Responses of the Lipoxygenase Gene Family to Drought Stress in Broomcorn Millet (Panicum miliaceum L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Identification and Retrieval of Broomcorn Millet LOX Family Member Sequences
2.2. Prediction of Amino Acids and Physicochemical Properties of LOX Family Members in Broomcorn Millet
2.3. Multiple Sequence Alignment and Phylogenetic Tree Construction
2.4. Prediction and Analysis of Conserved Motifs, Protein Secondary Structure, and Subcellular Localization
2.5. Analysis of Cis-Acting Components in the Promoter Region of LOX Family in Broomcorn Millet
2.6. Plant Growth Conditions
2.7. Drought Stress Treatment
2.8. Relevant Physiological Indexes Were Measured
2.9. Analysis of Expression Pattern of LOX Gene Family in Broomcorn Millet
3. Results
3.1. Identification and Characterization of the LOX Gene Family in Broomcorn Millet
3.2. Systematic Evolutionary Analysis of the LOX Gene Family in Broomcorn Millet
3.3. Protein Secondary Structure Prediction, Motif Analysis, and Conserved Domain Analysis of Members of the LOX Gene Family Members in Broomcorn Millet
3.4. Analysis of Cis-Acting Elements of LOX Gene Family Promoter in Broomcorn Millet
3.5. Physiological Response of Broomcorn Millet Seedlings to Drought Stress at Seedling Stage
3.6. Organ-Specific Expression of PmLOX Family Members
3.7. Expression Analysis of PmLOX Family Members in Leaves of Five-Leaf-Stage Seedlings Under Drought Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LOXs | Lipoxygenases |
SOD | Superoxide Dismutase |
POD | Peroxidase |
CAT | Catalase |
MDA | Malondialdehyde |
ABA | Abscisic Acid |
MeJA | Methyl Jasmonate |
JA | Jasmonic Acid |
SWC | Soil Water Content |
References
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Sarkar, S.; Era, F.M.; Islam, A.K.M.M.; Anwar, M.P.; Fahad, S.; Datta, R.; Islam, A.K.M.A. Drought Stress in Grain Legumes: Effects, Tolerance Mechanisms and Management. Agronomy 2021, 11, 2374. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Alam, H.; Khattak, J.Z.K.; Ksiksi, T.S.; Saleem, M.H.; Fahad, S.; Sohail, H.; Ali, Q.; Zamin, M.; El-Esawi, M.A.; Saud, S.; et al. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol. Plant 2021, 72, 1336–1351. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Liu, K.B.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 2009, 106, 7367–7372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, H.; Zhang, D.; Li, J.; Gong, X.; Feng, B.; Xue, Z.; Yang, P. Effects of ridging and mulching combined practices on proso millet growth and yield in semi-arid regions of China. Field Crops Res. 2017, 213, 65–74. [Google Scholar] [CrossRef]
- Wang, R.; Hunt, H.V.; Qiao, Z.; Wang, L.; Han, Y. Diversity and Cultivation of Broomcorn Millet (Panicum miliaceum L.) in China: A Review. Econ. Bot. 2016, 70, 332–342. [Google Scholar] [CrossRef]
- Gong, X.; Dang, K.; Lv, S.; Zhao, G.; Tian, L.; Luo, Y.; Feng, B. Interspecific root interactions and water-use efficiency of intercropped proso millet and mung bean. Eur. J. Agron. 2020, 115, 126034. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Miszczuk, E.; Bajguz, A.; Hayat, S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. Plants 2022, 11, 979. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Mattoo, A.K. Genome-wide identification of tomato (Solanum lycopersicum L.) lipoxygenases coupled with expression profiles during plant development and in response to methyl-jasmonate and wounding. J. Plant Physiol. 2018, 231, 318–328. [Google Scholar] [CrossRef]
- Laczko, R.; Csiszar, K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020, 10, 1093. [Google Scholar] [CrossRef]
- Yang, S.; Li, D.; Li, S.; Yang, H.; Zhao, Z. GC-MS Metabolite and Transcriptome Analyses Reveal the Differences of Volatile Synthesis and Gene Expression Profiling between Two Apple Varieties. Int. J. Mol. Sci. 2022, 23, 2939. [Google Scholar] [CrossRef]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, L.; Xu, Y.; Li, D.; Li, G.; Yan, Y.; Wu, Q.; Luo, Z. FaLEC2 repressing FaLOX2 promoter involved in the metabolism of LOX-derived volatiles during strawberry ripening. Sci. Hortic. 2022, 303, 111188. [Google Scholar] [CrossRef]
- Camargo, P.O.; Calzado, N.F.; Budzinski, I.G.F.; Domingues, D.S. Genome-Wide Analysis of Lipoxygenase (LOX) Genes in Angiosperms. Plants 2023, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu. Rev. Plant Biol. 2022, 53, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Sun, Q.; Yuan, C.; Zhao, X.; Wang, J.; Yan, C.; Li, C.; Shan, S. Identification of the LOX Gene Family in Peanut and Functional Characterization of AhLOX29 in Drought Tolerance. Front. Plant Sci. 2022, 13, 832785. [Google Scholar] [CrossRef]
- Schaller, F.; Schaller, A.; Stintzi, A. Biosynthesis and Metabolism of Jasmonates. J. Plant Growth Regul. 2004, 23, 179–199. [Google Scholar] [CrossRef]
- Matsui, K.; Koeduka, T. Green Leaf Volatiles in Plant Signaling and Response. Sub-Cell. Biochem. 2016, 86, 427–443. [Google Scholar]
- Prost, I.; Dhondt, S.; Rothe, G.; Vicente, J.; Rodriguez, M.J.; Kift, N.; Carbonne, F.; Griffiths, G.; Esquerré-Tugayé, M.T.; Rosahl, S.; et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005, 139, 1902–1913. [Google Scholar] [CrossRef]
- Vogt, J.; Schiller, D.; Ulrich, D.; Schwab, W.; Dunemann, F. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica). Tree Genet. Genomes 2013, 9, 1493–1511. [Google Scholar] [CrossRef]
- Meng, Y.; Liang, Y.; Liao, B.; He, W.; Liu, Q.; Shen, X.; Xu, J.; Chen, S. Genome-Wide Identification, Characterization and Expression Analysis of Lipoxygenase Gene Family in Artemisia annua L. Plants 2022, 11, 655. [Google Scholar] [CrossRef] [PubMed]
- Umate, P. Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signal. Behav. 2011, 6, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, Y.; Zhang, J.; Li, X.; Ma, F.; Duan, M.; Zhang, B.; Li, H. The Responses of the Lipoxygenase Gene Family to Salt and Drought Stress in Foxtail Millet (Setaria italica). Life 2021, 11, 1169. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Handa, A.K.; Mattoo, A.K. Transcript Abundance Patterns of 9- and 13-Lipoxygenase Subfamily Gene Members in Response to Abiotic Stresses (Heat, Cold, Drought or Salt) in Tomato (Solanum lycopersicum L.) Highlights Member-Specific Dynamics Relevant to Each Stress. Genes 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Andriy, P.; Jackie, W.; Brian, J.; Chris, W. Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct. Plant Biol. 2010, 37, 767–784. [Google Scholar]
- Kaur, D.; Dorion, S.; Jmii, S.; Cappadocia, L.; Bede, J.C.; Rivoal, J. Pseudophosphorylation of Arabidopsis jasmonate biosynthesis enzyme lipoxygenase 2 via mutation of Ser(600) inhibits enzyme activity. J. Biol. Chem. 2023, 299, 102898. [Google Scholar] [CrossRef]
- Vellosillo, T.; Martínez, M.; López, M.A.; Vicente, J.; Cascón, T.; Dolan, L.; Hamberg, M.; Castresana, C. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 2007, 19, 831–846. [Google Scholar] [CrossRef]
- Huang, J.; Cai, M.; Long, Q.; Liu, L.; Lin, Q.; Jiang, L.; Chen, S.; Wan, J. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res. 2014, 23, 643–655. [Google Scholar] [CrossRef]
- Pan, W.; Liu, T.; He, J.; Dong, K.; Ren, R.; Zhang, L.; Yang, T. Genome-wide Identification and Expression Characteristics of the YABBY Gene Family under Hypertonic Solution Stress in Broomcorn Millet (Panicum miliaceum L.). Genom. Appl. Biol. 2022, 41, 1067–1078. (In Chinese) [Google Scholar]
- Cao, X.N.; Shen, L.H.; Song, J.; Wang, J.J.; Wang, H.G.; Chen, L.; Pei, Y.X.; Liu, S.C.; Qiao, Z.J. Analysis of cloned sequences and expression of ASR gene family in millet. J. Anim. Plant Sci. 2021, 31, 1309–1318. [Google Scholar] [CrossRef]
- Wang, M.; Liu, T.; He, J.; Dong, K.; Ren, R.; Zhang, L.; Yang, T. Genome-wide identification of bZIP gene family in broomcorn millet and analysis of its expression characteristics under polyethylene glycol treatment in seedling stage. Chin. J. Appl. Environ. Biol. 2022, 28, 920–930. (In Chinese) [Google Scholar]
- Shan, Z.; Jiang, Y.; Li, H.; Guo, J.; Dong, M.; Zhang, J.; Liu, G. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genom. 2020, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Li, L.; Miki, D.; Li, D.; Tang, Q.; Xiao, L.; Rajput, S.; Deng, P.; Peng, L.; Jia, W.; et al. The genome of broomcorn millet. Nat. Commun. 2019, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Huala, E.; Dickerman, A.W.; Garcia-Hernandez, M.; Weems, D.; Reiser, L.; LaFond, F.; Hanley, D.; Kiphart, D.; Zhuang, M.; Huang, W.; et al. The Arabidopsis Information Resource (TAIR): A comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 2001, 29, 102–105. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, W.; Qiao, Z.; Feng, M.; Wang, G.; Duan, Y.; Chen, L. Resistance Evaluation and Response of 16 Millet Varieties at Germination Stage to Drought Stress. Acta Agrestia Sin. 2013, 21, 302. (In Chinese) [Google Scholar]
- Zhang, J.; Kirkham, M.B. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 1996, 132, 361–373. [Google Scholar] [CrossRef]
- Beauchamp, A.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xu, X.; Jiang, Y.; Zhu, Q.; Yang, F.; Zhou, J.; Yang, Y.; Huang, Z.; Li, A.; Chen, L.; et al. Genetic Diversity, Rather than Cultivar Type, Determines Relative Grain Cd Accumulation in Hybrid Rice. Front. Plant Sci. 2015, 7, 1407. [Google Scholar] [CrossRef]
- Abei, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Noguchi, A.; Nakamura, K.; Sakata, K.; Sato-Fukuda, N.; Ishigaki, T.; Mano, J.; Takabatak, R.; Kitta, K.; Teshima, R.; Kondo, K.; et al. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay. Anal. Chem. 2015, 88, 4285–4293. [Google Scholar] [CrossRef]
- Bannenberg, G.; Martínez, M.; Hamberg, M.; Castresana, C. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 2009, 44, 85–95. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Wang, Y. Physiological and proteomic changes of Castanopsis fissa in response to drought stress. Sci. Rep. 2023, 13, 12567. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Chen, D.; Wang, W.; Zhen, J. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. Plant Sci. 2023, 327, 111557. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Bandurska, H. Drought Stress Responses: Coping Strategy and Resistance. Plants 2022, 11, 922. [Google Scholar] [CrossRef]
- Sarma, B.; Kashtoh, H.; Lama Tamang, T.; Bhattacharyya, P.N.; Mohanta, Y.K.; Baek, K.-H. Abiotic Stress in Rice: Visiting the Physiological Response and Its Tolerance Mechanisms. Plants 2023, 12, 3948. [Google Scholar] [CrossRef]
- Liu, S.Q.; Liu, X.H.; Jiang, L.W. Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Genet. Mol. Res. 2011, 10, 2613–2636. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Ahmed, M.; Sun, H.; Ullah, A.; Zhu, L. Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses. BMC Genom. 2018, 19, 599. [Google Scholar] [CrossRef] [PubMed]
- Porta, H.; Rocha-Sosa, M. Plant lipoxygenases. Physiological and molecular features. Plant Physiol. 2002, 130, 15–21. [Google Scholar] [CrossRef]
- Viswanath, K.K.; Varakumar, P.; Reddy, R.; Basha, S.J.; Ampasala, A. Plant Lipoxygenases and Their Role in Plant Physiology. J. Plant Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.; Sun, M. Hydrogen peroxide acts as a signaling molecule for the methyl jasmonate-induced antioxidant defense in wheat callus to promote enhanced drought tolerance. J. Agric. Sci. 2015, 7, 99–114. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Sun, N.; Liu, H.; Zhao, Y.; Liang, Y.; Zhang, L.; Han, Y. Functional diversity of jasmonates in rice. Rice 2015, 8, 42. [Google Scholar] [CrossRef]
- Sarde, S.J.; Kumar, A.; Remme, R.N.; Dicke, M. Genome-wide identification, classification and expression of lipoxygenase gene family in pepper. Plant Mol. Biol. 2018, 98, 375–387. [Google Scholar] [CrossRef]
- Yu, M.; Shen, L.; Fan, B.; Zhao, D.; Zheng, Y.; Sheng, J. The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato. Postharvest Biol. Technol. 2009, 54, 153–158. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 2019, 46, 197–212. [Google Scholar] [CrossRef]
- Wang, J.; Hu, T.; Wang, W.; Hu, H.; Wei, Q.; Wei, X.; Bao, C. Bioinformatics Analysis of the Lipoxygenase Gene Family in Radish (Raphanus sativus) and Functional Characterization in Response to Abiotic and Biotic Stresses. Int. J. Mol. Sci. 2019, 20, 6095. [Google Scholar] [CrossRef]
- López, M.A.; Vicente, J.; Kulasekaran, S.; Vellosillo, T.; Martínez, M.; Irigoyen, M.L.; Cascón, T.; Bannenberg, G.; Hamberg, M.; Castresana, C. Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J. 2011, 67, 447–458. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | CDS Length | Proteinsize | Molecule Weight | PI | Subcellular Localization | Signal Peptide | Instability Index | GRAVY |
---|---|---|---|---|---|---|---|---|---|
PmLOX1 | RLN40792.1 | 2832 | 943 | 104,995.76 | 8.16 | Cytoplasmic | 47.17 | −0.343 | |
PmLOX2 | RLN40543.1 | 2664 | 887 | 100,422.94 | 6.12 | Chloroplast | Chloroplast Transit peptide | 42.59 | −0.401 |
PmLOX3 | RLN18482.1 | 2439 | 812 | 91,653.09 | 6.09 | Chloroplast | Chloroplast Transit peptide | 40.45 | −0.387 |
PmLOX4 | RLN16584.1 | 2253 | 750 | 83,630.97 | 5.65 | Chloroplast | Chloroplast Transit peptide | 33.64 | −0.277 |
PmLOX5 | RLN17039.1 | 2346 | 781 | 86,394.9 | 6.42 | Cytoplasmic | 45.39 | −0.319 | |
PmLOX6 | RLN23364.1 | 2592 | 863 | 97,311.53 | 5.81 | Cytoplasmic | 36.66 | −0.33 | |
PmLOX7 | RLN07160.1 | 2694 | 897 | 101,490.55 | 6.18 | Chloroplast | Chloroplast Transit peptide | 44.45 | −0.414 |
PmLOX8 | RLN09190.1 | 2538 | 845 | 95,801.33 | 7.17 | Cytoplasmic | 48.87 | −0.403 | |
PmLOX9 | RLN03699.1 | 2565 | 854 | 94,241.03 | 8.49 | Chloroplast | Chloroplast Transit peptide | 50.73 | −0.361 |
PmLOX10 | RLM74388.1 | 2481 | 826 | 92,480.33 | 6.66 | Cytoplasmic | 51.99 | −0.424 | |
PmLOX11 | RLM74184.1 | 2832 | 943 | 103,347.08 | 6.52 | Chloroplast | Chloroplast Transit peptide | 50.21 | −0.325 |
PmLOX12 | RLM64776.1 | 2856 | 951 | 105,900.23 | 6.36 | Cytoplasmic | 51.8 | −0.418 |
Name | ID | PLAT/LH2 (IPR001024) | Lipoxygenase (IPR013819) |
---|---|---|---|
PmLOX1 | RLN40792.1 | 83-223 | 669-926 |
PmLOX2 | RLN40543.1 | 21-166 | 177-863 |
PmLOX3 | RLN18482.1 | 21-166 | 177-772 |
PmLOX4 | RLN16584.1 | 16-160 | 171-748 |
PmLOX5 | RLN17039.1 | 40-164 | 270-543, 567-764 |
PmLOX6 | RLN23364.1 | 19-163 | 174-842 |
PmLOX7 | RLN07160.1 | 72-203 | 214-880 |
PmLOX8 | RLN09190.1 | 17-146 | 157-822 |
PmLOX9 | RLN03699.1 | 96-237 | 248-849 |
PmLOX10 | RLM74388.1 | 81-220 | 231-825 |
PmLOX11 | RLM74184.1 | 103-245 | 256-926 |
PmLOX12 | RLM64776.1 | 84-223 | 234-934 |
Name | ID | α-Helix | β-Turn | Extended Strand | Random Coil |
---|---|---|---|---|---|
PmLOX1 | RLN40792.1 | 39.87% | 4.88% | 12.62% | 42.63% |
PmLOX2 | RLN40543.1 | 37.20% | 5.52% | 13.08% | 44.19% |
PmLOX3 | RLN16584.1 | 37.07% | 5.47% | 13.07% | 44.40% |
PmLOX4 | RLN15477.1 | 37.95% | 3.24% | 14.39% | 44.42% |
PmLOX5 | RLN18482.1 | 37.44% | 5.67% | 13.55% | 43.35% |
PmLOX6 | RLN23364.1 | 36.73% | 5.45% | 14.14% | 43.68% |
PmLOX7 | RLN07160.1 | 39.35% | 5.35% | 13.15% | 42.14% |
PmLOX8 | RLN09190.1 | 34.79% | 5.56% | 13.85% | 45.80% |
PmLOX9 | RLN03699.1 | 39.81% | 5.04% | 13.11% | 42.04% |
PmLOX10 | RLM74388.1 | 35.84% | 5.69% | 13.80% | 44.67% |
PmLOX11 | RLM74184.1 | 37.43% | 5.73% | 14.42% | 42.42% |
PmLOX12 | RLM64776.1 | 36.49% | 4.73% | 12.72% | 46.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, L.; Deng, L.; Yao, H.; Zhang, Y.; Li, H.; Wang, H.; Zhang, B.; Han, Y.; Wang, J. Responses of the Lipoxygenase Gene Family to Drought Stress in Broomcorn Millet (Panicum miliaceum L.). Genes 2025, 16, 368. https://doi.org/10.3390/genes16040368
Cong L, Deng L, Yao H, Zhang Y, Li H, Wang H, Zhang B, Han Y, Wang J. Responses of the Lipoxygenase Gene Family to Drought Stress in Broomcorn Millet (Panicum miliaceum L.). Genes. 2025; 16(4):368. https://doi.org/10.3390/genes16040368
Chicago/Turabian StyleCong, Lin, Lin Deng, Hongfei Yao, Yaoyuan Zhang, Hongying Li, Haigang Wang, Bin Zhang, Yuanhuai Han, and Junjie Wang. 2025. "Responses of the Lipoxygenase Gene Family to Drought Stress in Broomcorn Millet (Panicum miliaceum L.)" Genes 16, no. 4: 368. https://doi.org/10.3390/genes16040368
APA StyleCong, L., Deng, L., Yao, H., Zhang, Y., Li, H., Wang, H., Zhang, B., Han, Y., & Wang, J. (2025). Responses of the Lipoxygenase Gene Family to Drought Stress in Broomcorn Millet (Panicum miliaceum L.). Genes, 16(4), 368. https://doi.org/10.3390/genes16040368