Genetics of Suicide
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Family and Twin Studies
3.1.1. Twin Studies
3.1.2. Family Studies
3.1.3. Population-Based Twin Studies
3.2. Serotonin System
3.2.1. Tryptophan Hydroxylase
3.2.2. Serotonin Receptor 1A
3.2.3. Serotonin Receptor 1B
3.2.4. Serotonin Receptor 2A
3.2.5. Serotonin Transporter
3.3. Brain-Derived Neurotrophic Factor (BDNF)
3.4. Hypothalamic–Pituitary–Adrenal (HPA) Axis
3.4.1. Gamma-Aminobutyric Acid (GABA)
3.4.2. Corticotropin-Releasing Factor-Binding Protein (CRHBP)
3.4.3. Spindle and Kinetochore-Associated Protein 2 (SKA2)
3.4.4. NR3C1
3.4.5. CRH1
3.5. Second Messengers
3.6. Inflammation
3.6.1. Tumor Necrosis Factor (TNF) Alpha
3.6.2. IL-6
3.6.3. IL-8
3.6.4. IL-1 Beta
3.7. Genome-Wide Association Studies
3.8. Machine Learning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Health Statistics. Suicide Mortality in the United States. 2022. Available online: https://www.cdc.gov/nchs/products/databriefs/db509.htm (accessed on 23 March 2025).
- Centers for Disease Control and Prevention. Leading Causes of Death and Injury. 2022. Available online: https://www.cdc.gov/injury/wisqars/LeadingCauses.html (accessed on 23 March 2025).
- Hedegaard, H.; Curtin, S.C.; Warner, M. Suicide Rates in the United States Continue to Rise. NCHS Data Brief, No. 362. 2021. Available online: https://www.cdc.gov/nchs/data/databriefs/db362-h.pdf (accessed on 23 March 2025).
- Curtin, S.C.; Warner, M.; Hedegaard, H. Suicide Rates for Females and Males by Age Group, United States, 2020. NCHS Data Brief, No. 398. 2020. Available online: https://www.cdc.gov/nchs/products/databriefs/db398.htm (accessed on 23 March 2025).
- World Health Organization. Preventing Suicide: A Global Imperative. 2014. Available online: https://www.who.int/publications/i/item/9789241564779 (accessed on 23 March 2025).
- Substance Abuse and Mental Health Services Administration. 2022 National Survey on Drug Use and Health. 2023. Available online: https://www.samhsa.gov/data/report/2022-nsduh-annual-national-report (accessed on 23 March 2025).
- Centers for Disease Control and Prevention. Provisional Estimates of Suicide by Demographic Characteristics: United States, 2022. 2023. Available online: https://www.cdc.gov/nchs/data/vsrr/vsrr034.pdf (accessed on 23 March 2025).
- American Foundation for Suicide Prevention. Suicide Statistics. 2023. Available online: https://afsp.org/suicide-statistics (accessed on 23 March 2025).
- Centers for Disease Control and Prevention. Vital Signs: Suicide Rates and Selected County-Level Factors—United States, 2018–2021. 2023. Available online: https://www.cdc.gov/mmwr/volumes/73/wr/mm7337e1.htm (accessed on 23 March 2025).
- USAFacts. US Suicide Rate Trends and States with the Highest Suicide Rates. 2023. Available online: https://usafacts.org/articles/how-is-the-suicide-rate-changing-in-the-us/ (accessed on 23 March 2025).
- Favril, L.; Yu, R.; Uyar, A.; Sharpe, M.; Fazel, S. Risk factors for suicide in adults: Systematic review and meta-analysis of psychological autopsy studies. Evid. Based Ment. Health 2022, 25, 148–155. [Google Scholar] [CrossRef]
- Binswanger, I.A.; Stern, M.F.; Deyo, R.A.; Heagerty, P.J.; Cheadle, A.; Elmore, J.G.; Koepsell, T.D. Release from prison—A high risk of death for former inmates. N. Engl. J. Med. 2007, 356, 157–165. [Google Scholar] [PubMed]
- Dooley, E. Prison suicide in England and Wales, 1972–1987. Br. J. Psychiatry 1990, 156, 40–45. [Google Scholar]
- Grassel, K.M.; Wintemute, G.J.; Wright, M.A.; Romero, M.P. Association between handgun purchase and mortality from firearm injury. Inj. Prev. 2003, 9, 48–52. [Google Scholar]
- Kung, H.C.; Pearson, J.L.; Liu, X. Risk factors for male and female suicide decedents ages 15–64 in the United States: Results from the 1993 National Mortality Followback Survey. Soc. Psychiatry Psychiatr. Epidemiol. 2003, 38, 419–426. [Google Scholar]
- Price, J.H.; Thompson, A.J.; Dake, J.A. Factors associated with state variations in homicide, suicide, and unintentional firearm deaths. J. Community Health 2004, 29, 271–283. [Google Scholar]
- Miller, M.; Azrael, D.; Hemenway, D. The epidemiology of case fatality rates for suicide in the northeast. Ann. Emerg. Med. 2004, 43, 723–730. [Google Scholar]
- Abramson, L.Y.; Metalsky, G.I.; Alloy, L.B. Hopelessness depression: A theory-based subtype of depression. Psychol. Rev. 1989, 96, 358–372. [Google Scholar]
- Beck, A.T.; Brown, G.; Steer, R.A. Prediction of eventual suicide in psychiatric inpatients by clinical ratings of hopelessness. J. Consult. Clin. Psychol. 1989, 57, 309–310. [Google Scholar]
- Brent, D.A.; Johnson, B.A.; Perper, J.; Connolly, J.; Bridge, J.; Bartle, S.; Rather, C. Personality disorder, personality traits, impulsive violence, and completed suicide in adolescents. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 1080–1086. [Google Scholar]
- Dumais, A.; Lesage, A.D.; Alda, M.; Rouleau, G.; Dumont, M.; Chawky, N.; Roy, M.; Mann, J.J.; Benkelfat, C.; Turecki, G. Risk Factors for Suicide Completion in Major Depression: A Case-Control Study of Impulsive and Aggressive Behaviors in Men. Am. J. Psychiatry 2005, 162, 2116–2124. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, I.; Austin, J.L.; Gooding, P. Association of Childhood Maltreatment with Suicide Behaviors Among Young People: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2012563. [Google Scholar] [CrossRef] [PubMed]
- Voracek, M.; Loibl, L.M. Genetics of suicide: A systematic review of twin studies. Wien. Klin. Wochenschr. 2007, 119, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Tsuang, M.T. Risk of suicide in the relatives of schizophrenics, manics, depressives, and controls. J. Clin. Psychiatry 1983, 44, 396–400. [Google Scholar]
- Pfeffer, C.R.; Normandin, L.; Kakuma, T. Suicidal children grow up: Suicidal behavior and psychiatric disorders among relatives. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 1087–1097. [Google Scholar] [CrossRef]
- Malone, K.M.; Haas, G.L.; Sweeney, J.A.; Mann, J.J. Major depression and the risk of attempted suicide. J. Affect. Disord. 1995, 34, 173–185. [Google Scholar] [CrossRef]
- Statham, D.J.; Heath, A.C.; Madden, P.A.; Bucholz, K.K.; Bierut, L.; Dinwiddie, S.H.; Slutske, W.S.; Dunne, M.P.; Martin, N.G. Suicidal behaviour: An epidemiological and genetic study. Psychol. Med. 1998, 28, 839–855. [Google Scholar] [CrossRef]
- Glowinski, A.L.; Bucholz, K.K.; Nelson, E.C.; Fu, Q.; Madden, P.A.; Reich, W.; Heath, A.C. Suicide attempts in an adolescent female twin sample. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 1300–1307. [Google Scholar] [CrossRef]
- Fu, Q.; Heath, A.C.; Bucholz, K.K.; Nelson, E.C.; Glowinski, A.L.; Goldberg, J.; Lyons, M.J.; Tsuang, M.T.; Jacob, T.; True, M.R.; et al. A twin study of genetic and environmental influences on suicidality in men. Psychol. Med. 2002, 32, 11–24. [Google Scholar] [CrossRef]
- Brezo, J.; Bureau, A.; Mérette, C.; Jomphe, V.; Barker, E.D.; Vitaro, F.; Hébert, M.; Carbonneau, R.; Tremblay, R.E.; Turecki, G. Differences and similarities in the serotonergic diathesis for suicide attempts and mood disorders: A 22-year longitudinal gene-environment study. Mol. Psychiatry 2010, 15, 831–843. [Google Scholar] [CrossRef]
- Bellivier, F.; Chaste, P.; Malafosse, A. Association between the TPH gene A218C polymorphism and suicidal behavior: A meta-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2004, 124B, 87–91. [Google Scholar] [CrossRef]
- Li, D.; He, L. Further clarification of the contribution of the tryptophan hydroxylase (TPH) gene to suicidal behavior using systematic allelic and genotypic meta-analyses. Hum. Genet. 2006, 119, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Clayden, R.C.; Zaruk, A.; Meyre, D.; Thabane, L.; Samaan, Z. The association of attempted suicide with genetic variants in the SLC6A4 and TPH genes depends on the definition of suicidal behavior: A systematic review and meta-analysis. Transl. Psychiatry 2012, 2, e166. [Google Scholar] [CrossRef] [PubMed]
- Zill, P.; Büttner, A.; Eisenmenger, W.; Möller, H.J.; Bondy, B.; Ackenheil, M. Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol. Psychiatry 2004, 56, 581–586. [Google Scholar] [CrossRef]
- Zhou, Z.; Roy, A.; Lipsky, R.; Kuchipudi, K.; Zhu, G.; Taubman, J.; Enoch, M.-A.; Virkkunen, M.; Goldman, D. Haplotype- based linkage of tryptophan hydroxylase 2 to suicide attempt, major depres-sion, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch. Gen. Psychiatry 2005, 62, 1109–1118. [Google Scholar] [CrossRef]
- Ke, L.; Qi, Z.Y.; Ping, Y.; Ren, C.Y. Effect of SNP at position 40237 in exon 7 of the TPH2 gene on susceptibility to suicide. Brain Res. 2006, 1122, 24–26. [Google Scholar] [CrossRef]
- de Lara, C.L.; Brezo, J.; Rouleau, G.; Lesage, A.; Dumont, M.; Alda, M.; Benkelfat, C.; Turecki, G. Effect of tryptophan hydroxylase-2 gene variants on suicide risk in major depres-sion. Biol. Psychiatry 2007, 62, 72–80. [Google Scholar] [CrossRef]
- Fudalej, S.; Ilgen, M.; Fudalej, M.; Kostrzewa, G.; Barry, K.; Wojnar, M.; Krajewski, P.; Blow, F.; Ploski, R. Association between tryptophan hydroxylase 2 gene polymorphism and completed suicide. Suicide Life Threat Behav. 2010, 40, 553–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Yuan, G.; Yao, J.; Cheng, Z.; Liu, C.; Liu, Q.; Wan, G.; Shi, G.; Cheng, Y.; et al. Effect of tryptophan hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression. Behav. Brain Funct. 2010, 6, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Yuan, G.; Yao, J.; Cheng, Z.; Liu, C.; Liu, Q.; Wan, G.; Shi, G.; Cheng, Y.; et al. Genetics of emergent suicidality during antidepressive treatment—Data from a naturalistic study on a large sample of inpatients with a major depressive episode. Eur. Neuropsychopharmacol. 2013, 23, 663–674. [Google Scholar] [CrossRef]
- Lopez, V.A.; Detera-Wadleigh, S.; Cardona, I.; Kassem, L.; McMahon, F.J.; National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium. Nested association between genetic variation in tryptophan hydroxylase II, Bipolar affective disorder, and suicide attempts. Biol. Psychiatry 2007, 61, 181–186. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, T.B.; Juárez-Rojop, I.; López-Narváez, M.L.; Tovilla-Zárate, C.A. Association of TPH-1 and TPH-2 gene polymorphisms with suicidal behavior: A systematic review and meta-analysis. BMC Psychiatry 2014, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, D.; Geijer, T.; Sokolowski, M.; Rozanov, V.; Wasserman, J. The sero-tonin 1A receptor C(-1019)G polymorphism in relation to suicide attempt. Behav. Brain Funct. 2006, 2, 14–19. [Google Scholar] [CrossRef]
- Samadi Rad, B.; Ghasemi, A.; Seifi, M.; Samadikuchaksaraei, A.; Baybordi, F.; Danaei, N. Serotonin 1A receptor genetic variations, suicide, and life events in the Iranian population. Psychiatry Clin. Neurosci. 2012, 66, 337–343. [Google Scholar] [CrossRef]
- Lemonde, S.; Turecki, G.; Bakish, D.; Du, L.; Hrdina, P.D.; Bown, C.D.; Sequeira, A.; Kushwaha, N.; Morris, S.J.; Basak, A.; et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J. Neurosci. 2003, 23, 8788–8799. [Google Scholar]
- Sawiniec, J.; Borkowski, K.; Ginalska, G.; Lewandowska-Stanek, H. Association between 5-hydroxytryptamine 1A receptor gene polymorphism and suicidal behavior. Przegl. Lek. 2007, 64, 208–211. [Google Scholar]
- Videtic, A.; Zupanc, T.; Pregelj, P.; Balazic, J.; Tomori, M.; Komel, R. Suicide, stress and serotonin receptor 1A promoter polymorphism -1019C>G in Slovenian suicide victims. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 234–238. [Google Scholar] [CrossRef]
- Wrzosek, M.; Łukaszkiewicz, J.; Wrzosek, M.; Serafin, P.; Jakubczyk, A.; Klimkiewicz, A.; Matsumoto, H.; Brower, K.J.; Wojnar, M. Association of polymorphisms in HTR2A, HTR1A and TPH2 genes with suicide attempts in alcohol dependence: A preliminary report. Psychiatry Res. 2011, 190, 149–151. [Google Scholar] [CrossRef]
- Angles, M.R.; Ocaña, D.B.; Medellín, B.C.; Tovilla-Zárate, C. No association between the HTR1A gene and suicidal behavior: A meta-analysis. Rev. Bras. Psiquiatr. 2012, 34, 38–42. [Google Scholar] [CrossRef]
- Zouk, H.; McGirr, A.; Lebel, V.; Benkelfat, C.; Rouleau, G.; Turecki, G. The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 996–1002. [Google Scholar] [CrossRef]
- Murphy, T.M.; Ryan, M.; Foster, T.; Kelly, C.; McClelland, R.; O’Grady, J.; Corcoran, E.; Brady, J.; Reilly, M.; Jeffers, A.; et al. Risk and protective genetic variants in suicidal behaviour: Association with SLC1A2, SLC1A3, 5-HTR1B &NTRK2 polymorphisms. Behav. Brain Funct. 2011, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kia-Keating, B.M.; Glatt, S.J.; Tsuang, M.T. Meta-analyses suggest association between COMT, but not HTR1B, alleles, and suicidal behavior. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Zalsman, G.; Frisch, A.; Baruch-Movshovits, R.; Sher, L.; Michaelovsky, E.; King, R.; Hermesh, H.; Goldberg, P.; Gorlyn, M.; Misgav, S.; et al. Family-based association study of 5-HT(2A) receptor T102C polymorphism and suicidal behavior in Ashkenazi inpatient adolescents. Int. J. Adolesc. Med. Health 2005, 17, 231–238. [Google Scholar] [CrossRef]
- Fanous, A.H.; Chen, X.; Wang, X.; Amdur, R.; O’Neill, F.A.; Walsh, D.; Kendler, K.S. Genetic variation in the serotonin 2A receptor and suicidal ideation in a sample of 270 Irish high-density schizophrenia families. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150B, 411–417. [Google Scholar] [CrossRef]
- Yoon, H.K.; Kim, Y.K. TPH2-703G/T SNP may have important effect on suscep-tibility to suicidal behavior in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 403–409. [Google Scholar] [CrossRef]
- Höfer, P.; Schosser, A.; Calati, R.; Serretti, A.; Massat, I.; Kocabas, N.A.; Konstantinidis, A.; Mendlewicz, J.; Souery, D.; Zohar, J.; et al. The impact of serotonin receptor 1A and 2A gene polymorphisms and interactions on suicide attempt and suicide risk in depressed patients with insufficient response to treatment—A European Multicentre Study. Int. Clin. Psychopharmacol. 2016, 31, 1–7. [Google Scholar] [CrossRef]
- Saiz, P.A.; García-Portilla, P.; Paredes, B.; Corcoran, P.; Arango, C.; Morales, B.; Sotomayor, E.; Alvarez, V.; Coto, E.; Flórez, G.; et al. Role of serotonergic-related systems in suicidal behavior: Data from a case-control association study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1518–1524. [Google Scholar] [CrossRef]
- Li, D.; Duan, Y.; He, L. Association study of serotonin 2A receptor (5-HT2A) gene with schizophrenia and suicidal behavior using systematic meta-analysis. Biochem. Biophys. Res. Commun. 2006, 340, 1006–1015. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jia, C.X.; Lian, Y.; Sun, S.H.; Lyu, M.; Wu, A. Association of the HTR2A 102T/C polymorphism with attempted suicide: A meta-analysis. Psychiatr. Genet. 2015, 25, 168–177. [Google Scholar] [CrossRef]
- Segal, J.; Pujol, C.; Birck, A.; Manfro, G.G.; Leistner-Segal, S. Association between suicide attempts in south Brazilian depressed patients with the serotonin transporter polymorphism. Psychiatry Res. 2006, 143, 289–291. [Google Scholar] [CrossRef]
- Wasserman, D.; Geijer, T.; Sokolowski, M.; Frisch, A.; Michaelovsky, E.; Weizman, A.; Rozanov, V.; Wasserman, J. Association of the serotonin transporter promotor polymorphism with suicide attempters with a high medical damage. Eur. Neuropsychopharmacol. 2007, 17, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Neves, F.S.; Malloy-Diniz, L.F.; Romano-Silva, M.A.; Aguiar, G.C.; de Matos, L.O.; Correa, H. Is the serotonin transporter polymorphism (5-HTTLPR) a poten-tial marker for suicidal behavior in bipolar disorder patients? J. Affect. Disord. 2010, 125, 98–102. [Google Scholar] [CrossRef]
- Buttenschøn, H.N.; Flint, T.J.; Foldager, L.; Qin, P.; Christoffersen, S.; Hansen, N.F.; Kristensen, I.B.; Mortensen, P.B.; Børglum, A.D.; Mors, O. An association study of suicide and candidate genes in the serotonergic system. J. Affect. Disord. 2013, 148, 291–298. [Google Scholar] [CrossRef]
- Coventry, W.L.; James, M.R.; Eaves, L.J.; Gordon, S.D.; Gillespie, N.A.; Ryan, L.; Heath, A.C.; Montgomery, G.W.; Martin, N.G.; Wray, N.R. Do 5HTTLPR and stress interact in risk for depression and suicidality? Item response analyses of a large sample. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 757–765. [Google Scholar] [CrossRef]
- Huang, T.L.; Lee, C.T. Associations between brain-derived neurotrophic factor G196A gene polymorphism and clinical phenotypes in schizophrenia patients. Chang Gung Med. J. 2007, 30, 408–413. [Google Scholar]
- Kim, B.; Kim, C.Y.; Hong, J.P.; Kim, S.Y.; Lee, C.; Joo, Y.H. Brain-derived neurotrophic factor Val/Met polymorphism and bipolar disorder. Association of the Met allele with suicidal behavior of bipolar patients. Neuropsychobiology 2008, 58, 97–103. [Google Scholar] [CrossRef]
- Vincze, I.; Perroud, N.; Buresi, C.; Baud, P.; Bellivier, F.; Etain, B.; Fournier, C.; Karege, F.; Matthey, M.; Preisig, M.; et al. Association between brain-derived neurotrophic factor gene and a severe form of bipolar disorder, but no interaction with the serotonin transporter gene. Bipolar. Disord. 2008, 10, 580–587. [Google Scholar] [CrossRef]
- Iga, J.; Ueno, S.; Yamauchi, K.; Numata, S.; Tayoshi-Shibuya, S.; Kinouchi, S.; Nakataki, M.; Song, H.; Hokoishi, K.; Tanabe, H.; et al. The Val66Met polymorphism of the brain-derived neurotrophic factor gene is associated with psychotic feature and suicidal behavior in Japanese major depressive patients. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 1003–1006. [Google Scholar] [CrossRef]
- Sarchiapone, M.; Carli, V.; Roy, A.; Iacoviello, L.; Cuomo, C.; Latella, M.C.; di Giannantonio, M.; Janiri, L.; de Gaetano, M.; Janal, M.N. Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology 2008, 57, 139–145. [Google Scholar] [CrossRef]
- Ropret, S.; Zupanc, T.; Komel, R.; Videtič Paska, A. Single nucleotide polymor-phisms in the BDNF gene and suicide in the Slovenian sample. Neurosci. Lett. 2015, 602, 12–16. [Google Scholar] [CrossRef]
- Sears, C.; Wilson, J.; Fitches, A. Investigating the role of BDNF and CCK system genes in suicidality in a familial bipolar cohort. J. Affect. Disord. 2013, 151, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Zai, C.C.; Manchia, M.; De Luca, V.; Tiwari, A.K.; Chowdhury, N.I.; Zai, G.C.; Tong, R.P.; Yilmaz, Z.; Shaikh, S.A.; Strauss, J.; et al. The brain-derived neurotrophic factor gene in suicidal behaviour: A meta-analysis. Int. J. Neuropsychopharmacol. 2012, 15, 1037–1042. [Google Scholar] [CrossRef]
- Ratta-Apha, W.; Hishimoto, A.; Yoshida, M.; Ueno, Y.; Asano, M.; Shirakawa, O.; Sora, I. Association study of BDNF with completed suicide in the Japanese pop-ulation. Psychiatry Res. 2013, 209, 734–736. [Google Scholar] [CrossRef]
- Martinowich, K.; Hattori, D.; Wu, H.; Fouse, S.; He, F.; Hu, Y.; Fan, G.; Sun, Y.E. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003, 302, 890–893. [Google Scholar] [CrossRef]
- Keller, S.; Sarchiapone, M.; Zarrilli, F.; Tomaiuolo, R.; Carli, V.; Angrisano, T.; Videtic, A.; Amato, F.; Pero, R.; di Giannantonio, M.; et al. TrkB gene expression and DNA methylation state in Wernicke area does not associate with suicidal behavior. J. Affect. Disord. 2011, 135, 400–404. [Google Scholar]
- Keller, S.; Sarchiapone, M.; Zarrilli, F.; Videtic, A.; Ferraro, A.; Carli, V.; Sacchetti, S.; Lembo, F.; Angiolillo, A.; Jovanovic, N.; et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch. Gen. Psychiatry 2010, 67, 258–267. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, H.J.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Kim, H.R.; Shin, M.G.; Yoon, J.S. Association of BDNF promoter methylation and genotype with suicidal ideation in elderly Koreans. Am. J. Geriatr. Psychiatry 2014, 22, 989–996. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, H.J.; Kim, S.Y.; Kim, S.W.; Shin, I.S.; Kim, H.R.; Park, M.H.; Shin, M.G.; Yoon, J.H.; Yoon, J.S. BDNF promoter methylation associated with suicidal ideation in patients with breast cancer. Int. J. Psychiatry Med. 2015, 49, 75–94. [Google Scholar] [CrossRef]
- DeRijk, R.H.; van Leeuwen, N.; Klok, M.D.; Zitman, F.G. Corticosteroid Receptor-Gene Variants: Modulators of the Stress-Response and Implications for Mental Health. Eur. J. Pharmacol. 2008, 585, 492–501. [Google Scholar] [CrossRef]
- Uhart, M.; McCaul, M.E.; Oswald, L.M.; Choi, L.; Wand, G.S. GABRA6 Gene Polymorphism and an Attenuated Stress Response. Mol. Psychiatry 2004, 9, 998–1006. [Google Scholar] [CrossRef]
- Supriyanto, I.; Sasada, T.; Fukutake, M.; Asano, M.; Ueno, Y.; Nagasaki, Y.; Shirakawa, O.; Hishimoto, A. Association of FKBP5 Gene Haplotypes with Completed Suicide in the Japanese Population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Jessop, D.S. Review: Central Non-Glucocorticoid Inhibitors of the Hypothalamo-Pituitary-Adrenal Axis. J. Endocrinol. 1999, 160, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-Pituitary-Adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Guintivano, J.; Brown, T.; Newcomer, A.; Jones, M.; Cox, O.; Maher, B.S.; Eaton, W.W.; Payne, J.L.; Wilcox, H.C.; Kaminsky, Z.A. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Am. J. Psychiatry 2014, 171, 1287–1296. [Google Scholar] [CrossRef]
- Niculescu, A.B.; Levey, D.F.; Phalen, P.L.; Le-Niculescu, H.; Dainton, H.D.; Jain, N.; Belanger, E.; James, A.; George, S.; Weber, H.; et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol. Psychiatry 2015, 20, 1266–1285. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D‘Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic Regulation of the Glucocorticoid Receptor in Human Brain Associates with Childhood Abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef]
- Pandey, G.N.; Dwivedi, Y.; Pandey, S.C.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A. Protein kinase C in the postmortem brain of teenage suicide victims. Neurosci. Lett. 1997, 228, 111–114. [Google Scholar] [CrossRef]
- Pandey, G.N.; Dwivedi, Y.; Ren, X.; Rizavi, H.S.; Mondal, A.C.; Shukla, P.K.; Conley, R.R. Brain region specific alterations in the protein and mRNA levels of protein kinase A subunits in the post-mortem brain of teenage suicide victims. Neuropsychopharmacology 2005, 30, 1548–1556. [Google Scholar] [CrossRef]
- Black, C.; Miller, B.J. Meta-Analysis of Cytokines and Chemokines in Suicidality: Distinguishing Suicidal Versus Nonsuicidal Patients. Biol. Psychiatry 2015, 78, 28–37. [Google Scholar] [CrossRef]
- de Medeiros Alves, V.; ESilva, A.C.P.; de Souza, E.V.M.; de Lima Francisco, L.C.F.; de Moura, E.L.; de-Melo-Neto, V.L.; Nardi, A.E. Suicide attempt in mental disorders (MeDi): Association with 5-HTT, IL-10 and TNF-alpha polymorphisms. J. Psychiatr. Res. 2017, 91, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Hong, J.P.; Hwang, J.A.; Lee, H.J.; Yoon, H.K.; Lee, B.H.; Jung, H.Y.; Hahn, S.W.; Na, K.S. TNF-alpha -308G>A polymorphism is associated with suicide attempts in major depressive disorder. J. Affect. Disord. 2013, 150, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Eftekharian, M.M.; Noroozi, R.; Omrani, M.D.; Sharifi, Z.; Komaki, A.; Taheri, M.; Ghafouri-Fard, S. Single-Nucleotide Polymorphisms in Interleukin 6 (IL-6) Gene Are Associated with Suicide Behavior in an Iranian Population. J. Mol. Neurosci. MN 2018, 66, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Šalamon Arčan, I.; Katrašnik, M.; Kouter, K.; Zupanc, T.; Videtič Paska, A. Extracellular vesicles from cerebrospinal fluid revealed changes in miR-19a-3p and miR-4516 expression in Slovene male suicides. Genes Brain Behav. 2023, 22, e12868. [Google Scholar] [CrossRef]
- Agerbo, E.; Nordentoft, M.; Mortensen, P.B. Familial, psychiatric, and socioeconomic risk factors for suicide in young people: Nested case-control study. BMJ (Clin. Res. Ed.) 2002, 325, 74. [Google Scholar] [CrossRef]
- Qin, P.; Agerbo, E.; Mortensen, P.B. Suicide risk in relation to family history of completed suicide and psychiatric disorders: A nested case-control study based on longitudinal registers. Lancet 2002, 360, 1126–1130. [Google Scholar] [CrossRef]
- Runeson, B.; Asberg, M. Family history of suicide among suicide victims. Am. J. Psychiatry 2003, 160, 1525–1526. [Google Scholar] [CrossRef]
- Harris, E.C.; Barraclough, B. Suicide as an outcome for mental disorders. A meta-analysis. Br. J. Psychiatry J. Ment. Sci. 1997, 170, 205–228. [Google Scholar] [CrossRef]
- Conwell, Y.; Duberstein, P.R.; Cox, C.; Herrmann, J.H.; Forbes, N.T.; Caine, E.D. Relationships of age and axis I diagnoses in victims of completed suicide: A psychological autopsy study. Am. J. Psychiatry 1996, 153, 1001–1008. [Google Scholar] [CrossRef]
- Jamison, K.R. Suicide and bipolar disorder. J. Clin. Psychiatry 2000, 61 (Suppl. S9), 47–51. [Google Scholar]
- Tsai, S.Y.; Kuo, C.J.; Chen, C.C.; Lee, H.C. Risk factors for completed suicide in bipolar disorder. J. Clin. Psychiatry 2002, 63, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.; Geddes, J.; Deeks, J.; Goldacre, M.; Hawton, K. Suicide in psychiatric hospital in-patients. Risk factors and their predictive power. Br. J. Psychiatry J. Ment. Sci. 2000, 176, 266–272. [Google Scholar] [CrossRef]
- Egeland, J.A.; Sussex, J.N. Suicide and family loading for affective disorders. JAMA 1985, 254, 915–918. [Google Scholar] [PubMed]
- Hor, K.; Taylor, M. Suicide and schizophrenia: A systematic review of rates and risk factors. J. Psychopharmacol. 2010, 24 (Suppl. S4), 81–90. [Google Scholar]
- Kanwar, A.; Malik, S.; Prokop, L.J.; Sim, L.A.; Feldstein, D.; Wang, Z.; Murad, M.H. The Association Between Anxiety Disorders and Suicidal Behaviors: A Systematic Review and Meta-Analysis. Depress. Anxiety 2013, 30, 917–929. [Google Scholar] [CrossRef]
- Mullins, N.; Kang, J.; Campos, A.I.; Coleman, J.R.; Edwards, A.C.; Galfalvy, H.; Levey, D.F.; Lori, A.; Shabalin, A.; Starnawska, A.; et al. Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biol. Psychiatry 2022, 91, 313–327. [Google Scholar] [CrossRef]
- Saetre, P.; Lundmark, P.; Wang, A.; Hansen, T.; Rasmussen, H.B.; Djurovic, S.; Melle, I.; Andreassen, O.A.; Werge, T.; Agartz, I.; et al. The tryptophan hydroxylase 1 (TPH1) gene, schizophrenia susceptibility, and suicidal behavior: A multi-centre case-control study and meta-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 387–396. [Google Scholar] [CrossRef]
- Li, D.; He, L. Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behavior. Mol. Psychiatry 2007, 12, 47–54. [Google Scholar] [CrossRef]
- Lin, P.Y.; Tsai, G. Association between serotonin transporter gene promoter polymorphism and suicide: Results of a meta-analysis. Biol. Psychiatry 2004, 55, 1023–1030. [Google Scholar] [CrossRef]
- Zarrilli, F.; Angiolillo, A.; Castaldo, G.; Chiariotti, L.; Keller, S.; Sacchetti, S.; Marusic, A.; Zagar, T.; Carli, V.; Roy, A.; et al. Brain derived neurotrophic factor (BDNF) genetic polymorphism (Val66Met) in suicide: A study of 512 cases. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150B, 599–600. [Google Scholar] [CrossRef]
- Kang, H.J.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Yoon, J.S.; Kim, J.M. BDNF Methylation and Suicidal Ideation in Patients with Acute Coronary Syndrome. Psychiatry Investig. 2018, 15, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Labonté, B.; Suderman, M.; Maussion, G.; Navaro, L.; Yerko, V.; Mahar, I.; Bureau, A.; Mechawar, N.; Szyf, M.; Meaney, M.J.; et al. Genome-wide epigenetic regulation by early-life trauma. Arch. Gen. Psychiatry 2012, 69, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Lester, D. The dexamethasone suppression test as an indicator of suicide: A meta-analysis. Pharmacopsychiatry 1992, 25, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.J.; Currier, D.; Stanley, B.; Oquendo, M.A.; Amsel, L.V.; Ellis, S.P. Can Biological Tests Assist Prediction of Suicide in Mood Disorders? Int. J. Neuropsychopharmacol. 2006, 9, 465–474. [Google Scholar] [CrossRef]
- Coryell, W.; Schlesser, M. The Dexamethasone Suppression Test and Suicide Prediction. Am. J. Psychiatry 2001, 158, 748–753. [Google Scholar] [CrossRef]
- Heritability of Hypothalamus Pituitary Adrenal Axis Responses to Psychosocial Stress Is Context Dependent|The Journal of Clinical Endocrinology & Metabolism|Oxford Academic. Available online: https://academic.oup.com/jcem/article/89/12/6244/2844615 (accessed on 16 December 2020).
- Roy, A.; Hodgkinson, C.A.; DeLuca, V.; Goldman, D.; Enoch, M.-A. Two HPA Axis Genes, CRHBP and FKBP5, Interact with Childhood Trauma to Increase the Risk for Suicidal Behavior. J. Psychiatr. Res. 2012, 46, 72–79. [Google Scholar]
- Pandey, G.N.; Rizavi, H.S.; Zhang, H.; Bhaumik, R.; Ren, X. The Expression of the Suicide-Associated Gene SKA2 Is Decreased in the Prefrontal Cortex of Suicide Victims but Not of Nonsuicidal Patients. Int. J. Neuropsychopharmacol. 2016, 19, pyw015. [Google Scholar] [CrossRef]
- Rice, L.; E Waters, C.; Eccles, J.; Garside, H.; Sommer, P.; Kay, P.; Blackhall, F.H.; Zeef, L.; Telfer, B.; Stratford, I.; et al. Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J. Endocrinol. 2008, 198, 499–509. [Google Scholar] [CrossRef]
- Steiger, H.; Labonté, B.; Groleau, P.; Turecki, G.; Israel, M. Methylation of the Glucocorticoid Receptor Gene Promoter in Bulimic Women: Associations with Borderline Personality Disorder, Suicidality, and Exposure to Childhood Abuse. Int. J. Eat. Disord. 2013, 46, 246–255. [Google Scholar] [CrossRef]
- Pandey, G.N. Biological basis of suicide and suicidal behavior. Bipolar Disord. 2013, 15, 524–541. [Google Scholar] [CrossRef]
- Dwivedi, Y.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A.; Pandey, G.N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry 2003, 60, 804–815. [Google Scholar] [PubMed]
- Maes, M.; Berk, M.; Goehler, L.; Song, C.; Anderson, G.; Gałecki, P.; Leonard, B. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012, 10, 66. [Google Scholar] [CrossRef]
- Harsanyi, S.; Kupcova, I.; Danisovic, L.; Klein, M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int. J. Mol. Sci. 2022, 24, 578. [Google Scholar] [CrossRef]
- Ducasse, D.; Olié, E.; Guillaume, S.; Artéro, S.; Courtet, P. A meta-analysis of cytokines in suicidal behavior. Brain Behav. Immun. 2015, 46, 203–211. [Google Scholar] [CrossRef]
- Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun. 2019, 81, 24–40. [Google Scholar] [CrossRef]
- Saiz, P.A.; García-Portilla, P.; Paredes, B.; Arango, C.; Morales, B.; Alvarez, V.; Coto, E.; Bascaran, M.T.; Bousono, M.; Bobes, J. Association study of the interleukin-1 gene complex and tumor necrosis factor alpha gene with suicide attempts. Psychiatr. Genet. 2008, 18, 147–150. [Google Scholar] [CrossRef]
- Omrani, M.D.; Bushehri, B.; Bagheri, M.; Salari-Lak, S.; Alipour, A.; Anoshae, M.R.; Massomi, R. Role of IL-10 -1082, IFN-gamma +874, and TNF-alpha -308 genes polymorphisms in suicidal behavior. Arch. Suicide Res. 2009, 13, 330–339. [Google Scholar] [CrossRef]
- Wang, Q.; Roy, B.; Turecki, G.; Shelton, R.C.; Dwivedi, Y. Role of Complex Epigenetic Switching in Tumor Necrosis Factor-α Upregulation in the Prefrontal Cortex of Suicide Subjects. Am. J. Psychiatry 2018, 175, 262–274. [Google Scholar] [CrossRef]
- Janelidze, S.; Suchankova, P.; Ekman, A.; Erhardt, S.; Sellgren, C.; Samuelsson, M.; Westrin, Å.; Minthon, L.; Hansson, O.; Träskman Bendz, L.; et al. Low IL-8 is associated with anxiety in suicidal patients: Genetic variation and decreased protein levels. Acta Psychiatr. Scand. 2015, 131, 269–278. [Google Scholar] [CrossRef]
- Noroozi, R.; Omrani, M.D.; Ayatollahi, S.A.; Sayad, A.; Ata, A.; Fallah, H.; Taheri, M.; Ghafouri-Fard, S. Interleukin (IL)-8 polymorphisms contribute in suicide behavior. Cytokine 2018, 111, 28–32. [Google Scholar] [CrossRef]
- Kang, H.J.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Yoon, J.S.; Kim, J.M. Genetic predisposition toward suicidal ideation in patients with acute coronary syndrome. Oncotarget 2017, 8, 94951–94958. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Daly, M.J.; O’Donovan, M. Genetic Architectures of Psychiatric Disorders: The Emerging Picture and Its Implications. Nat. Rev. Genet. 2018, 19, 537–551. [Google Scholar] [CrossRef]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-Wide Association Analyses Identify 44 Risk Variants and Refine the Genetic Architecture of Major Depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef]
- Li, Q.S.; Shabalin, A.A.; DiBlasi, E.; Gopal, S.; Canuso, C.M.; Palotie, A.; Drevets, W.C.; Docherty, A.R.; Coon, H. Genome-Wide Association Study Meta-Analysis of Suicide Death and Suicidal Behavior. Mol. Psychiatry 2023, 28, 891–900. [Google Scholar] [CrossRef]
- Craig, A.M.; Kang, Y. Neurexin–Neuroligin Signaling in Synapse Development. Curr. Opin. Neurobiol. 2007, 17, 43. [Google Scholar] [CrossRef]
- Gerik-Celebi, H.B.; Bolat, H.; Unsel-Bolat, G. Rare Heterozygous Genetic Variants of NRXN and NLGN Gene Families Involved in Synaptic Function and Their Association with Neurodevelopmental Disorders. Dev. Neurobiol. 2024, 84, 158–168. [Google Scholar] [CrossRef]
- Jamain, S.; Quach, H.; Betancur, C.; Råstam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-Linked Genes Encoding Neuroligins NLGN3 and NLGN4 Are Associated with Autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef]
- Sun, C.; Cheng, M.-C.; Qin, R.; Liao, D.-L.; Chen, T.-T.; Koong, F.-J.; Chen, G.; Chen, C.-H. Identification and Functional Characterization of Rare Mutations of the Neuroligin-2 Gene (NLGN2) Associated with Schizophrenia. Hum. Mol. Genet. 2011, 20, 3042–3051. [Google Scholar] [CrossRef]
- Kirov, G.; Rujescu, D.; Ingason, A.; Collier, D.A.; O‘Donovan, M.C.; Owen, M.J. Neurexin 1 (NRXN1) Deletions in Schizophrenia. Schizophr. Bull. 2009, 35, 851–854. [Google Scholar] [CrossRef]
- Pak, C.; Danko, T.; Mirabella, V.R.; Wang, J.; Liu, Y.; Vangipuram, M.; Grieder, S.; Zhang, X.; Ward, T.; Huang, Y.-W.A.; et al. Cross-Platform Validation of Neurotransmitter Release Impairments in Schizophrenia Patient-Derived NRXN1-Mutant Neurons. Proc. Natl. Acad. Sci. USA 2021, 118, e2025598118. [Google Scholar] [CrossRef] [PubMed]
- Janz, P.; Bainier, M.; Marashli, S.; Schoenenberger, P.; Valencia, M.; Redondo, R.L. Neurexin1α Knockout Rats Display Oscillatory Abnormalities and Sensory Processing Deficits Back-Translating Key Endophenotypes of Psychiatric Disorders. Transl. Psychiatry 2022, 12, 455. [Google Scholar] [CrossRef]
- Mullins, N.; Bigdeli, T.B.; Børglum, A.D.; Coleman, J.R.; Demontis, D.; Mehta, D.; Power, R.A.; Ripke, S.; Stahl, E.A.; Starnawska, A.; et al. Genome-Wide Association Study of Suicide Attempt in Psychiatric Disorders Identifies Association with Major Depression Polygenic Risk Scores. Am. J. Psychiatry 2019, 176, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Wootton, R.E.; Richmond, R.C.; Stuijfzand, B.G.; Lawn, R.B.; Sallis, H.M.; Taylor, G.M.; Hemani, G.; Jones, H.J.; Zammit, S.; Munafò, M.R.; et al. Evidence for Causal Effects of Lifetime Smoking on Risk for Depression and Schizophrenia: A Mendelian Randomisation Study. Psychol. Med. 2020, 50, 2435–2443. [Google Scholar] [CrossRef]
- Linnér, R.K.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-Wide Association Analyses of Risk Tolerance and Risky Behaviors in Over 1 Million Individuals Identify Hundreds of Loci and Shared Genetic Influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef]
- Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; de Leeuw, C.A.; Benjamins, J.S.; Muñoz-Manchado, A.B.; Nagel, M.; et al. Genome-Wide Analysis of Insomnia in 1,331,010 Individuals Identifies New Risk Loci and Functional Pathways. Nat. Genet. 2019, 51, 394–403. [Google Scholar] [CrossRef]
- Walsh, C.G.; Ribeiro, J.D.; Franklin, J.C. Predicting Risk of Suicide Attempts Over Time Through Machine Learning. Clin. Psychol. Sci. 2017, 5, 457–469. [Google Scholar] [CrossRef]
- Bernert, R.A.; Hilberg, A.M.; Melia, R.; Kim, J.P.; Shah, N.H.; Abnousi, F. Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations. Int. J. Environ. Res. Public Health 2020, 17, 5929. [Google Scholar] [CrossRef]
- Turecki, G.; Brent, D.A.; Gunnell, D.; O’connor, R.C.; Oquendo, M.A.; Pirkis, J.; Stanley, B.H. Suicide and suicide risk. Nature reviews. Dis. Primers 2019, 5, 74. [Google Scholar] [CrossRef]
- Stack, S. Contributing factors to suicide: Political, social, cultural and economic. Prev. Med. 2021, 152 Pt 1, 106498. [Google Scholar] [CrossRef]
- Bellon, A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl. Psychiatry 2024, 14, 127. [Google Scholar] [CrossRef] [PubMed]
Topic | Genetic Findings | Epigenetic Findings |
---|---|---|
Twin-, Family-, and Population-Based Studies | Higher concordance rates for suicide in monozygotic twins compared to dizygotic twins. Proband-wise concordance rates were 19.5% for MZ twins and 2.3% for DZ twins, a highly significant difference [23]. Family studies show a genetic predisposition for suicide, independent of psychiatric disorders, with higher rates of suicide in the offspring of suicidal parents [24,25,26]. Population-based studies: The heritability of suicidal behavior is estimated at 45–48%, with significant contributions from non-shared and shared environmental factors. Genetic factors contribute to suicidal ideation and attempts, distinct from psychiatric disorders [27,28,29]. | N/A |
Serotonin system | Tryptophan hydroxylase: Association between TPH1 polymorphism rs10488683 and suicidal behavior, significant in meta-analyses [30,31,32,33]. TPH2 polymorphisms have shown mixed results [31,32,34,35,36,37,38,39,40,41,42]. Serotonin receptors: Variable associations with suicide. Some studies show significant links with 5-HT1A, 5-HT1B, and 5-HT2A, while others do not [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59]. Serotonin transporter: Mixed results on the association between long vs. short alleles of 5-HTTLPR and suicide risk [60,61,62,63,64]. | No specific epigenetic studies mentioned. |
BDNF | Association between Val66Met polymorphism in the BDNF gene and suicide in various psychiatric diagnoses. Mixed results in meta-analyses and replication studies [33,65,66,67,68,69,70,71,72,73]. | Hypermethylation of the BDNF promoter region associated with reduced BDNF production in suicidal patients. Consistent findings in postmortem studies, showing significant hypermethylation in the brains of suicide victims [74,75,76,77,78]. |
HPA axis | Genetic polymorphisms: NR3C1 (glucocorticoid receptor), FKBP5, and CRHBP genes increase suicide risk. Non-suppression of cortisol in DST is associated with higher suicide risk [79,80,81]. GABA: Polymorphisms in the GABA receptor subunit genes are linked to variations in HPA axis reactivity and increased suicide risk. GABA inhibits the HPA axis and locus coeruleus–norepinephrine system, affecting stress response [80,82,83]. | Methylation of NR3C1, SKA2, and CRH receptor genes related to suicide risk. Childhood trauma linked to hypermethylation of HPA axis genes, leading to altered stress responses and increased susceptibility to suicide [79,84,85,86,87]. |
Second messengers | PKC and PKA: Decreased activity and expression of PKC and PKA in suicide victims. Significant decrease in Bmax of [3H] PDBu binding in the PFC of teenage suicide victims [88,89]. | No specific epigenetic studies mentioned. |
Inflammatory markers | Cytokines: Elevated IL-6 and IL-1B levels, TNF-alpha polymorphisms (rs1800629 and rs1799724) associated with suicide. Decreased IL-8 levels were found in suicidal patients [90,91,92,93]. | miRNAs and methylation: miR-19a-3p regulation of TNF-alpha expression, hypermethylation of cytokine genes. Epigenetic changes linked to inflammation and suicide, with specific miRNAs and methylation patterns affecting cytokine production [94]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.; Kalyoncu, A.; Bellon, A. Genetics of Suicide. Genes 2025, 16, 428. https://doi.org/10.3390/genes16040428
Khalil M, Kalyoncu A, Bellon A. Genetics of Suicide. Genes. 2025; 16(4):428. https://doi.org/10.3390/genes16040428
Chicago/Turabian StyleKhalil, Mostafa, Anil Kalyoncu, and Alfredo Bellon. 2025. "Genetics of Suicide" Genes 16, no. 4: 428. https://doi.org/10.3390/genes16040428
APA StyleKhalil, M., Kalyoncu, A., & Bellon, A. (2025). Genetics of Suicide. Genes, 16(4), 428. https://doi.org/10.3390/genes16040428