mechanisms.
- Targeting neuroinflammation and white matter integrity via HHex could complement existing vascular dementia management strategies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Network Pharmacology Analysis
2.2. Animals and Experimental Design
2.3. VaD Modeling in Mice
2.4. Reagents
2.5. Preparation of Aqueous Extract of Hwanhon Decoction (HHex)
2.6. Mouse Treatment with HHex
2.7. Measuring Behavioral Changes Caused by BCAS-Induced CCH
2.8. Variations in Body Weight, Blood Pressure (BP), and Heart Rate (HR)
2.9. Assessment of the Blood Serum Electrolytes
2.10. Animal Euthanasia, Cardiac Perfusion, and Brain Tissue Preparation via Frozen Section
2.11. Brain Tissue Immunofluorescence Staining
2.12. Brain Tissue RNA Sequencing Analysis
2.13. Statistical Analysis
3. Results
3.1. Network Pharmacology Analysis for HHex
3.2. Effects of BCAS Operation and HHex Treatment on Physiological Parameters in Mice
3.3. Behavioral Disorder Assessment Using the Y-Maze Test, NORT, and EPM Test
3.4. Identification of Cellular Markers Involved in the Inflammatory Response in the Brain
3.5. RNA Sequencing Analysis and PPI Network Construction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADME | Absorption, distribution, metabolism, and excretion |
AS | Armeniacae Semen |
BCAS | Bilateral common carotid artery stenosis |
CCH | Chronic cerebral hypoperfusion |
CD68 | Cluster of differentiation 68 |
CVD | Cerebrovascular diseases |
DAPI | 4,6-diamidino-2-phenylindole |
DL | Drug likeness |
DR | Discrimination ratio |
EH | Ephedrae Herba |
EPM | Elevated plus maze |
GFAP | Glial fibrillary acidic protein |
GR | Glycyrrhizae Radix et Rhizoma |
HHex | Hwanhon decoction aqueous extract |
H-HHex | High-dose HHex |
L-HHex | Low-dose HHex |
NMDA | N-methyl-D-aspartate |
NORT | Novel object recognition test |
OB | Oral bioavailability |
OCT | Optimal cutting temperature |
PPI network | Protein–protein interaction network |
VaD | Vascular dementia |
WM | White matter |
References
- Terracciano, A.; Stephan, Y.; Luchetti, M.; Sutin, A.R. Cognitive impairment, dementia, and personality stability among older adults. Assessment 2018, 25, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016, 131, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Merlin, S.S.; Brucki, S.M.D. Openness and age influence cognitive progression: A longitudinal study. Arq. Neuropsiquiatr. 2023, 81, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.W.; Park, J.H.; Kim, S.; Lee, S.H.; Lee, S.H.; Kim, Y.J. Prevalence and incidence of dementia in South Korea: A nationwide analysis of the National Health Insurance Service Senior Cohort. J. Clin. Neurol. 2021, 17, 249–256. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; A Luchsinger, J.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008, 7, 812–826. [Google Scholar] [CrossRef]
- Wolters, F.J.; Ikram, M.A. Epidemiology of vascular dementia. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1542–1549. [Google Scholar] [CrossRef]
- Allan, L.M.; Rowan, E.N.; Firbank, M.J.; Thomas, A.J.; Parry, S.W.; Polvikoski, T.M.; O’Brien, J.T.; Kalaria, R.N. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain 2011, 134, 3716–3727. [Google Scholar] [CrossRef]
- Connors, M.H.; Seeher, K.; Teixeira-Pinto, A.; Woodward, M.; Ames, D.; Brodaty, H. Dementia and caregiver burden: A three-year longitudinal study. Int. J. Geriatr. Psychiatry 2020, 35, 250–258. [Google Scholar] [CrossRef]
- Baskys, A.; Hou, A.C. Vascular dementia: Pharmacological treatment approaches and perspectives. Clin. Interv. Aging 2007, 2, 327–335. [Google Scholar] [CrossRef]
- Amenta, F.; Di Tullio, M.A.; Tomassoni, D. The cholinergic approach for the treatment of vascular dementia: Evidence from pre-clinical and clinical studies. Clin. Exp. Hypertens. 2002, 24, 697–713. [Google Scholar] [CrossRef]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate use recommendations. J. Prev. Alzheimers Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Schott, J.M. Identifying genetic risk for amyloid-related imaging abnormalities. Neurology 2024, 102, e208096. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Donanemab: First approval. Drugs 2024, 84, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Battle, C.E.; Abdul-Rahim, A.H.; Shenkin, S.D.; Hewitt, J.; Quinn, T.J. Cholinesterase inhibitors for vascular dementia and other vascular cognitive impairments: A network meta-analysis. Cochrane Database Syst. Rev. 2021, 2, CD013306. [Google Scholar] [CrossRef]
- Lyu, Y.; Meng, Z.; Hu, Y.; Jiang, B.; Yang, J.; Chen, Y.; Zhou, J.; Li, M.; Wang, H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer’s disease. Front. Mol. Neurosci. 2024, 17, 1394932. [Google Scholar] [CrossRef]
- van Nieuwkerk, A.C.; Delewi, R.; Wolters, F.J.; Muller, M.; Daemen, M.; Biessels, G.J.; on behalf of the Heart-Brain Connection. Cognitive impairment in patients with cardiac disease: Implications for clinical practice. Stroke 2023, 54, 2181–2191. [Google Scholar] [CrossRef]
- Brucki, S.M.D.; Ferraz, A.C.; de Freitas, G.R.; Massaro, A.R.; Radanovic, M.; Schultz, R.R. Treatment of vascular dementia. Recommendations of the scientific department of cognitive neurology and aging of the Brazilian Academy of Neurology. Dement. Neuropsychol. 2011, 5, 275–287. [Google Scholar] [CrossRef]
- Wang, X. The development of Chinese medicine therapy on coronary heart disease complicated by insomnia. J. Pract. Tradit. Chin. Intern. Med. 2013, 27, 91–93. [Google Scholar] [CrossRef]
- Huang, R.; Wang, S.; Li, R.; Wen, X.; Chen, B.; Gao, F. Discussion on Huanhun decoction in Synopsis of Golden Chamber. Chin. Med. Mod. Distance Educ. China 2021, 19, 56–59. [Google Scholar] [CrossRef]
- Yang, L.; Liu, W.; Hu, Z.; Yang, M.; Li, J.; Fan, X.; Pan, H. A systems pharmacology approach for identifying the multiple mechanisms of action of the Wei Pi Xiao decoction for the treatment of gastric precancerous lesions. Evid. Based Complement. Alternat. Med. 2019, 2019, 1562707. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zeng, L.; Ge, A.; Shi, Y.; Zhu, X.; Liu, W.; Ge, J.; Ricelli, A. The effect of Hedysarum multijugum Maxim.-Chuanxiong rhizoma compound on ischemic stroke: A research based on network and experimental pharmacology. Oxid. Med. Cell. Longev. 2020, 2020, 6072380. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Morsy, M.A.; Jacob, S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018, 9, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Vorhees, C.V.; Williams, M.T. Assessing spatial learning and memory in rodents. ILAR J. 2014, 55, 310–332. [Google Scholar] [CrossRef]
- Denninger, J.K.; Smith, B.M.; Kirby, E.D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. 2018, 141, e58593. [Google Scholar] [CrossRef]
- Schaar, K.L.; Brenneman, M.M.; Savitz, S.I. Functional assessments in the rodent stroke model. Exp. Transl. Stroke Med. 2010, 2, 13. [Google Scholar] [CrossRef]
- Lister, R.G. Interactions of three benzodiazepine receptor inverse agonists with ethanol in a plus-maze test of anxiety. Pharmacol. Biochem. Behav. 1988, 30, 701–706. [Google Scholar] [CrossRef]
- Poh, L.; Sim, W.L.; Jo, D.; Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chen, C.L.-H.; Lai, M.K.P.; Fann, D.Y.; Arumugam, T.V. The role of inflammasomes in vascular cognitive impairment. Mol. Neurodegener. 2022, 17, 4–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, C.X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell. Mol. Neurobiol. 2015, 35, 101–110. [Google Scholar] [CrossRef]
- Filley, C.M.; Fields, R.D. White matter and cognition: Making the connection. J. Neurophysiol. 2016, 116, 2093–2104. [Google Scholar] [CrossRef]
- Iadecola, C. The pathobiology of vascular dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef] [PubMed]
- Jiwa, N.S.; Garrard, P.; Hainsworth, A.H. Experimental models of vascular dementia and vascular cognitive impairment: A systematic review. J. Neurochem. 2010, 115, 814–828. [Google Scholar] [CrossRef]
- Knopman, D.S. Dementia and cerebrovascular disease. Mayo Clin. Proc. 2006, 81, 223–230. [Google Scholar] [CrossRef]
- Skoog, I. Vascular aspects in Alzheimer’s disease. J. Neural Transm. Suppl. 2000, 59, 37–43. [Google Scholar] [CrossRef]
- Shabir, O.; Berwick, J.; Francis, S.E. Neurovascular dysfunction in vascular dementia, Alzheimer’s and atherosclerosis. BMC Neurosci. 2018, 19, 62–65. [Google Scholar] [CrossRef]
- Vijayan, M.; Reddy, P.H. Stroke, vascular dementia, and Alzheimer’s disease: Molecular links. J. Alzheimers Dis. 2016, 54, 427–443. [Google Scholar] [CrossRef]
- Semerano, A.; Fernández-Ruiz, J.; Cortes-Canteli, M.; Moro, M.A. From Alzheimer’s disease to vascular dementia: Different roads leading to cognitive decline. Br. J. Pharmacol. 2024, 181, 755–759. [Google Scholar] [CrossRef]
- Gallego, I.; Villate-Beitia, I.; Saenz-Del-Burgo, L.; Puras, G.; Pedraz, J.L. Therapeutic opportunities and delivery strategies for brain revascularization in stroke, neurodegeneration, and aging. Pharmacol. Rev. 2022, 74, 439–461. [Google Scholar] [CrossRef]
- Zuo, S.; Li, W.; Li, Q.; Zhao, H.; Tang, J.; Chen, Q.; Liu, X.; Zhang, J.H.; Chen, Y.; Feng, H. Protective effects of Ephedra sinica extract on blood-brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neurosci. Lett. 2015, 609, 216–222. [Google Scholar] [CrossRef]
- Kao, T.; Wu, C.; Yen, G. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014, 62, 542–553. [Google Scholar] [CrossRef]
- Chen, Y.; Hsu, C.; Shiao, Y.; Wang, H.; Lo, Y.; Lin, A.M.Y. Anti-inflammatory effect of afatinib (an EGFR-TKI) on OGD-induced neuroinflammation. Sci. Rep. 2019, 9, 2516–2517. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Sharma, C.; Jung, U.J.; Kim, S.R. Pathophysiological role of microglial activation induced by blood-borne proteins in Alzheimer’s disease. Biomedicines 2023, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Aumont-Rodrigue, G.; Picard, C.; Labonté, A.; Poirier, J. Apolipoprotein B gene expression and regulation in relation to Alzheimer’s disease pathophysiology. J. Lipid Res. 2024, 65, 100667. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Li, H.; Tan, W.; Chen, X.; Ye, S. Serum apolipoprotein B-to-apolipoprotein A1 ratio is independently associated with disease severity in patients with acute pancreatitis. Sci. Rep. 2019, 9, 7764. [Google Scholar] [CrossRef]
- Picard, C.; Nilsson, N.; Labonté, A.; Auld, D.; Rosa-Neto, P.; Alzheimer’s Disease Neuroimaging Initiative; Ashton, N.J.; Zetterberg, H.; Blennow, K.; Breitner, J.C.; et al. Apolipoprotein B is a novel marker for early tau pathology in Alzheimer’s disease. Alzheimers Dement. 2022, 18, 875–887. [Google Scholar] [CrossRef]
- Golderman, V.; Ben-Shimon, M.; Maggio, N.; Dori, A.; Gofrit, S.G.; Berkowitz, S.; Qassim, L.; Artan-Furman, A.; Zeimer, T.; Chapman, J.; et al. Factor VII, EPCR, aPC modulators: Novel treatment for neuroinflammation. J. Neuroinflamm. 2022, 19, 138. [Google Scholar] [CrossRef]
- Garlapati, V.; Luo, Q.; Posma, J.; Aluia, M.; Nguyen, T.S.; Grunz, K.; Molitor, M.; Finger, S.; Harms, G.; Bopp, T.; et al. Macrophage-expressed coagulation factor VII promotes adverse cardiac remodeling. Circ. Res. 2024, 135, 841–855. [Google Scholar] [CrossRef]
- Bernardi, F.; Mariani, G. Biochemical, molecular and clinical aspects of coagulation factor VII and its role in hemostasis and thrombosis. Haematologica 2021, 106, 351–362. [Google Scholar] [CrossRef]
- Clark, R.K.; Lee, E.V.; White, R.F.; Jonak, Z.L.; Feuerstein, G.Z.; Barone, F.C. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res. Bull. 1994, 35, 387–392. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, W.; Li, B.; Alkon, D.L.; Barker, J.L.; Chang, Y.H.; Wu, M.; Rubinow, D.R. TNF-alpha induced over-expression of GFAP is associated with MAPKs. NeuroReport 2000, 11, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Su, Y.; Lou, H. GFAP-positive progenitor cell production is concentrated in specific encephalic regions in young adult mice. Neurosci. Bull. 2018, 34, 769–778. [Google Scholar] [CrossRef]
Herbal Name | Scientific Name | Weight (g) |
---|---|---|
Ephedrae Herba | Ephedra Sinica Stapf | 18 |
Armeniacae Semen | Prunus armeniaca L. var. ansu Maxim. | 18 |
Glycyrrhizae Radix et Rhizoma | Glycyrrhiza uralensis Fischer | 6 |
Total Amount | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Lim, C.; Lim, S.; Kim, K.-M.; Cho, S. Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology. Genes 2025, 16, 746. https://doi.org/10.3390/genes16070746
Kang S, Lim C, Lim S, Kim K-M, Cho S. Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology. Genes. 2025; 16(7):746. https://doi.org/10.3390/genes16070746
Chicago/Turabian StyleKang, Sieun, Chiyeon Lim, Sehyun Lim, Kyoung-Min Kim, and Suin Cho. 2025. "Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology" Genes 16, no. 7: 746. https://doi.org/10.3390/genes16070746
APA StyleKang, S., Lim, C., Lim, S., Kim, K.-M., & Cho, S. (2025). Hwanhon Decoction Ameliorates Cognitive Impairment and Suppresses Neuroinflammation in a Chronic Cerebral Hypoperfusion Mouse Model: Involvement of Key Genes Identified by Network Pharmacology. Genes, 16(7), 746. https://doi.org/10.3390/genes16070746