Pre- and Postoperative Cell-Free Fetal DNA Analyses for Detecting Aneuploidy in Early Pregnancy Loss: Single-Center Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design and Participants
2.3. Protocol
2.4. Cell-Free DNA Analysis
2.5. Sequencing Fetal Fraction and Y-Chromosome Fetal Fraction
2.6. POC Chromosomal Testing
2.7. Determining Gestational Age
2.8. Outcomes of Interest
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Primary Outcome of Interest
Preoperative Cff DNA Analysis
3.3. Secondary Outcomes of Interest
Postoperative Cff DNA Analysis
3.4. Comparison of Participant Characteristics
3.5. Subgroup Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
POC | Product of conception |
cff DNA | Cell-free fetal DNA |
MVA | Manual vacuum aspiration |
iFACT | Individualized fetal aneuploidy confidence test |
Seq-FF | Sequencing fetal fraction |
NCV-Y | Y chromosome-normalized chromosome value |
Y-FF | Y-chromosome fetal fraction |
CRL | Crown-rump length |
References
- Magnus, M.C.; Wilcox, A.J.; Morken, N.H.; Weinberg, C.R.; Håberg, S.E. Role of maternal age and pregnancy history in risk of miscarriage: Prospective register based study. BMJ 2019, 364, l869. [Google Scholar] [CrossRef] [PubMed]
- Essers, R.; Lebedev, I.N.; Kurg, A.; Fonova, E.A.; Stevens, S.J.C.; Koeck, R.M.; von Rango, U.; Brandts, L.; Deligiannis, S.P.; Nikitina, T.V. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat. Med. 2023, 29, 3233–3242. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef]
- Fritz, B.; Hallermann, C.; Olert, J.; Fuchs, B.; Bruns, M.; Aslan, M.; Schmidt, S.; Coerdt, W.; Müntefering, H.; Rehder, H. Cytogenetic analyses of culture failures by comparative genomic hybridisation (CGH)-Re-evaluation of chromosome aberration rates in early spontaneous abortions. Eur. J. Hum. Genet. EJHG 2001, 9, 539–547. [Google Scholar] [CrossRef]
- Samura, O. Update on noninvasive prenatal testing: A review based on current worldwide research. J. Obstet. Gynaecol. Res. 2020, 46, 1246–1254. [Google Scholar] [CrossRef]
- Yuen, N.; Lemaire, M.; Wilson, S.L. Cell-free placental DNA: What do we really know? PLoS Genet. 2024, 20, e1011484. [Google Scholar] [CrossRef]
- Mackie, F.L.; Hemming, K.; Allen, S.; Morris, R.K.; Kilby, M.D. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: A systematic review and bivariate meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Iwarsson, E.; Jacobsson, B.; Dagerhamn, J.; Davidson, T.; Bernabé, E.; Heibert Arnlind, M. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population—A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 7–18. [Google Scholar] [CrossRef]
- Gil, M.M.; Quezada, M.S.; Revello, R.; Akolekar, R.; Nicolaides, K.H. Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: Updated meta-analysis. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2015, 45, 249–266. [Google Scholar] [CrossRef]
- Della Valle, L.; Piergianni, M.; Khalil, A.; Rizzo, G.; Mappa, I.; Matarrelli, B.; Lucidi, A.; Manzoli, L.; Flacco, M.E.; Stuppia, L.; et al. Accuracy of cell-free fetal DNA in detecting chromosomal anomalies in women experiencing miscarriage: Systematic review and meta-analysis. Ultrasound Obs. Gynecol. 2025, 65, 13–19. [Google Scholar] [CrossRef]
- Colley, E.; Devall, A.J.; Williams, H.; Hamilton, S.; Smith, P.; Morgan, N.V.; Quenby, S.; Coomarasamy, A.; Allen, S. Cell-free DNA in the investigation of miscarriage. J. Clin. Med. 2020, 9, 3428. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, N.; Rodrigo, L.; Mateu-Brull, E.; Campos-Galindo, I.; Castellón, J.A.; Al-Asmar, N.; Rubio, C.; Milán, M. Non-invasive cell-free DNA-based approach for the diagnosis of clinical miscarriage: A retrospective study. BJOG 2024, 131, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Hannum, G.; Geis, J.; Tynan, J.; Hogg, G.; Zhao, C.; Jensen, T.J.; Mazloom, A.R.; Oeth, P.; Ehrich, M.; et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat. Diagn. 2015, 35, 810–815. [Google Scholar] [CrossRef]
- Itakura, A.; Satoh, S.; Aoki, S.; Fukushima, K.; Hasegawa, J.; Hyodo, H.; Kamei, Y.; Kondoh, E.; Makino, S.; Matsuoka, R.; et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology and Japan Association of Obstetricians and Gynecologists 2020 edition. J. Obstet. Gynaecol. Res. 2023, 49, 5–53. [Google Scholar] [CrossRef]
- Unique. 22q11.2 Duplications. Rare Chromosome Disorder Support Group (Unique). 2015. Available online: https://rarechromo.org/media/information/Chromosome%2022/22q11.2%20microduplications%20FTNW.pdf (accessed on 30 April 2025).
- Clark-Ganheart, C.A.; Fries, M.H.; Leifheit, K.M.; Jensen, T.J.; Moreno-Ruiz, N.L.; Ye, P.P.; Jennings, J.M.; Driggers, R.W. Use of cell-free DNA in the investigation of intrauterine fetal demise and miscarriage. Obstet. Gynecol. 2015, 125, 1321–1329. [Google Scholar] [CrossRef]
- Kutteh, W.H.; Miller, C.E.; Park, J.K.; Corey, V.; Chavez, M.; Racicot, K.; Alagia, D.P., III; Jinnett, K.N.; Curnow, K.; Dalton, K.; et al. Cell-free DNA analysis of fetal aneuploidies in early pregnancy loss. J. Clin. Med. 2024, 13, 4283. [Google Scholar] [CrossRef]
- Schlaikjær Hartwig, T.; Ambye, L.; Gruhn, J.R.; Petersen, J.F.; Wrønding, T.; Amato, L.; Chi-Ho Chan, A.; Ji, B.; Bro-Jørgensen, M.H.; Werge, L.; et al. Cell-free fetal DNA for genetic evaluation in Copenhagen Pregnancy Loss Study (COPL): A prospective cohort study. Lancet 2023, 401, 762–771. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, B.; Wu, X.; Zhang, C.; Xue, Y.; Tang, H.; Tang, H.; Shi, J.; Liang, Y.; Yu, B.; et al. A fetal fraction enrichment method reduces false negatives and increases test success rate of fetal chromosome aneuploidy detection in early pregnancy loss. J. Transl. Med. 2022, 20, 345. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yang, J.; Deng, F.; Wang, F.; Peng, H.; Guo, F.; Wang, D.; Yin, A. Association between cell-free DNA fetal fraction and pregnant character: A retrospective cohort study of 27,793 maternal plasmas. Sci. Rep. 2023, 13, 11420. [Google Scholar] [CrossRef]
- Fibke, C.; Giroux, S.; Caron, A.; Starks, E.; Parker, J.D.K.; Swanson, L.; Jouan, L.; Langlois, S.; Rouleau, G.; Rousseau, F.; et al. Effect of preexamination conditions in a centralized-testing model of non-invasive prenatal screening. Clin. Chem. Lab. Med. 2021, 60, 183–190. [Google Scholar] [CrossRef]
- Yaron, Y.; Pauta, M.; Badenas, C.; Soler, A.; Borobio, V.; Illanes, C.; Paz-Y-Miño, F.; Martinez-Portilla, R.; Borrell, A. Maternal plasma genome-wide cell-free DNA can detect fetal aneuploidy in early and recurrent pregnancy loss and can be used to direct further workup. Hum. Reprod. 2020, 35, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Miceikaitė, I.; Brasch-Andersen, C.; Fagerberg, C.; Larsen, M.J. Total number of reads affects the accuracy of fetal fraction estimates in NIPT. Mol. Genet. Genom. Med. 2021, 9, e1653. [Google Scholar] [CrossRef] [PubMed]
- van Prooyen Schuurman, L.; Sistermans, E.A.; Van Opstal, D.; Henneman, L.; Bekker, M.N.; Bax, C.J.; Pieters, M.J.; Bouman, K.; de Munnik, S.; Hollander, N.S.D.; et al. Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: Follow-up results of the TRIDENT-2 study. Am. J. Hum. Genet. 2022, 109, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Dar, P.; MacPherson, C.; Egbert, M.; Demko, Z.; Parmar, S.; Hashimoto, K.; Haeri, S.; Malone, F.; Wapner, R.J.; et al. Performance of prenatal cfDNA screening for sex chromosomes. Genet. Med. 2023, 25, 100879. [Google Scholar] [CrossRef]
- Lo, Y.M.; Zhang, J.; Leung, T.N.; Lau, T.K.; Chang, A.M.; Hjelm, N.M. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 1999, 64, 218–224. [Google Scholar] [CrossRef]
- Yabuzaki, K.; Kamide, T.; Ejima, R.; Tsuruoka, Y.; Sato, M.; Kondo, I.; Hasegawa, A.; Sato, T.; Samura, O.; Okamoto, A. Alteration of circulating cell-free DNA level by external cephalic version: A potential biomarker for direct evaluation of placental damage. J. Obstet. Gynaecol. Res. 2021, 47, 3144–3150. [Google Scholar] [CrossRef]
- Lau, T.K.; Lo, K.W.; Chan, L.Y.; Leung, T.Y.; Lo, Y.M. Cell-free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal-maternal hemorrhage in patients undergoing external cephalic version near term. Am. J. Obstet. Gynecol. 2000, 183, 712–716. [Google Scholar] [CrossRef]
- Wataganara, T.; Gratacos, E.; Jani, J.; Becker, J.; Lewi, L.; Sullivan, L.M.; Bianchi, D.W.; Deprest, J.A. Persistent elevation of cell-free fetal DNA levels in maternal plasma after selective laser coagulation of chorionic plate anastomoses in severe midgestational twin–twin transfusion syndrome. Am. J. Obstet. Gynecol. 2005, 192, 604–609. [Google Scholar] [CrossRef]
- Nagao, T.; Fukui, S.; Ohde, S.; Yamanaka, M. The perinatal outcomes by gestational weight gain range at 30 weeks of gestation among pre-pregnancy underweight women. J. Obstet. Gynaecol. Res. 2023, 49, 635–640. [Google Scholar] [CrossRef]
- Pauta, M.; Grande, M.; Rodriguez-Revenga, L.; Kolomietz, E.; Borrell, A. Added value of chromosomal microarray analysis over karyotyping in early pregnancy loss: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 453–462. [Google Scholar] [CrossRef]
Preoperative Cff DNA Analysis | Postoperative Cff DNA Analysis | |
---|---|---|
Concordance rate, n/N | 37/42 (88.1%, 95% CI 74.4–96.0%) | 33/42 (78.6%, 95% CI 63.2–89.7%) |
Sensitivity, n/N | 19/22 (86.4%, 95% CI 65.1–97.1%) | 16/22 (72.7%, 95% CI 50.0–89.3%) |
Specificity, n/N | 18/20 (90.0%, 95% CI 68.3–98.8%) | 17/20 (85.0%, 95% CI 62.1–96.8%) |
Characteristic | Preoperative Cff DNA Analysis | Postoperative Cff DNA Analysis | ||||
---|---|---|---|---|---|---|
Concordant Group (n = 37) | Non-Concordant Group (n = 5) | p Value * | Concordant Group (n = 33) | Non-Concordant Group (n = 9) | p Value * | |
Maternal age (years), median (range) | 39.0 (29–45) | 39.0 (32–41) | 0.585 | 39.0 (29–45) | 39.0 (32–43) | 0.853 |
Pre-pregnancy BMI (kg/m2), median (range) | 21.6 (17.1–27.1) | 20.5 (18.6–25.6) | 0.472 | 21.6 (17.1–27.1) | 19.8 (17.1–25.6) | 0.095 |
Nulliparous, n (%) | 22 (59.5%) | 4 (80.0%) | 0.628 | 20 (60.6%) | 6 (66.7%) | 0.733 |
Number of previous pregnancy losses, n (%) | ||||||
0 | 11 (29.7%) | 2 (40.0%) | 1.000 | 9 (27.3%) | 4 (44.4%) | 0.419 |
1 | 13 (35.1%) | 2 (40.3%) | 1.000 | 13 (39.4%) | 2 (22.2%) | 0.455 |
2 | 9 (24.3%) | 1 (20.0%) | 1.000 | 7 (21.2%) | 3 (33.3%) | 0.629 |
≥3 | 4 (10.8%) | 0 | 1.000 | 4 (12.1%) | 0 | 0.555 |
In vitro fertilization, n (%) | 16 (43.2%) | 3 (60.0%) | 0.628 | 15 (45.5%) | 4 (44.4%) | 1.000 |
Estimated gestational age at fetal demise (days), median (range) | 61.0 (42–81) | 51.0 (47–59) | 0.077 | 62.0 (42–81) | 51.0 (47–68) | 0.053 |
Interval between fetal demise and sampling (days), median (range) | 11.0 (1–43) | 29.0 (3–30) | 0.094 | 11.0 (1–43) | 14.0 (3–30) | 0.509 |
Fetal confirmation by ultrasound, n (%) | 31 (83.8%) | 4 (80.0%) | 1.000 | 28 (84.8%) | 7 (77.8%) | 1.000 |
Seq-FF rate (%), median (range) | 7.4 (1.8–15.0) | 3.5 (2.0–12.5) | 0.383 | 8.1 (1.5–29.3) | 6.3 (2.8–11.7) | 0.283 |
Y-FF rate(%), median (range) † | 5.7 (2.4–15.5) | 0.2 | - | 8.18 (0.6–62.1) | 0.8 (0.2–1.4) | 0.068 |
Case | GA (days) | BMI (kg/m2) | Preoperative Cff DNA Analysis | Postoperative Cff DNA Analysis | POC Testing | ||||
---|---|---|---|---|---|---|---|---|---|
Seq-FF | Y-FF | Result | Seq-FF | Y-FF | Result | ||||
Cases with aneuploidy detected in POC results but not in cff DNA analysis | |||||||||
1 | 47 | 25.6 | 2.59 | 0.57 | 46,XY | 3.00 | 0.15 | 46,XY | 47,XY,+12, der(13;14)(q10;q10),+14 |
2 | 51 | 21.6 | 1.97 | - | 46,XX | 2.80 | - | 46,XX | 47,XX,+16 |
3 | 53 | 18.6 | 3.46 | - | 46,XX | 2.84 | - | 46,XX | 47,XX,+22 |
4 | 55 | 17.1 | 7.17 | 3.53 | 47,XY,+15 | 4.61 | 1.44 | 46,XY | 47,XY,+15 |
5 | 51 | 22.0 | 7.40 | - | 47,XX,+16 | 6.30 | - | 46,XX | 47,XX,+16 |
6 | 68 | 19.8 | 5.33 | - | 47,XX,+15 | 6.43 | - | 46,XX | 47,XX,+15 |
Cases with euploidy detected in POC results but aneuploidy detected in cff DNA analysis | |||||||||
7 | 49 | 18.8 | 9.60 | - | 47,XX,+22 | 11.66 | - | dup(22)(q11.1q13.1), XX (23.7 Mb) | 46,XX |
8 | 59 | 20.5 | 12.51 | - | 45,X | 11.08 | - | 45,X | 46,XX |
9 | 68 | 19.8 | 6.75 | - | 46,XX | 9.79 | - | 45,X | 46,XX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagao, T.; Ito, Y.; Moriyama, A.; Tei, C.; Okamoto, A.; Samura, O. Pre- and Postoperative Cell-Free Fetal DNA Analyses for Detecting Aneuploidy in Early Pregnancy Loss: Single-Center Prospective Cohort Study. Genes 2025, 16, 681. https://doi.org/10.3390/genes16060681
Nagao T, Ito Y, Moriyama A, Tei C, Okamoto A, Samura O. Pre- and Postoperative Cell-Free Fetal DNA Analyses for Detecting Aneuploidy in Early Pregnancy Loss: Single-Center Prospective Cohort Study. Genes. 2025; 16(6):681. https://doi.org/10.3390/genes16060681
Chicago/Turabian StyleNagao, Takeshi, Yuki Ito, Akari Moriyama, Chika Tei, Aikou Okamoto, and Osamu Samura. 2025. "Pre- and Postoperative Cell-Free Fetal DNA Analyses for Detecting Aneuploidy in Early Pregnancy Loss: Single-Center Prospective Cohort Study" Genes 16, no. 6: 681. https://doi.org/10.3390/genes16060681
APA StyleNagao, T., Ito, Y., Moriyama, A., Tei, C., Okamoto, A., & Samura, O. (2025). Pre- and Postoperative Cell-Free Fetal DNA Analyses for Detecting Aneuploidy in Early Pregnancy Loss: Single-Center Prospective Cohort Study. Genes, 16(6), 681. https://doi.org/10.3390/genes16060681