Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants?
Abstract
1. Introduction
2. Methods and Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobzhasnky, T. Genetic Nature of Species Differences. Am. Nat. 1937, 71, 404–420. [Google Scholar]
- Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist; Harvard University Press: Cambridge, MA, USA, 1942. [Google Scholar]
- Orr, H.A.; Coyne, J.A. Speciation; Sinauer: Sunderland, UK, 2004. [Google Scholar]
- Sobel, J.M.; Chen, G.F.; Watt, L.R.; Schemske, D.W. The Biology of Speciation. Evolution 2010, 64, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Baack, E.; Melo, M.C.; Rieseberg, L.H.; Ortiz-Barrientos, D. The Origins of Reproductive Isolation in Plants. New Phytol. 2015, 207, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Grant, V. Plant Speciation; Columbia University Press: New York, NY, USA, 1981. [Google Scholar]
- Levin, D.A. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The Frequency of Polyploid Speciation in Vascular Plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Martin, N.H. Hybrid fitness across time and habitats. Trends Ecol. Evol. 2010, 25, 530–536. [Google Scholar] [CrossRef]
- Coyne, J.A.; Orr, H.A. The Genetics of Postzygotic Isolation in the e H. Allen Orr and Jerry A. Coyne Drosophila Vidis Group. Genet. Soc. Am. 1989, 121, 527–537. [Google Scholar]
- Ramsey, J.; Bradshaw, H.D.; Schemske, D.W. Components of Reproductive Isolation between the Monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 2003, 57, 1520–1534. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.H.; Willis, J.H. Ecological Divergence Associated with Mating System Causes Nearly Complete Reproductive Isolation between Sympatric Mimulus Species. Evolution 2007, 61, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.M.; Chen, G.F. Unification of Methods for Estimating the Strength of Reproductive Isolation. Evolution 2014, 68, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Stankowski, S.; Ravinet, M. Defining the Speciation Continuum. Evolution 2021, 75, 1256–1273. [Google Scholar] [CrossRef]
- Lowry, D.B.; Modliszewski, J.L.; Wright, K.M.; Wu, C.A.; Willis, J.H. Review. The Strength and Genetic Basis of Reproductive Isolating Barriers in Flowering Plants. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3009–3021. [Google Scholar] [CrossRef] [PubMed]
- Christie, K.; Fraser, L.S.; Lowry, D.B. The Strength of Reproductive Isolating Barriers in Seed Plants: Insights from Studies Quantifying Premating and Postmating Reproductive Barriers over the Past 15 Years. Evolution 2022, 76, 2228–2243. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Tang, S.; Knapp, S.J.; Martin, N.H. Asymmetric Introgressive Hybridization among Louisiana Iris Species. Genes 2010, 1, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Keller, B.; de Vos, J.M.; Schmidt-Lebuhn, A.N.; Thomson, J.D.; Conti, E. Both Morph- and Species-Dependent Asymmetries Affect Reproductive Barriers between Heterostylous Species. Ecol. Evol. 2016, 6, 6223–6244. [Google Scholar] [CrossRef] [PubMed]
- Broyles, S.B. Hybrid Bridges to Gene Flow: A Case Study in Milkweeds (Asclepias). Evolution 2002, 56, 1943–1953. [Google Scholar] [CrossRef]
- Sweigart, A.L.; Willis, J.H. Patterns of Nucleotide Diversity in Two Species of Mimulus Are Affected by Mating System and Asymmetric Introgression. Evolution 2003, 57, 2490–2506. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Bodénès, C.; Ducousso, A.; Roussel, G.; Kremer, A. Hybridization as a Mechanism of Invasion in Oaks. New Phytol. 2004, 161, 151–164. [Google Scholar] [CrossRef]
- Currat, M.; Ruedi, M.; Petit, R.J.; Excoffier, L. The Hidden Side of Invasions: Massive Introgression by Local Genes. Evolution 2008, 62, 1908–1920. [Google Scholar] [CrossRef]
- Prentis, P.J.; White, E.M.; Radford, I.J.; Lowe, A.J.; Clarke, A.R. Can Hybridization Cause Local Extinction: A Case for Demographic Swamping of the Australian Native Senecio Pinnatifolius by the Invasive Senecio Madagascariensis? New Phytol. 2007, 176, 902–912. [Google Scholar] [CrossRef]
- Field, D.L.; Ayre, D.J.; Whelan, R.J.; Young, A.G. Relative Frequency of Sympatric Species Influences Rates of Interspecific Hybridization, Seed Production and Seedling Performance in the Uncommon Eucalyptus aggregata. J. Ecol. 2008, 96, 1198–1210. [Google Scholar] [CrossRef]
- Keim, P.; Paige, K.N.; Whitham, T.G.; Lark, K.G. Genetic Analysis of an Interspecific Hybrid Swarm of Populus: Occurrence of Unidirectional Introgression. Genetics 1989, 123, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Cruzan, M.B.; Arnold, M.L. Assortative Mating and Natural Selection in an Iris Hybrid Zone. Evolution 1994, 48, 1946–1958. [Google Scholar] [CrossRef]
- Martin, N.H.; Bouck, A.C.; Arnold, M.L. Detecting Adaptive Trait Introgression between Iris fulva and I. brevicaulis in Highly Selective Field Conditions. Genetics 2006, 172, 2481–2489. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Gonzalez, A.; Lexer, C.; Cronk, Q.C.B. Adaptive Introgression: A Plant Perspective. Biol. Lett. 2018, 14, 20170688. [Google Scholar] [CrossRef]
- Arnold, M.L. Natural Hybridization and Evolution; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Brys, R.; Vanden Broeck, A.; Mergeay, J.; Jacquemyn, H. The Contribution of Mating System Variation to Reproductive Isolation in Two Closely Related Centaurium Species (Gentianaceae) with a Generalized Flower Morphology. Evolution 2014, 68, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Brys, R.; van Cauwenberghe, J.; Jacquemyn, H. The Importance of Autonomous Selfing in Preventing Hybridization in Three Closely Related Plant Species. J. Ecol. 2016, 104, 601–610. [Google Scholar] [CrossRef]
- Surget-Groba, Y.; Kay, K.M. Restricted Gene Flow within and between Rapidly Diverging Neotropical Plant Species. Mol. Ecol. 2013, 22, 4931–4932. [Google Scholar] [CrossRef]
- Kay, K.M. Reproductive Isolation Between Two Closely Related Hummingbird-Pollinated Neotropical Gingers. Evolution 2006, 60, 538. [Google Scholar] [CrossRef]
- Sambatti, J.B.M.; Strasburg, J.L.; Ortiz-Barrientos, D.; Baack, E.J.; Rieseberg, L.H. Reconciling Extremely Strong Barriers with High Levels of Gene Exchange in Annual Sunflowers. Evolution 2012, 66, 1459–1473. [Google Scholar] [CrossRef]
- Rifkin, J.L.; Castillo, A.S.; Liao, I.T.; Rausher, M.D.; Rifkin, J.L.; Castillo, A.S.; Liao, I.T.; Rausher, M.D. Gene Flow, Divergent Selection and Resistance to Introgression in Two Species of Morning Glories (Ipomoea). Mol. Ecol. 2019, 28, 1709–1729. [Google Scholar] [CrossRef]
- Rifkin, J.L.; Ostevik, K.L.; Rausher, M.D. Complex Cross-Incompatibility in Morning Glories Is Consistent with a Role for Mating System in Plant Speciation. Evolution 2023, 77, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.R.; Waser, N.M. Genotype-by-Environment Interaction and the Fitness of Plant Hybrids in the Wild. Evolution 2001, 55, 669–676. [Google Scholar] [CrossRef]
- Wu, C.A.; Campbell, D.R. Cytoplasmic and Nuclear Markers Reveal Contrasting Patterns of Spatial Genetic Structure in a Natural Ipomopsis Hybrid Zone. Mol. Ecol. 2005, 14, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D. An Analysis of the Causes of Genetic Isolation in Two Pacific Coast Iris Hybrid Zones. Can. J. Bot. 1996, 74, 2006–2013. [Google Scholar] [CrossRef]
- Young, N.D. Concordance and Discordance: A Tale of Two Hybrid Zones in the Pacific Coast Irises (Iridaceae). Am. J. Bot. 1996, 83, 1623–1629. [Google Scholar] [CrossRef]
- Nelson, T.C.; Stathos, A.M.; Vanderpool, D.D.; Finseth, F.R.; Yuan, Y.W.; Fishman, L. Ancient and Recent Introgression Shape the Evolutionary History of Pollinator Adaptation and Speciation in a Model Monkeyflower Radiation (Mimulus Section Erythranthe). PLoS Genet. 2021, 17, e1009095. [Google Scholar] [CrossRef] [PubMed]
- Ivey, C.T.; Habecker, N.M.; Bergmann, J.P.; Ewald, J.; Frayer, M.E.; Coughlan, J.M. Weak Reproductive Isolation and Extensive Gene Flow between Mimulus glaucescens and M. guttatus in Northern California. Evolution 2023, 77, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, K.E.M.; Scopece, G.; Staedler, Y.M.; Schönenberger, J.; Cozzolino, S.; Schiestl, F.P.; Schlüter, P.M. Genic Rather than Genome-Wide Differences between Sexually Deceptive Ophrys Orchids with Different Pollinators. Mol. Ecol. 2014, 23, 6192–6205. [Google Scholar] [CrossRef] [PubMed]
- Soliva, M.; Widmer, A. Gene Flow across Species Boundaries in Sympatric, Sexually Deceptive Ophrys (Orchidaceae) Species. Evolution 2003, 57, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.D.; Elisens, W.J. Nuclear Ribosomal DNA Restriction-Site Variation in Penstemon Section Peltanthera (Scrophulariaceae): An Evaluation of Diploid Hybrid Speciation and Evidence for Introgression. Am. J. Bot. 1994, 81, 1627–1635. [Google Scholar] [CrossRef]
- Chari, J.; Wilson, P. Factors Limiting Hybridization between Penstemon spectabilis and Penstemon centranthifolius. Can. J. Bot. 2001, 79, 1439–1448. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, J.; Wang, B.; Zhang, L.; Xu, Y.; Zeng, Q.Y.; Li, Y.; Mao, J.F.; Wang, X.R. Weak Crossability Barrier but Strong Juvenile Selection Supports Ecological Speciation of the Hybrid Pine Pinus densata on the Tibetan Plateau. Evolution 2014, 68, 3120–3133. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mao, J.F.; Gao, J.I.E.; Zhao, W.E.I.; Wang, X.R. Colonization of the Tibetan Plateau by the Homoploid Hybrid Pine Pinus densata. Mol. Ecol. 2011, 20, 3796–3811. [Google Scholar] [CrossRef]
- Ma, Y.-P.; Tian, X.-L.; Zhang, J.-L.; Zhi-Kun Wu, W.; Sun, E.-B. Evidence for Natural Hybridization between Primula beesiana and P. bulleyana, Two Heterostylous Primroses in NW Yunnan, China. J. Syst. Evol. 2014, 52, 500–507. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, X.; Ma, Y.; Zhao, J.; Li, L.; Li, Q. Natural Hybridization and Reproductive Isolation between Two Primula Species. J. Integr. Plant Biol. 2017, 59, 526–530. [Google Scholar] [CrossRef]
- Stubbs, R.L.; Theodoridis, S.; Mora-Carrera, E.; Keller, B.; Potente, G.; Yousefi, N.; Jay, P.; Léveillé-Bourret, É.; Choudhury, R.R.; Celep, F.; et al. The Genomes of Darwin’s Primroses Reveal Chromosome-Scale Adaptive Introgression and Differential Permeability of Species Boundaries. New Phytol. 2024, 241, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Keller, B.; Ganz, R.; Mora-Carrera, E.; Nowak, M.D.; Theodoridis, S.; Koutroumpa, K.; Conti, E. Asymmetries of Reproductive Isolation Are Reflected in Directionalities of Hybridization: Integrative Evidence on the Complexity of Species Boundaries. New Phytol. 2021, 229, 1795–1809. [Google Scholar] [CrossRef]
- Liao, W.J.; Zhu, B.R.; Li, Y.F.; Li, X.M.; Zeng, Y.F.; Zhang, D.Y. A Comparison of Reproductive Isolation between Two Closely Related Oak Species in Zones of Recent and Ancient Secondary Contact. BMC Evol. Biol. 2019, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Liao, W.J.; Petit, R.J.; Zhang, D.Y. Geographic Variation in the Structure of Oak Hybrid Zones Provides Insights into the Dynamics of Speciation. Mol. Ecol. 2011, 20, 4995–5011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Montgomery, B.R.; Huang, S.Q. Evidence for Asymmetrical Hybridization despite Pre- and Post-Pollination Reproductive Barriers between Two Silene Species. AoB Plants 2016, 8, plw032. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.R.; Waser, N.M.; Wolf, P.G. Pollen Transfer by Natural Hybrids and Parental Species in an Ipomopsis Hybrid Zone. Evolution 1998, 52, 1602–1611. [Google Scholar] [CrossRef]
- Campbell, D.R.; Crawford, M.; Brody, A.K.; Forbis, T.A. Resistance to Pre-Dispersal Seed Predators in a Natural Hybrid Zone. Oecologia 2002, 131, 436–443. [Google Scholar] [CrossRef] [PubMed]
Species 1 | Species 2 | RIspecies1 | RIspecies2 | Introgression Direction |
---|---|---|---|---|
Centaurium erythraea | Centaurium littorale | 0.9986 | 0.9879 | Species 1 [30,31] * |
Costus pulverulentus | Costus scaber | 1 | 0.9994 | Species 2 [32,33] * |
Helianthus petiolaris | Helianthus annuus | 0.99995 | 0.99990 | Species 1 [34] * |
Ipomoea lacunosa | Ipomoea cordatotriloba | 0.8270 | 0.7043 | Species 2 [35,36] |
Ipomopsis tenuituba | Ipomopsis aggregata | 0.5959 | 0.3497 | Species 2 [37,38] * |
Iris douglasiana | Iris innominata | 1 | 0.6877 | Species 2 [39,40] * |
Mimulus cardinalis | Mimulus lewisii | 0.9996 | 0.9955 | Species 2 [11,41] * |
Mimulus glaucescens | Mimulus guttatus | 0.632 | 0.39 | Species 2 [42] |
Mimulus guttatus | Mimulus nasutus | 1 | 0.984 | Species 1 [12] * |
Ophrys incubacea | Ophrys garganica | 1 | 0.9402 | Species 1 [43,44] * |
Penstemon centranthifolius | Penstemon spectabilis | 0.9889 | 0.5283 | Species 2 [45,46] * |
Pinus tabuliformis | Pinus densata | 0.7821 | 0.6491 | Species 2 [47,48] * |
Pinus yunnanensis | Pinus densata | 0.5942 | 0.4988 | Species 2 [47,48] * |
Primula beesiana | Primula bulleyana | 1 | 0.6623 | Species 2 [49] * |
Primula secundiflora | Primula poissonii | 0.9654 | 0.6682 | Species 2 [50] * |
Primula vulgaris | Primula elatior | 0.9678 | 0.9068 | Species 1 [18,51] * |
Primula vulgaris | Primula veris | 0.9515 | 0.7150 | Species 1 [51,52] * |
Quercus mongolica | Quercus liaotungensis | 0.4076 | 0.1204 | Species 2 [53,54] * |
Silene yunnanensis | Silene ascelepiadae | 0.8397 | 0.6850 | Species 1 [55] * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, N.H.; Zalmat, A.S.; Ellis, B.S.; McGarvey, S.; Simmons-Frazier, K.; Mancusi, K.; Sotola, V.A. Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants? Genes 2025, 16, 124. https://doi.org/10.3390/genes16020124
Martin NH, Zalmat AS, Ellis BS, McGarvey S, Simmons-Frazier K, Mancusi K, Sotola VA. Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants? Genes. 2025; 16(2):124. https://doi.org/10.3390/genes16020124
Chicago/Turabian StyleMartin, Noland H., Alexander S. Zalmat, Bailey S. Ellis, Sophia McGarvey, Kayla Simmons-Frazier, Katelin Mancusi, and V. Alex Sotola. 2025. "Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants?" Genes 16, no. 2: 124. https://doi.org/10.3390/genes16020124
APA StyleMartin, N. H., Zalmat, A. S., Ellis, B. S., McGarvey, S., Simmons-Frazier, K., Mancusi, K., & Sotola, V. A. (2025). Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants? Genes, 16(2), 124. https://doi.org/10.3390/genes16020124