The Role of the MTUS1 Gene in the Development of Left Ventricular Noncompaction Cardiomyopathy—A Case Report
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Benedetto, M.; Bièche, I.; Deshayes, F.; Vacher, S.; Nouet, S.; Collura, V.; Seitz, I.; Louis, S.; Pineau, P.; Amsellem-Ouazana, D.; et al. Structural Organization and Expression of Human MTUS1, a Candidate 8p22 Tumor Suppressor Gene Encoding a Family of Angiotensin II AT2 Receptor-Interacting Proteins, ATIP. Gene 2006, 380, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Asakura, M.; Liao, Y.; Min, K.; Takahashi, A.; Shindo, K.; Yamazaki, S.; Tsukamoto, O.; Asanuma, H.; Mogi, M.; et al. Identification of the Mtus1 Splice Variant as a Novel Inhibitory Factor Against Cardiac Hypertrophy. J. Am. Heart Assoc. 2016, 5, e003521. [Google Scholar] [CrossRef] [PubMed]
- Caporizzo, M.A.; Prosser, B.L. The Microtubule Cytoskeleton in Cardiac Mechanics and Heart Failure. Nat. Rev. Cardiol. 2022, 19, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, B.; Guo, A.; Zhu, Y.; Miller, J.D.; Gao, S.; Yuan, C.; Kutschke, W.; Zimmerman, K.; Weiss, R.M.; et al. Microtubule-Mediated Defects in Junctophilin-2 Trafficking Contribute to Myocyte Transverse-Tubule Remodeling and Ca2+ Handling Dysfunction in Heart Failure. Circulation 2014, 129, 1742–1750. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, Y.; Ouyang, N.; Liu, L.; Huang, X.; Tian, J.; Lv, T. A de Novo Mutation in the MTUS1 Gene Decreases the Risk of Non-Compaction of Ventricular Myocardium via the Rac1/Cdc42 Pathway. Front. Pediatr. 2019, 7, 247. [Google Scholar] [CrossRef]
- Ajima, R.; Bisson, J.A.; Helt, J.-C.; Nakaya, M.-A.; Habas, R.; Tessarollo, L.; He, X.; Morrisey, E.E.; Yamaguchi, T.P.; Cohen, E.D. DAAM1 and DAAM2 Are Co-Required for Myocardial Maturation and Sarcomere Assembly. Dev. Biol. 2015, 408, 126–139. [Google Scholar] [CrossRef]
- Zuern, C.; Krenacs, L.; Starke, S.; Heimrich, J.; Palmetshofer, A.; Holtmann, B.; Sendtner, M.; Fischer, T.; Galle, J.; Wanner, C.; et al. Microtubule Associated Tumor Suppressor 1 Deficient Mice Develop Spontaneous Heart Hypertrophy and SLE-like Lymphoproliferative Disease. Int. J. Oncol. 2012, 40, 1079–1088. [Google Scholar] [CrossRef]
- Rodrigues-Ferreira, S.; Di Tommaso, A.; Dimitrov, A.; Cazaubon, S.; Gruel, N.; Colasson, H.; Nicolas, A.; Chaverot, N.; Molinié, V.; Reyal, F.; et al. 8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis. PLoS ONE 2009, 4, e7239. [Google Scholar] [CrossRef]
- Cheng, L.-Y.; Huang, M.; Zhong, H.-G.; Ru, H.-M.; Mo, S.-S.; Wei, C.-Y.; Su, Z.-J.; Mo, X.-W.; Yan, L.-H.; Tang, W.-Z. MTUS1 Is a Promising Diagnostic and Prognostic Biomarker for Colorectal Cancer. World J. Surg. Oncol. 2022, 20, 257. [Google Scholar] [CrossRef]
- Luxán, G.; Casanova, J.C.; Martínez-Poveda, B.; Prados, B.; D’Amato, G.; MacGrogan, D.; Gonzalez-Rajal, A.; Dobarro, D.; Torroja, C.; Martinez, F.; et al. Mutations in the NOTCH Pathway Regulator MIB1 Cause Left Ventricular Noncompaction Cardiomyopathy. Nat. Med. 2013, 19, 193–201. [Google Scholar] [CrossRef]
- Shi, W.Y.; Moreno-Betancur, M.; Nugent, A.W.; Cheung, M.; Colan, S.; Turner, C.; Sholler, G.F.; Robertson, T.; Justo, R.; Bullock, A.; et al. Long-Term Outcomes of Childhood Left Ventricular Noncompaction Cardiomyopathy: Results From a National Population-Based Study. Circulation 2018, 138, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Brescia, S.T.; Rossano, J.W.; Pignatelli, R.; Jefferies, J.L.; Price, J.F.; Decker, J.A.; Denfield, S.W.; Dreyer, W.J.; Smith, O.; Towbin, J.A.; et al. Mortality and Sudden Death in Pediatric Left Ventricular Noncompaction in a Tertiary Referral Center. Circulation 2013, 127, 2202–2208. [Google Scholar] [CrossRef] [PubMed]
- Akhigbe, E.J.; Ezeh, E.; Sebro, N.; Olanipekun, O.; Rueda Rios, C. A Novel Case of Acquired Isolated Left Ventricular Non-Compaction in a Primigravida: Revisiting the Diagnostic Criteria of Left Ventricular Non-Compaction. Cureus 2023, 15, e33823. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A.; Lorts, A.; Jefferies, J.L. Left Ventricular Non-Compaction Cardiomyopathy. Lancet 2015, 386, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P. Can Left Ventricular Noncompaction Be Acquired, and Can It Disappear? Tex. Heart Inst. J. 2017, 44, 264–265. [Google Scholar] [CrossRef]
- Srivastava, S.; Yavari, M.; Al-abcha, A.; Banga, S.; Abela, G. Ventricular Non-Compaction Review. Heart Fail. Rev. 2022, 27, 1063–1076. [Google Scholar] [CrossRef]
- dLib.Si—Spongiformna Kardiomiopatija—Redek Vzrok Srčnega Popuščanja. Available online: https://www.dlib.si/details/URN:NBN:SI:doc-FJSFAAGM?&language=eng (accessed on 19 October 2023).
- Isolated Noncompaction of the Left Ventricular Myocardium in Adults: A Systematic Overview—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21872148/ (accessed on 19 October 2023).
- Varghayee, N.; Krezel, M.A.; Rezmann, L.; Chow, L.; Frauman, A.G.; Louis, W.J.; Louis, S.N. Function and Expression of ATIP and Its Variants in Cardiomyoblast Cell Line H9c2. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 79–91. [Google Scholar] [CrossRef]
- Nouet, S.; Amzallag, N.; Li, J.-M.; Louis, S.; Seitz, I.; Cui, T.-X.; Alleaume, A.-M.; Benedetto, M.D.; Boden, C.; Masson, M.; et al. Trans-Inactivation of Receptor Tyrosine Kinases by Novel Angiotensin II AT2 Receptor-Interacting Protein, ATIP *. J. Biol. Chem. 2004, 279, 28989–28997. [Google Scholar] [CrossRef]
- Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.-S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The Role of Reactive Oxygen Species in the Pathophysiology of Cardiovascular Diseases and the Clinical Significance of Myocardial Redox. Ann. Transl. Med. 2017, 5, 326. [Google Scholar] [CrossRef]
- Sandireddy, R.; Cibi, D.M.; Gupta, P.; Singh, A.; Tee, N.; Uemura, A.; Epstein, J.A.; Singh, M.K. Semaphorin 3E/PlexinD1 Signaling Is Required for Cardiac Ventricular Compaction. JCI Insight 2019, 4, e125908. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, H.; Qu, X.; Chang, C.-P.; Shou, W. Molecular Mechanism of Ventricular Trabeculation/Compaction and the Pathogenesis of the Left Ventricular Noncompaction Cardiomyopathy (LVNC). Am. J. Med. Genet. C Semin. Med. Genet. 2013, 163, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, J.; Zhu, Z.; Zhang, Z.; Xian, J.; Yang, Z.; Qin, T.; Chen, L.; Huang, J.; Huang, Y.; et al. Overlap Phenotypes of the Left Ventricular Noncompaction and Hypertrophic Cardiomyopathy with Complex Arrhythmias and Heart Failure Induced by the Novel Truncated DSC2 Mutation. Orphanet J. Rare Dis. 2021, 16, 496. [Google Scholar] [CrossRef] [PubMed]
- Mathewson, A.W.; Berman, D.; Moens, C.B. Microtubules Are Required for the Maintenance of Planar Cell Polarity in Monociliated Floorplate Cells. Dev. Biol. 2019, 452, 21–33. [Google Scholar] [CrossRef]
- In Cell Polarity, Microtubules Are Important after All. Available online: https://www.fredhutch.org/en/news/spotlight/2019/06/bs_mathewson_devbiol.html (accessed on 13 January 2025).
- Nakayama, S.; Yano, T.; Namba, T.; Konishi, S.; Takagishi, M.; Herawati, E.; Nishida, T.; Imoto, Y.; Ishihara, S.; Takahashi, M.; et al. Planar Cell Polarity Induces Local Microtubule Bundling for Coordinated Ciliary Beating. J. Cell Biol. 2021, 220, e202010034. [Google Scholar] [CrossRef]
- Taylan Şekeroğlu, H.; Utine, G.E. Congenital Cataract and Its Genetics: The Era of Next-Generation Sequencing. Turk. J. Ophthalmol. 2021, 51, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Rahi, J.S.; Dezateux, C. Congenital and Infantile Cataract in the United Kingdom: Underlying or Associated Factors. British Congenital Cataract Interest Group. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2108–2114. [Google Scholar]
- Bundschu, K.; Schuh, K. Cardiovascular ATIP (Angiotensin Receptor Type 2 Interacting Protein) Expression in Mouse Development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2014, 243, 699–711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorjanc, T.; Šikonja, J.; Drole Torkar, A.; Žerjav Tanšek, M.; Kovač, J.; Bertok, S.; Debeljak, M.; Dolenc-Stražar, Z.; Meznarič, M.; Mlakar, J.; et al. The Role of the MTUS1 Gene in the Development of Left Ventricular Noncompaction Cardiomyopathy—A Case Report. Genes 2025, 16, 110. https://doi.org/10.3390/genes16020110
Gorjanc T, Šikonja J, Drole Torkar A, Žerjav Tanšek M, Kovač J, Bertok S, Debeljak M, Dolenc-Stražar Z, Meznarič M, Mlakar J, et al. The Role of the MTUS1 Gene in the Development of Left Ventricular Noncompaction Cardiomyopathy—A Case Report. Genes. 2025; 16(2):110. https://doi.org/10.3390/genes16020110
Chicago/Turabian StyleGorjanc, Tevž, Jaka Šikonja, Ana Drole Torkar, Mojca Žerjav Tanšek, Jernej Kovač, Sara Bertok, Maruša Debeljak, Zvezdana Dolenc-Stražar, Marija Meznarič, Jernej Mlakar, and et al. 2025. "The Role of the MTUS1 Gene in the Development of Left Ventricular Noncompaction Cardiomyopathy—A Case Report" Genes 16, no. 2: 110. https://doi.org/10.3390/genes16020110
APA StyleGorjanc, T., Šikonja, J., Drole Torkar, A., Žerjav Tanšek, M., Kovač, J., Bertok, S., Debeljak, M., Dolenc-Stražar, Z., Meznarič, M., Mlakar, J., Topalović, M., Mlakar, G., Battelino, T., & Grošelj, U. (2025). The Role of the MTUS1 Gene in the Development of Left Ventricular Noncompaction Cardiomyopathy—A Case Report. Genes, 16(2), 110. https://doi.org/10.3390/genes16020110