Revisiting Aurochs Haplogroup C: Paleogenomic Perspectives from Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Information
2.2. DNA Extraction, Double-Stranded Library Construction, and Sequencing
2.3. Single-Stranded Library Construction and Hybridization Capture
2.4. Data Processing
2.5. Mitochondrial Phylogenetic Analysis
3. Result
3.1. Radiocarbon Dating and the Genomes of Aurochs
3.2. Phylogenetic Analyses of Mitochondrial Genomes
3.3. Maternal Effective Population Size of Hyplogroup C
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajmone-Marsan, P.; Garcia, J.F.; Lenstra, J.A. On the origin of cattle: How aurochs became cattle and colonized the world. Evol. Anthropol. 2010, 19, 148–157. [Google Scholar] [CrossRef]
- Helmer, D.; Gourichon, L.; Monchot, H.; Peters, J.; Segui, M.S. Identifying Early Domestic Cattle from Pre-Pottery Neolithic Sites on the Middle Euphrates Using Sexual Dimorphism; Vigne, J.-D., Peters, J., Helmer, D., Eds.; Oxbow Books: Oxford, UK, 2005. [Google Scholar]
- Hongo, H.; Pearson, J.; Öksüz, B.; Ilgezdi, G. The process of ungulate domestication at Çayönü, Southeastern Turkey: A multidisciplinary approach focusing on Bos sp. and Cervus elaphus. Anthropozoologica 2009, 44, 63–78. [Google Scholar] [CrossRef]
- Zhang, N.F.; Cai, D.W. Review on the historical geographical distribution and ancient DNA research of Bos primigenius. Res. China’s Front. Archaeol. 2021, 297–327. (In Chinese) [Google Scholar]
- Tong, H.W.; Chen, X.; Zhang, B.; Wang, F.G. New fossils of Bos primigenius (Artiodactyla, Mammalia) from Nihewan and Longhua of Hebei, China. Vertebr. Palasiat. 2018, 56, 69–92. [Google Scholar] [CrossRef]
- Park, S.D.E.; Magee, D.A.; McGettigan, P.A.; Teasdale, M.D.; Edwards, C.J.; Lohan, A.J.; Murphy, A.; Braud, M.; Donoghue, M.T.; Liu, Y.; et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015, 16, 234. [Google Scholar] [CrossRef]
- Edwards, C.J.; Bollongino, R.; Scheu, A.; Chamberlain, A.; Tresset, A.; Vigne, J.-D.; Baird, J.F.; Larson, G.; Ho, S.Y.W.; Heupink, T.H.; et al. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc. R. Soc. B 2007, 274, 1377–1385. [Google Scholar] [CrossRef]
- Troy, C.S.; MacHugh, D.E.; Bailey, J.F.; Magee, D.A.; Loftus, R.T.; Cunningham, P.; Chamberlain, A.T.; Sykes, B.C.; Bradley, D.G. Genetic evidence for Near-Eastern origins of European cattle. Nature 2001, 410, 1088–1091. [Google Scholar] [CrossRef]
- Beierkuhnlein, C. Bos primigenius in Ancient Egyptian art–historical evidence for the continuity of occurrence and ecology of an extinct key species. Front. Biogeogr. 2015, 7, 107–118. [Google Scholar] [CrossRef]
- Martínez-Navarro, B.; Karoui-Yaakoub, N.; Oms, O.; Amri, L.; López-García, J.M.; Zerai, K.; Blain, H.-A.; Mtimet, M.-S.; Espigares, M.-P.; Ben Haj Ali, N.; et al. The early Middle Pleistocene archeopaleontological site of Wadi Sarrat (Tunisia) and the earliest record of Bos primigenius. Quat. Sci. Rev. 2014, 90, 37–46. [Google Scholar] [CrossRef]
- Brunson, K.; Zhao, X.; He, N.; Dai, X.M.; Rodrigues, A.; Yang, D.Y. New insights into the origins of oracle bone divination: Ancient DNA from Late Neolithic Chinese bovines. J. Archaeol. Sci. 2016, 74, 35–44. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.P.; Dong, X.L.; Liu, M.; Tang, J.Q.; Zhang, Y.J.; Yuan, J.; Yang, D.Y. Ancient DNA analysis of domesticated cattle from Xiaomintun site at Yinxu, Anyang, China. Quat. Sci. 2020, 40, 321–330. [Google Scholar] [CrossRef]
- Zhang, H.C.; Paijmans, J.L.A.; Chang, F.Q.; Wu, X.H.; Chen, G.J.; Lei, C.Z.; Yang, X.J.; Wei, Z.Y.; Bradley, D.G.; Orlando, L.; et al. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat. Commun. 2013, 4, 2755. [Google Scholar] [CrossRef] [PubMed]
- Zeyland, J.; Wolko, Ł.; Bocianowski, J.; Szalata, M.; Słomski, R.; Dzieduszycki, A.M.; Ryba, M.; Przystałowska, H.; Lipiński, D. Complete mitochondrial genome of wild aurochs (Bos primigenius) reconstructed from ancient DNA. Pol. J. Vet. Sci. 2013, 16, 265–273. [Google Scholar] [CrossRef]
- Hou, J.W.; Guan, X.W.; Xia, X.T.; Lyu, Y.; Liu, X.; Mazei, Y.; Xie, P.; Chang, F.Q.; Zhang, X.N.; Chen, J.L.; et al. Evolution and legacy of East Asian aurochs. Sci. Bull. 2024, 69, 3425–3433. [Google Scholar] [CrossRef]
- Chen, S.G.; Ren, L.L.; Gao, Y.; Dong, G.H.; Sheng, G.L.; Han, J.L.; Liu, X.Y.; Chen, N.B.; Chen, F.H. Evidence of hybridization of cattle and aurochs on the Tibetan Plateau ∼3750 years ago. Sci. Bull. 2024, 69, 2825–2828. [Google Scholar] [CrossRef]
- Cai, D.W.; Zhang, N.F.; Zhu, S.Q.; Chen, Q.J.; Wang, L.X.; Zhao, X.; Ma, X.Y.; Royle, T.C.A.; Zhou, H.; Yang, D.Y. Ancient DNA reveals evidence of abundant aurochs (Bos primigenius) in Neolithic Northeast China. J. Archaeol. Sci. 2018, 98, 72–80. [Google Scholar] [CrossRef]
- Rossi, C.; Sinding, M.-H.S.; Mullin, V.E.; Scheu, A.; Erven, J.A.M.; Verdugo, M.P.; Daly, K.G.; Ciucani, M.M.; Mattiangeli, V.; Teasdale, M.D.; et al. The genomic natural history of the aurochs. Nature 2024, 635, 136–141. [Google Scholar] [CrossRef]
- Achilli, A.; Olivieri, A.; Pellecchia, M.; Uboldi, C.; Colli, L.; Al-Zahery, N.; Accetturo, M.; Pala, M.; Kashani, B.H.; Perego, U.A.; et al. Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr. Biol. 2008, 18, R157–R158. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5448. [Google Scholar] [CrossRef]
- Sheng, G.L.; Basler, N.; Ji, X.P.; Paijmans, J.L.A.; Alberti, F.; Preick, M.; Hartmann, S.; Westbury, M.V.; Yuan, J.X.; Jablonski, N.G.; et al. Paleogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations. Curr. Biol. 2019, 29, 1695–1700.e6. [Google Scholar] [CrossRef]
- Gansauge, M.-T.; Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 2013, 8, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.X.; Sheng, G.L.; Preick, M.; Sun, B.Y.; Hou, X.D.; Chen, S.G.; Taron, U.H.; Barlow, A.; Wang, L.Y.; Hu, J.M.; et al. Mitochondrial genomes of late Pleistocene caballine horses from China belong to a separate clade. Quat. Sci. Rev. 2020, 250, 106691. [Google Scholar] [CrossRef]
- Gonzalez Fortes, G.; Paijmans, J.L.A. Whole-genome capture of ancient DNA using homemade baits. Methods Mol. Biol. 2019, 1963, 93–105. [Google Scholar] [CrossRef]
- Paijmans, J.L.A.; Baleka, S.; Henneberger, K.; Taron, U.H.; Trinks, A.; Westbury, M.V.; Barlow, A. Sequencing single-stranded libraries on the Illumina NextSeq 500 platform. arXiv 2017, arXiv:1711.11004. [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinf. 2014, 15, 356. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef]
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.F.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef]
- Günther, T.; Chisausky, J.; Galindo-Pellicena, M.Á.; Iriarte, E.; Gardyn, O.C.; Eusebi, P.G.; García-González, R.; Urena, I.; Moreno, M.; Alday, A.; et al. The genomic legacy of human management and sex-biased aurochs hybridization in Iberian cattle. eLife 2025, 13, RP93076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.F.; Liang, Q.Y.; Shao, X.Y.; Guo, Y.Q.; Wang, Y.D.; Wang, X.C.; Zhang, W.; Ning, C.; Cai, D.W. Ancient cattle DNA provides novel insight into the subsistence mode transition from the late Neolithic to Bronze Age in the Nenjiang River Basin. J. Archaeol. Sci. Rep. 2023, 51, 104136. [Google Scholar] [CrossRef]
- Verdugo, M.P.; Mullin, V.E.; Scheu, A.; Mattiangeli, V.; Daly, K.G.; Maisano Delser, P.; Hare, A.J.; Burger, J.; Collins, M.J.; Kehati, R.; et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 2019, 365, 173–176. [Google Scholar] [CrossRef]
- Chen, N.B.; Cai, Y.D.; Chen, Q.M.; Li, R.; Wang, K.; Huang, Y.Z.; Hu, S.M.; Huang, S.S.; Zhang, H.C.; Zheng, Z.Q.; et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic. Acids. Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Leng, C.C.; Tang, Z.W.; Zhang, W.; Jie, D.M.; Wang, H.N.; Gao, G.Z.; Li, D.H.; Li, N.N.; Wang, J.Y.; Shi, J.C.; et al. Response of prehistoric human activity to environmental changes since 7,000 cal yr BP in Nenjiang River Basin, northeast China. Quat. Int. 2019, 507, 74–83. [Google Scholar] [CrossRef]
- Liu, K.; Song, Y.H.; Yang, F.C.; Dai, H.M.; Xu, J.; Han, X.M.; Liang, S. Palynological assemblages of Holocene typical black soil profile from northern Songnen Plain and its restricts to environmental evolution. Geol. Bull. China 2023, 42, 2122–2131. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, C.; Zhou, A.F.; Zhang, H.X.; Liu, W.G.; Feng, X.P.; Sun, X.S.; Yan, T.L.; Leng, C.C.; Shen, J.; et al. Quantification of temperature and precipitation changes in northern China during the “5000-year” Chinese History. Quat. Sci. Rev. 2021, 255, 106819. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; He, Y.Q.; Kong, X.G.; An, Z.S.; Wu, J.G.; Kelly, M.J.; Dykoski, C.A.; Li, X.D. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef]
- Rokosz, M. History of the aurochs (Bos taurus primigenius) in Poland. Anim. Genet. Resour. Inf. 1995, 16, 5–12. [Google Scholar] [CrossRef]
- Bro-Jørgensen, M.H.; Carøe, C.; Vieira, F.G.; Nestor, S.; Hallström, A.; Gregersen, K.M.; Etting, V.; Gilbert, M.T.P.; Sinding, M.-H.S. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull. J. Archaeol. Sci. 2018, 99, 47–54. [Google Scholar] [CrossRef]
- Cai, D.W.; Sun, Y.; Tang, Z.W.; Hu, S.M.; Li, W.Y.; Zhao, X.B.; Xiang, H.; Zhou, H. The origins of Chinese domestic cattle as revealed by ancient DNA analysis. J. Archaeol. Sci. 2014, 41, 423–434. [Google Scholar] [CrossRef]
- Hu, J.M.; Westbury, M.V.; Yuan, J.X.; Zhang, Z.; Chen, S.G.; Xiao, B.; Hou, X.D.; Ji, H.L.; Lai, X.L.; Hofreiter, M.; et al. Ancient mitochondrial genomes from Chinese cave hyenas provide insights into the evolutionary history of the genus Crocuta. Proc. Biol. Sci. 2021, 288, 20202934. [Google Scholar] [CrossRef]
- Hou, X.D.; Zhao, J.; Zhang, H.C.; Preick, M.; Hu, J.M.; Xiao, B.; Wang, L.Y.; Deng, M.X.; Liu, S.Z.; Chang, F.Q.; et al. Paleogenomes reveal a complex evolutionary history of Late Pleistocene bison in Northeastern China. Genes 2022, 13, 1684. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.X.; Sun, G.J.; Xiao, B.; Hu, J.M.; Wang, L.Y.; Taogetongqimuge; Bao, L.; Hou, Y.M.; Song, S.W.; Jiang, S.; et al. Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China. BMC Ecol. Evol. 2023, 23, 56. [Google Scholar] [CrossRef]
- Hu, J.M.; Westbury, M.V.; Yuan, J.X.; Wang, C.X.; Xiao, B.; Chen, S.G.; Song, S.W.; Wang, L.Y.; Lin, H.F.; Lai, X.L.; et al. An extinct and deeply divergent tiger lineage from northeastern China recognized through palaeogenomics. Proc. Biol. Sci. 2022, 289, 20220617. [Google Scholar] [CrossRef]
- Xiao, B.; Rey-lglesia, A.; Yuan, J.X.; Hu, J.M.; Song, S.W.; Hou, Y.M.; Chen, X.; Germonpré, M.; Bao, L.; Wang, S.; et al. Relationships of Late Pleistocene giant deer as revealed by Sinomegaceros mitogenomes from East Asia. iScience 2023, 26, 108406. [Google Scholar] [CrossRef] [PubMed]
- Erven, J.A.M.; Scheu, A.; Verdugo, M.P.; Cassidy, L.; Chen, N.B.; Gehlen, B.; Street, M.; Madsen, O.; Mullin, V.E. A high-coverage Mesolithic aurochs genome and effective leveraging of ancient cattle genomes using whole genome imputation. Mol. Biol. Evol. 2024, 41, msae076. [Google Scholar] [CrossRef]
- Edwards, C.J.; Magee, D.A.; Park, S.D.E.; McGettigan, P.A.; Lohan, A.J.; Murphy, A.; Finlay, E.K.; Shapiro, B.; Chamberlain, A.T.; Richards, M.B.; et al. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLoS ONE 2010, 5, e9255. [Google Scholar] [CrossRef]
- Gurke, M.; Vidal-Gorosquieta, A.; Pajimans, J.L.A.; Wȩcek, K.; Barlow, A.; González-Fortes, G.; Hartmann, S.; Grandal-d’Anglade, A.; Hofreiter, M. Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence. PLoS ONE 2021, 16, e0249537. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.T.; Achilli, A.; Lenstra, J.A.; Tong, B.; Ma, Y.; Huang, Y.Z.; Han, J.L.; Sun, Z.Y.; Chen, H.; Lei, C.Z.; et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia. Heredity 2021, 126, 1000–1008. [Google Scholar] [CrossRef]
- Mannen, H.; Morimoto, M.L.; Oyamat, K.; Mukai, F.; Tsuji, S. Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle. J. Anim. Sci. 2003, 81, 68–73. [Google Scholar] [CrossRef]
- Xia, X.T.; Qu, K.X.; Li, F.Y.; Jia, P.; Chen, Q.M.; Chen, N.B.; Zhang, J.C.; Chen, H.; Huang, B.Z.; Lei, C.Z. Abundant genetic diversity of Yunling cattle based on mitochondrial genome. Animals 2019, 9, 641. [Google Scholar] [CrossRef]
- Horsburgh, K.A.; Prost, S.; Gosling, A.; Stanton, J.A.; Rand, C.; Matisoo-Smith, E.A. The genetic diversity of the Nguni breed of African cattle (Bos spp.): Complete mitochondrial genomes of haplogroup T1. PLoS ONE 2013, 8, e71956. [Google Scholar] [CrossRef] [PubMed]
- Achilli, A.; Bonfiglio, S.; Olivieri, A.; Malusà, A.; Pala, M.; Kashani, B.H.; Perego, U.A.; Ajmone-Marsan, P.; Liotta, L.; Semino, O.; et al. The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS ONE 2009, 4, e0005753. [Google Scholar] [CrossRef]
- Bonfiglio, S.; Achilli, A.; Olivieri, A.; Negrini, R.; Colli, L.; Liotta, L.; Ajmone-Marsan, P.; Torroni, A.; Ferretti, L. The enigmatic origin of bovine mtDNA haplogroup R: Sporadic interbreeding or an independent event of Bos primigenius domestication in Italy? PLoS ONE 2010, 5, e15760. [Google Scholar] [CrossRef]
- Anderson, S.; De Bruijn, M.H.; Coulson, A.R.; Eperon, I.C.; Sanger, F.; Young, I.G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 1982, 156, 683–717. [Google Scholar] [CrossRef] [PubMed]
- Hiendleder, S.; Lewalski, H.; Janke, A. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet Genome Res. 2008, 120, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Arya, M.; Ghosh, A.; Tyagi, K.; Tyagi, I.; Bisht, S.S.; Kumar, V. Characterization of complete mitochondrial genome of Badri breed of Bos indicus (Bovidae: Bovinae): Selection pressure and comparative analysis. Biochem. Genet. 2025, 63, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Bisht, M.S.; Saxena, R.; Mahajan, S.; Pulikkan, J.; Sharma, V.K. Genome sequencing and de novo and reference-based genome assemblies of Bos indicus breeds. Genes Genom. 2023, 45, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, S.; Ginja, C.; De Gaetano, A.; Achilli, A.; Olivieri, A.; Colli, L.; Tesfaye, K.; Agha, S.H.; Gama, L.T.; Cattonaro, F.; et al. Origin and spread of Bos taurus: New clues from mitochondrial genomes belonging to haplogroup T1. PLoS ONE 2012, 7, e38601. [Google Scholar] [CrossRef] [PubMed]
- De, A.K.; Muthiyan, R.; George, Z.; Ponraj, P.; Malakar, D.; Kundu, A.; Sunder, J.; Bhattacharya, D. Complete mitochondrial genome of Trinket cattle, a Danish colonial leftover. Mitochondrial DNA. Part B. Resour. 2019, 4, 2053–2054. [Google Scholar] [CrossRef]
- Zeyland, J.; Wolko, L.; Lipinski, D.; Wozniak, A.; Nowak, A.; Szalata, M.; Bocianowski, J.; Slomski, R. Tracking of wisent-bison-yak mitochondrial evolution. J. Appl. Genet. 2012, 53, 317–322. [Google Scholar] [CrossRef]
- Wecek, K.; Hartmann, S.; Paijmans, J.L.A.; Taron, U.; Xenikoudakis, G.; Cahill, J.A.; Heintzman, P.D.; Shapiro, B.; Baryshnikov, G.; Bunevich, A.N.; et al. Complex admixture preceded and followed the extinction of wisent in the wild. Mol. Biol. Evol. 2017, 34, 598–612. [Google Scholar] [CrossRef]
- Onar, V.; Soubrier, J.; Toker, N.Y.; Loenen, A.V.; Llamas, B.; Siddiq, A.B.; Pasicka, E.; Tokarska, M. Did the historical range of the European bison (Bison bonasus L.) extend further south?—A new finding from the Yenikapı Metro and Marmaray excavation, Turkey. Mamm. Res. 2017, 62, 103–109. [Google Scholar] [CrossRef]
- Massilani, D.; Guimaraes, S.; Brugal, J.P.; Bennett, E.A.; Tokarska, M.; Arbogast, R.M.; Baryshnikov, G.; Boeskorov, G.; Castel, J.C.; Davydov, S.; et al. Past climate changes, population dynamics and the origin of Bison in Europe. BMC Biol. 2016, 14, 93. [Google Scholar] [CrossRef]
Tree Node | Median Node Age (BP) | Node Age 95% HPD (BP) | Node Prior |
---|---|---|---|
Bos/Bison | 1,204,325 | 1,060,461–1,351,560 | 1 |
G/IKCREPQT | 445,694 | 388,651–509,781 | 0.9981 |
G | 68,514 | 59,737–78,107 | 0.9992 |
I/KCREPQT | 290,170 | 249,661–335,306 | 0.9981 |
I | 43,476 | 31,578–56,933 | 0.9981 |
CK/REPQT | 152,505 | 132,706–174,699 | 0.9981 |
C/K | 141,660 | 122,846–161,742 | 0.8165 |
C | 128,485 | 111,552–147,478 | 0.9982 |
C-Tula1 * | 111,174 | 95,690–127,359 | 0.9981 |
K | 16,191 | 13,922–20,091 | 0.9991 |
RE/PQT | 148,488 | 128,426–168,895 | 0.1081 |
R/E | 136,181 | 114,341–157,965 | 0.9153 |
R | 41,785 | 29,876–54,517 | 0.9983 |
P/TQ | 95,767 | 80,455–112,706 | 0.9983 |
P | 36,098 | 29,463–43,094 | 0.9983 |
T/Q | 73,409 | 60,517–87,489 | 0.9984 |
T | 61,968 | 50,783–74,595 | 0.998 |
Q | 36,651 | 24,884–51,722 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Hou, X.; Zhao, J.; Xiao, B.; Song, S.; Zou, X.; Liu, S.; Hofreiter, M.; Lai, X. Revisiting Aurochs Haplogroup C: Paleogenomic Perspectives from Northeastern China. Genes 2025, 16, 639. https://doi.org/10.3390/genes16060639
Zhu Y, Hou X, Zhao J, Xiao B, Song S, Zou X, Liu S, Hofreiter M, Lai X. Revisiting Aurochs Haplogroup C: Paleogenomic Perspectives from Northeastern China. Genes. 2025; 16(6):639. https://doi.org/10.3390/genes16060639
Chicago/Turabian StyleZhu, Yan, Xindong Hou, Jian Zhao, Bo Xiao, Shiwen Song, Xinzhe Zou, Sizhao Liu, Michael Hofreiter, and Xulong Lai. 2025. "Revisiting Aurochs Haplogroup C: Paleogenomic Perspectives from Northeastern China" Genes 16, no. 6: 639. https://doi.org/10.3390/genes16060639
APA StyleZhu, Y., Hou, X., Zhao, J., Xiao, B., Song, S., Zou, X., Liu, S., Hofreiter, M., & Lai, X. (2025). Revisiting Aurochs Haplogroup C: Paleogenomic Perspectives from Northeastern China. Genes, 16(6), 639. https://doi.org/10.3390/genes16060639