Genome-Wide Identification of NBS-LRR Family in Three Nicotiana Genomes and Their Expression During Disease Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Classification of NBS Genes in Three Nicotiana Genomes
2.2. Phylogenetic and Duplication Analysis of NBS Families
2.3. RNA-Seq Analysis
3. Results
3.1. Identification of the NBS Family in the Genomes of Three Nicotiana Species
3.2. Phylogenetic Analysis of NBS Families
3.3. Duplication and Selection of NBS Families in Nicotiana
3.4. Expression and Behavior of NBSs Under Black Shank and Bacterial Wilt
4. Discussion
4.1. The Disease Resistance of N. tabacum Mainly Inherited from Its Wild Parents
4.2. NBS Genes May Play an Important Role in Disease Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, T.; Han, P.C.; Xi, D.X.; Yu, W.C.; Zhu, L.; Du, C.J.; Yang, N.; Liu, X.; Zhang, H. Genome-wide identification, characterization, and expression profile of NBS-LRR gene family in sweet orange (Citrus sinensis). Gene 2023, 854, 14. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.H.; Wang, Y.; Chen, M.; Liu, J.; Lu, R.S.; Zou, X.; Sun, X.Q.; Zhang, Y.M. Genome-wide Identification and Evolutionary Analysis of NBS-LRR Genes from Secale cereale. Front. Genet. 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Kourelis, J.; van der Hoorn, R.A.L. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell 2018, 30, 285–299. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Vance, R.E.; Dangl, J.L. Intracellular innate immune surveillance devices in plants and animals. Science 2016, 354, 6. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.W.; Liu, J.; Guo, Q.W.; Pan, L.Z.; Chai, S.L.; Cheng, Y.; Ruan, M.; Ye, Q.; Wang, R.; Yao, Z.; et al. Genomic Organization and Comparative Phylogenic Analysis of NBS-LRR Resistance Gene Family in Solanum pimpinellifolium and Arabidopsis thaliana. Evol. Bioinform. 2020, 16, 13. [Google Scholar] [CrossRef]
- Wang, T.; Jia, Z.H.; Zhang, J.Y.; Liu, M.; Guo, Z.R.; Wang, G. Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome. Plants 2020, 9, 1350. [Google Scholar] [CrossRef]
- Wei, C.H.; Chen, J.J.; Kuang, H.H. Dramatic Number Variation of R Genes in Solanaceae Species Accounted for by a Few R Gene Subfamilies. PLoS ONE 2016, 11, 15. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Shao, Z.Q.; Wang, Q.; Hang, Y.Y.; Xue, J.Y.; Wang, B.; Chen, J.Q. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J. Integr. Plant Biol. 2016, 58, 165–177. [Google Scholar] [CrossRef]
- Yu, X.J.; Zhong, S.F.; Yang, H.; Chen, C.; Chen, W.; Yang, H.; Guan, J.; Fu, P.; Tan, F.; Ren, T.; et al. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. Front. Plant Sci. 2021, 12, 14. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Chen, M.; Sun, L.; Wang, Y.; Yin, J.M.; Liu, J.; Sun, X.Q.; Hang, Y.Y. Genome-Wide Identification and Evolutionary Analysis of NBS-LRR Genes from Dioscorea rotundata. Front. Genet. 2020, 11, 11. [Google Scholar] [CrossRef]
- Goyal, N.; Bhatia, G.; Sharma, S.; Garewal, N.; Upadhyay, A.; Upadhyay, S.K.; Singh, K. Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2020, 112, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.J.; Nepal, M.P.; Purintun, J.M.; Nelson, D.; Mermigka, G.; Sarris, P.F. Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions. Front. Genet. 2020, 11, 15. [Google Scholar] [CrossRef]
- Qi, D.; Innes, R.W. Recent advances in plant NLR structure, function, localization, and signaling. Front. Immunol. 2013, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Li, N.Y.; Ma, X.F.; Short, D.P.G.; Li, T.G.; Zhou, L.; Gui, Y.J.; Kong, Z.Q.; Zhang, D.D.; Zhang, W.Q.; Li, J.; et al. The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991. Mol. Plant Pathol. 2018, 19, 1466–1479. [Google Scholar] [CrossRef]
- Xu, Y.J.; Liu, F.; Zhu, S.W.; Li, X.Y. The Maize NBS-LRR Gene ZmNBS25 Enhances Disease Resistance in Rice and Arabidopsis. Front. Plant Sci. 2018, 9, 13. [Google Scholar] [CrossRef]
- Xun, H.W.; Yang, X.D.; He, H.L.; Wang, M.; Guo, P.; Wang, Y.; Pang, J.; Dong, Y.; Feng, X.; Wang, S.; et al. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol. Biol. 2019, 99, 95–111. [Google Scholar] [CrossRef]
- Li, B.J.; Shang, Y.; Wang, L.X.Q.; Lv, J.; Wu, Q.; Wang, F.J.; Chao, J.; Mao, J.; Ding, A.; Wu, X.; et al. Efficient genome editing in dicot plants using calreticulin promoter-driven CRISPR/Cas system. Mol. Hortic. 2025, 5, 5. [Google Scholar] [CrossRef]
- Sierro, N.; Auberson, M.; Dulize, R.; Ivanov, N.V. Chromosome-level genome assemblies of Nicotiana tabacum, Nicotiana sylvestris, and Nicotiana tomentosiformis. Sci. Data 2024, 11, 135. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; et al. CDD: Specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009, 37, D205–D210. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Jacob, A.; Lancaster, J.; Buhler, J.; Harris, B.; Chamberlain, R.D. Mercury BLASTP: Accelerating Protein Sequence Alignment. ACM Trans. Reconfigurable Technol. Systems 2008, 1, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Tang, H.B.; DeBarry, J.D.; Tan, X.; Li, J.P.; Wang, X.Y.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, 14. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, J.; Wu, J.; Zhang, H.; Liu, G.; Wang, X.; Dai, L. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 2012, 419, 779–781. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.-Q.; Wang, J.; Wong, G.K.-S.; Yu, J. KaKs_Calculator: Calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinform. 2006, 4, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Jin, J.; Nifong, J.M.; Shew, D.; Lewis, R.S. Homoeologous chromosome exchange explains the creation of a QTL affecting soil-borne pathogen resistance in tobacco. Plant Biotechnol. J. 2022, 20, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, R.; Sugawara, H.; Shumway, M. The Sequence Read Archive. Nucleic Acids Res. 2011, 39, D19–D21. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Zhang, Q.L.; Tung, J.F.; Zhang, X.; Liu, D.; Deng, Y.T.; Tian, Z.; Chen, H.; Wang, T.; Yin, W.; et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes indefense arsenals. Mol. Plant 2024, 17, 423–437. [Google Scholar] [CrossRef] [PubMed]
N. tomentosiformis | N. sylvestris | N. tabacum | |
---|---|---|---|
NBS | 127 | 172 | 306 |
TIR-NBS | 7 | 5 | 9 |
CC-NBS | 65 | 82 | 150 |
TIR-NBS-LRR | 33 | 37 | 64 |
CC-NBS-LRR | 47 | 48 | 74 |
Total | 279 | 344 | 603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, W.; Huang, H.; Zhang, C.; Yang, L. Genome-Wide Identification of NBS-LRR Family in Three Nicotiana Genomes and Their Expression During Disease Resistance. Genes 2025, 16, 680. https://doi.org/10.3390/genes16060680
Liu Y, Liu W, Huang H, Zhang C, Yang L. Genome-Wide Identification of NBS-LRR Family in Three Nicotiana Genomes and Their Expression During Disease Resistance. Genes. 2025; 16(6):680. https://doi.org/10.3390/genes16060680
Chicago/Turabian StyleLiu, Ying, Wenjing Liu, Haozhe Huang, Caixia Zhang, and Long Yang. 2025. "Genome-Wide Identification of NBS-LRR Family in Three Nicotiana Genomes and Their Expression During Disease Resistance" Genes 16, no. 6: 680. https://doi.org/10.3390/genes16060680
APA StyleLiu, Y., Liu, W., Huang, H., Zhang, C., & Yang, L. (2025). Genome-Wide Identification of NBS-LRR Family in Three Nicotiana Genomes and Their Expression During Disease Resistance. Genes, 16(6), 680. https://doi.org/10.3390/genes16060680