Phylogenetic and Codon Usage Bias Analysis Based on mt-DNA of Cyphochilus crataceus (Coleoptera: Melolonthinae) and Its Neighboring Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Mitogenome Sequencing, Assembly, and Annotation
2.2. Composition, Structure, and Codon Usage Bias Analysis of Mitochondrial Genomes
2.3. The Phylogenetic Tree of Scarabaeidae
3. Results
3.1. Analysis of Mitochondrial Genome Composition and Features
3.2. Analysis of Factors Influencing Codon Usage Bias
3.3. Phylogenetic Analyses of Scarabaeidae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niijima, Y.; Kinoshita, E. Die Untersuchung über japanische Melolonthiden II. Res. Bull. Collect. Exped. For. Hokkaido Imp. Univ. 1923, 2, 1–253. [Google Scholar]
- Erichson, W.F.; von Kiesenwetter, H.; Kraatz, G.; Reitter, E.; Schaum, H.R.; Seidlitz, G.; Weise, J. Naturgeschichte der Insecten Deutschlands. 1. Abtheilung, Coleoptera; Nicholaische Buchhandlung: Berlin, Germany, 1848. [Google Scholar]
- Smith, A.B.T.; Hawks, D.C.; Heraty, J.M. An Overview of the Classification and Evolution of the Major Scarab Beetle Clades (Coleoptera: Scarabaeoidea) Based on Preliminary Molecular Analyses. Coleopt. Bull. 2006, 60, 35–46. [Google Scholar] [CrossRef]
- Eberle, J.; Myburgh, R.; Ahrens, D. The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition—No Divergence? PLoS ONE 2014, 9, e98536. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, D. The Phylogeny of Sericini and Their Position within the Scarabaeidae Based on Morphological Characters (Coleoptera: Scarabaeidae). Syst. Entomol. 2006, 31, 113–144. [Google Scholar] [CrossRef]
- Ahrens, D.; Schwarzer, J.; Vogler, A.P. The Evolution of Scarab Beetles Tracks the Sequential Rise of Angiosperms and Mammals. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141470. [Google Scholar] [CrossRef]
- Song, N.; Zhang, H. The Mitochondrial Genomes of Phytophagous Scarab Beetles and Systematic Implications. J. Insect Sci. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Morón, M.Á.; Cherman, M. Validación de La Familia Melolonthidae Leach, 1819 (Coleoptera: Scarabaeoidea). Acta Zool. Mex. 2014, 30, 201–220. [Google Scholar] [CrossRef]
- Cherman, M.A.; Morón, M.A.; Almeida, L.M. Phylogenetic Relationships within Diplotaxini Kirby (Coleoptera: Melolonthidae: Melolonthinae) with Emphasis on Liogenys Guérin-Méneville. Syst. Entomol. 2016, 41, 744–770. [Google Scholar] [CrossRef]
- Machatschke, J.W. Phylogenetische Untersuchungen über die Sericini (Sensu Dalla Torre 1912) (Coleoptera: Lamellicornia, Melolonthidae). Beiträge Entomol. Contrib. Entomol. 1959, 9, 730–746. [Google Scholar] [CrossRef]
- Wang, M.; Yu, W.; Yang, J.; Hou, Z.; Li, C.; Niu, Z.; Zhang, B.; Xue, Q.; Liu, W.; Ding, X. Mitochondrial Genome Comparison and Phylogenetic Analysis of Dendrobium (Orchidaceae) Based on Whole Mitogenomes. BMC Plant Biol. 2023, 23, 586. [Google Scholar] [CrossRef]
- Chen, F.; Lu, P.; Liang, D.; Wu, Y.; Jiang, Z.; Huang, W.; Gao, L. Phylogenetic Analysis Based on the Complete Mitochondrial Genome of Discogobio brachyphysallidos (Cypriniformes: Cyprinidae) Suggests the Need for Taxonomic Revision at the Genus Level. Mitochondrial DNA Part B 2024, 9, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Gillett, C.P.D.T.; Crampton-Platt, A.; Timmermans, M.J.T.N.; Jordal, B.H.; Emerson, B.C.; Vogler, A.P. Bulk De Novo Mitogenome Assembly from Pooled Total DNA Elucidates the Phylogeny of Weevils (Coleoptera: Curculionoidea). Mol. Biol. Evol. 2014, 31, 2223–2237. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Li, H.; Song, F.; Cai, W. Molecular Phylogeny of Polyneoptera (Insecta) Inferred from Expanded Mitogenomic Data. Sci. Rep. 2016, 6, 36175. [Google Scholar] [CrossRef]
- Long, T.; Zhu, W.; Yang, L.; Long, J.; Chang, Z.; Chen, X. First Report of the Complete Mitochondrial Genome of 3 Beetles (Coleoptera: Scarabaeidae) Harming Gastrodia elata (Asparagales: Orchidaceae). J. Insect Sci. 2024, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Athey, J.; Alexaki, A.; Osipova, E.; Rostovtsev, A.; Santana-Quintero, L.V.; Katneni, U.; Simonyan, V.; Kimchi-Sarfaty, C. A New and Updated Resource for Codon Usage Tables. BMC Bioinform. 2017, 18, 391. [Google Scholar] [CrossRef]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon Usage Bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Lutz, K.A.; Wang, W.; Zdepski, A.; Michael, T.P. Isolation and Analysis of High Quality Nuclear DNA with Reduced Organellar DNA for Plant Genome Sequencing and Resequencing. BMC Biotechnol. 2011, 11, 54. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Coil, D.; Jospin, G.; Darling, A.E. A5-Miseq: An Updated Pipeline to Assemble Microbial Genomes from Illumina MiSeq Data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Stothard, P.; Wishart, D.S. Circular Genome Visualization and Exploration Using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de Novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. TRNAscan-SE On-Line: Integrating Search and Context for Analysis of Transfer RNA Genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of Nucleotide Composition at Fourfold Degenerate Sites of Animal Mitochondrial Genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Novembre, J.A. Accounting for Background Nucleotide Composition When Measuring Codon Usage Bias. Mol. Biol. Evol. 2002, 19, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Ronquist, F.; Klopfstein, S.; Vilhelmsen, L.; Schulmeister, S.; Murray, D.L.; Rasnitsyn, A.P. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 2012, 61, 973–999. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Lin, X.; Song, N. Mitochondrial Phylogenomics Reveals Deep Relationships of Scarab Beetles (Coleoptera, Scarabaeidae). PLoS ONE 2022, 17, e0278820. [Google Scholar] [CrossRef]
- Monaghan, M.T.; Inward, D.J.G.; Hunt, T.; Vogler, A.P. A Molecular Phylogenetic Analysis of the Scarabaeinae (Dung Beetles). Mol. Phylogenetics Evol. 2007, 45, 674–692. [Google Scholar] [CrossRef]
- Dietz, L.; Seidel, M.; Eberle, J.; Misof, B.; Pacheco, T.L.; Podsiadlowski, L.; Ranasinghe, S.; Gunter, N.L.; Niehuis, O.; Mayer, C.; et al. A Transcriptome-based Phylogeny of Scarabaeoidea Confirms the Sister Group Relationship of Dung Beetles and Phytophagous Pleurostict Scarabs (Coleoptera). Syst. Entomol. 2023, 48, 672–686. [Google Scholar] [CrossRef]
- Ayivi, S.P.G.; Tong, Y.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. The Mitochondrial Genomes of 18 New Pleurosticti (Coleoptera: Scarabaeidae) Exhibit a Novel TrnQ-NCR-TrnI-TrnM Gene Rearrangement and Clarify Phylogenetic Relationships of Subfamilies within Scarabaeidae. Insects 2021, 12, 1025. [Google Scholar] [CrossRef] [PubMed]
- Gunter, N.L.; Weir, T.A.; Slipinksi, A.; Bocak, L.; Cameron, S.L. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary? PLoS ONE 2016, 11, e0153570. [Google Scholar] [CrossRef] [PubMed]
Gene | Coding Strand | Position (bp) | Length (bp) | Start Codon | Stop Codon | Anticodon | Intergenic Nucleotide |
---|---|---|---|---|---|---|---|
trnI | N | 1–63 | 63 | GAT | −3 | ||
trnQ | J | 61–129 | 69 | TTG | −2 | ||
trnM | N | 128–196 | 69 | CAT | |||
nad2 | N | 197–1204 | 1008 | ATT | TAG | 14 | |
trnW | N | 1219–1284 | 66 | TCA | −8 | ||
trnC | J | 1277–1339 | 63 | GCA | 15 | ||
trnY | J | 1355–1417 | 63 | GTA | −8 | ||
cox1 | N | 1410–2951 | 1542 | ATT | TAA | 6 | |
trnL2 | N | 2958–3021 | 64 | TAA | |||
cox2 | N | 3022–3709 | 688 | ATG | TAA | ||
trnK | N | 3710–3780 | 71 | CTT | |||
trnD | N | 3781–3843 | 63 | GTC | |||
atp8 | N | 3844–3999 | 156 | ATC | TAA | −7 | |
atp6 | N | 3993–4665 | 673 | ATG | TAG | ||
cox3 | N | 4666–5452 | 787 | ATG | TA(A) | ||
trnG | N | 5453–5517 | 65 | TCC | |||
nad3 | N | 5518–5871 | 354 | ATA | TAG | −2 | |
trnA | N | 5870–5933 | 64 | TGC | −1 | ||
trnR | N | 5933–5997 | 65 | TCG | |||
trnN | N | 5998–6060 | 63 | GTT | |||
trnS1 | N | 6061–6127 | 67 | TCT | 1 | ||
trnE | N | 6129–6190 | 62 | TTC | −2 | ||
trnF | J | 6189–6253 | 65 | GAA | −1 | ||
nad5 | J | 6253–7971 | 1719 | ATT | TAA | ||
trnH | J | 7972–8036 | 65 | GTG | −1 | ||
nad4 | J | 8036–9370 | 1335 | ATG | TAA | −7 | |
nad4l | J | 9364–9654 | 291 | ATG | TAA | 2 | |
trnT | N | 9657–9720 | 64 | TGT | |||
trnP | J | 9721–9782 | 62 | TGG | 10 | ||
nad6 | N | 9784–10,287 | 504 | ATA | TAA | −1 | |
Cob (cytb) | N | 10,287–11,429 | 1143 | ATG | TAG | −2 | |
trnS2 | N | 11,428–11,490 | 63 | TGA | 17 | ||
nad1 | J | 11,508–12,458 | 951 | ATG | TAA | 1 | |
trnL1 | J | 12,460–12,522 | 63 | TAG | 33 | ||
rrnL | J | 12,556–13,807 | 1252 | −3 | |||
trnV | J | 13,805–13,874 | 70 | TAC | −1 | ||
rrnS | J | 13,874–14,657 | 784 | ||||
OH | N | 14,658–17,946 | 3289 |
Gene | A% | C% | G% | T% | A + T% | G + C% | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|
Whole genome | 37.64 | 18.30 | 9.88 | 34.19 | 71.82 | 28.18 | 0.048 | −0.299 |
nad2 | 34.72 | 18.95 | 7.94 | 38.39 | 73.12 | 26.88 | −0.050 | −0.410 |
cox1 | 28.34 | 19.71 | 16.34 | 35.60 | 63.94 | 36.06 | −0.114 | −0.094 |
cox2 | 32.12 | 20.06 | 13.23 | 34.59 | 66.71 | 33.29 | −0.0037 | −0.205 |
atp8 | 37.82 | 16.67 | 7.69 | 37.82 | 75.64 | 24.36 | 0.000 | −0.368 |
atp6 | 32.10 | 20.35 | 10.55 | 37.00 | 69.10 | 30.91 | −0.071 | −0.317 |
cox3 | 28.72 | 19.44 | 14.87 | 36.97 | 65.69 | 34.31 | −0.126 | −0.133 |
nad3 | 33.05 | 16.67 | 9.89 | 40.40 | 73.45 | 26.55 | −0.100 | −0.255 |
nad5 | 29.61 | 9.25 | 16.52 | 44.62 | 74.23 | 25.77 | −0.202 | 0.282 |
nad4 | 28.24 | 9.29 | 16.78 | 45.69 | 73.93 | 26.07 | −0.236 | 0.287 |
nad4l | 24.74 | 8.25 | 16.15 | 50.86 | 75.60 | 24.40 | −0.345 | 0.324 |
nad6 | 36.31 | 16.67 | 6.94 | 40.08 | 76.39 | 23.61 | −0.049 | −0.412 |
cob | 31.06 | 19.95 | 12.51 | 36.48 | 67.54 | 32.46 | −0.080 | −0.229 |
nad1 | 24.89 | 9.63 | 20.35 | 45.13 | 70.02 | 29.98 | −0.289 | 0.357 |
rrnL | 35.70 | 7.59 | 16.37 | 40.34 | 76.04 | 23.96 | −0.061 | 0.367 |
rrnS | 36.10 | 8.93 | 17.86 | 37.12 | 73.21 | 26.79 | −0.014 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, H.; Cao, Q.; Yang, X. Phylogenetic and Codon Usage Bias Analysis Based on mt-DNA of Cyphochilus crataceus (Coleoptera: Melolonthinae) and Its Neighboring Species. Genes 2025, 16, 111. https://doi.org/10.3390/genes16020111
Zhan H, Cao Q, Yang X. Phylogenetic and Codon Usage Bias Analysis Based on mt-DNA of Cyphochilus crataceus (Coleoptera: Melolonthinae) and Its Neighboring Species. Genes. 2025; 16(2):111. https://doi.org/10.3390/genes16020111
Chicago/Turabian StyleZhan, Haofeng, Quan Cao, and Xiaofei Yang. 2025. "Phylogenetic and Codon Usage Bias Analysis Based on mt-DNA of Cyphochilus crataceus (Coleoptera: Melolonthinae) and Its Neighboring Species" Genes 16, no. 2: 111. https://doi.org/10.3390/genes16020111
APA StyleZhan, H., Cao, Q., & Yang, X. (2025). Phylogenetic and Codon Usage Bias Analysis Based on mt-DNA of Cyphochilus crataceus (Coleoptera: Melolonthinae) and Its Neighboring Species. Genes, 16(2), 111. https://doi.org/10.3390/genes16020111