The Role of VEGFA in T2DM-Nephropathy: A Genetic Association Study and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Association Study
2.1.1. Subjects
2.1.2. Genotyping
2.1.3. Data Analysis
2.2. Meta-Analysis
3. Results
3.1. Association Analysis
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Chand Jamali, M.; Habib, A.; Hussain, M.S.; Akhtar, M.; Najmi, A.K. Diabetic Kidney Disease: An Overview of Prevalence, Risk Factors, and Biomarkers. Clin. Epidemiol. Glob. Health 2021, 9, 2–6. [Google Scholar] [CrossRef]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.-H.; Cooper, M.E. Diabetic Kidney Disease. Nat. Rev. Dis. Primers 2015, 1, 15070. [Google Scholar] [CrossRef]
- Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; García-Pérez, J. Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, M.K. Diabetic Nephropathy: Recent Advances in Pathophysiology and Challenges in Dietary Management. Diabetol. Metab. Syndr. 2019, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Dronavalli, S.; Duka, I.; Bakris, G. The Pathogenesis of Diabetic Nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 444–452. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, B.; Ortiz, A.; Gomez-Guerrero, C.; Egido, J. Therapeutic Approaches to Diabetic Nephropathy—Beyond the RAS. Nat. Rev. Nephrol. 2014, 10, 325–346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cao, Y.; Ma, L. New Insights in the Treatment of DKD: Recent Advances and Future Prospects. BMC Nephrol. 2025, 26, 72. [Google Scholar] [CrossRef]
- Thomas, M.C.; Groop, P.-H.; Tryggvason, K. Towards Understanding the Inherited Susceptibility for Nephropathy in Diabetes. Curr. Opin. Nephrol. Hypertens. 2012, 21, 195–202. [Google Scholar] [CrossRef]
- Cole, J.B.; Florez, J.C. Genetics of Diabetes Mellitus and Diabetes Complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Haukka, J.; Sandholm, N.; Valo, E.; Forsblom, C.; Harjutsalo, V.; Cole, J.B.; McGurnaghan, S.J.; Colhoun, H.M.; Groop, P.-H.; on behalf of the FinnDiane Study Group. Novel Linkage Peaks Discovered for Diabetic Nephropathy in Individuals with Type 1 Diabetes. Diabetes 2021, 70, 986–995. [Google Scholar] [CrossRef]
- Dawn Teare, M.; Barrett, J.H. Genetic Linkage Studies. Lancet 2005, 366, 1036–1044. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-Wide Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Salem, R.M.; Todd, J.N.; Sandholm, N.; Cole, J.B.; Chen, W.-M.; Andrews, D.; Pezzolesi, M.G.; McKeigue, P.M.; Hiraki, L.T.; Qiu, C.; et al. Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Renal Basement Membrane Collagen. bioRxiv 2018, 499616. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Stefanidis, I.; Zintzaras, E. The Genetic Map of Diabetic Nephropathy: Evidence from a Systematic Review and Meta-Analysis of Genetic Association Studies. Clin. Kidney J. 2020, 13, 768–781. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Stefanidis, I.; Stravodimos, K.; Zintzaras, E. Identification of Chromosomal Regions Linked to Diabetic Nephropathy: A Meta-Analysis of Genome-Wide Linkage Scans. Genet. Test. Mol. Biomark. 2019, 23, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Tziastoudi, M.; Stefanidis, I.; Hadjigeorgiou, G.M.; Stravodimos, K.; Zintzaras, E. A Systematic Review and Meta-Analysis of Genetic Association Studies for the Role of Inflammation and the Immune System in Diabetic Nephropathy. Clin. Kidney J. 2017, 10, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Tufro, A.; Veron, D. VEGF and Podocytes in Diabetic Nephropathy. Semin. Nephrol. 2012, 32, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, B.F.; Flyvbjerg, A.; De Vriese, A.S. The Role of Vascular Endothelial Growth Factor (VEGF) in Renal Pathophysiology. Kidney Int. 2004, 65, 2003–2017. [Google Scholar] [CrossRef]
- Ziyadeh, F.N. Different Roles for TGF-β And VEGF in the Pathogenesis of the Cardinal Features of Diabetic Nephropathy. Diabetes Res. Clin. Pract. 2008, 82, 38–41. [Google Scholar] [CrossRef]
- Majumder, S.; Advani, A. VEGF and the Diabetic Kidney: More than Too Much of a Good Thing. J. Diabetes Complicat. 2017, 31, 273–279. [Google Scholar] [CrossRef]
- Sung, S.H.; Ziyadeh, F.N.; Wang, A.; Pyagay, P.E.; Kanwar, Y.S.; Chen, S. Blockade of Vascular Endothelial Growth Factor Signaling Ameliorates Diabetic Albuminuria in Mice. J. Am. Soc. Nephrol. 2006, 17, 3093–3104. [Google Scholar] [CrossRef]
- Chen, S.; Ziyadeh, F.N. Vascular Endothelial Growth Factor and Diabetic Nephropathy. Curr. Diabetes Rep. 2008, 8, 470–476. [Google Scholar] [CrossRef]
- Njeim, R.; Braych, K.; Ghadieh, H.E.; Azar, N.S.; Azar, W.S.; Dia, B.; Leone, A.; Cappello, F.; Kfoury, H.; Harb, F.; et al. VEGF-A: A Novel Mechanistic Link Between CYP2C-Derived EETs and Nox4 in Diabetic Kidney Disease. Diabetes 2023, 72, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, J.; Zhang, J.; Chen, S. Serum VEGF as a Predictive Marker of Glycemic Control and Diabetic Nephropathy in Chinese Older Adults with Type 2 Diabetes Mellitus. Front. Endocrinol. 2023, 14, 1274025. [Google Scholar] [CrossRef]
- Mooyaart, A.L.; Valk, E.J.J.; van Es, L.A.; Bruijn, J.A.; de Heer, E.; Freedman, B.I.; Dekkers, O.M.; Baelde, H.J. Genetic Associations in Diabetic Nephropathy: A Meta-Analysis. Diabetologia 2011, 54, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Siddiqui, K.; Al-Qasim, S.; Al-Naqeb, D. Meta-Analysis of Diabetic Nephropathy Associated Genetic Variants in Inflammation and Angiogenesis Involved in Different Biochemical Pathways. BMC Med. Genet. 2014, 15, 103. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, J.; Peng, H. Associations Between Genetic Polymorphisms in the VEGFA, ACE, and SOD2 Genes and Susceptibility to Diabetic Nephropathy in the Han Chinese. Genet. Test. Mol. Biomark. 2019, 23, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Tziastoudi, M.; Theoharides, T.C.; Nikolaou, E.; Efthymiadi, M.; Eleftheriadis, T.; Stefanidis, I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 15331. [Google Scholar] [CrossRef]
- Siokas, V.; Dardiotis, E.; Sokolakis, T.; Kotoula, M.; Tachmitzi, S.V.; Chatzoulis, D.Z.; Almpanidou, P.; Stefanidis, I.; Hadjigeorgiou, G.M.; Tsironi, E.E. Plasminogen Activator Inhibitor Type-1 Tag Single-Nucleotide Polymorphisms in Patients with Diabetes Mellitus Type 2 and Diabetic Retinopathy. Curr. Eye Res. 2017, 42, 1048–1053. [Google Scholar] [CrossRef]
- Zintzaras, E. The Power of Generalized Odds Ratio in Assessing Association in Genetic Studies. J. Appl. Stat. 2012, 39, 2569–2581. [Google Scholar] [CrossRef]
- Zintzaras, E. The Generalized Odds Ratio as a Measure of Genetic Risk Effect in the Analysis and Meta-Analysis of Association Studies. Stat. Appl. Genet. Mol. Biol. 2010, 9. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-Analysis in Clinical Trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, I.; Tziastoudi, M.; Tsironi, E.E.; Dardiotis, E.; Tachmitzi, S.V.; Fotiadou, A.; Pissas, G.; Kytoudis, K.; Sounidaki, M.; Ampatzis, G.; et al. The Contribution of Genetic Variants of SLC2A1 Gene in T2DM and T2DM-Nephropathy: Association Study and Meta-Analysis. Ren. Fail. 2018, 40, 561–576. [Google Scholar] [CrossRef]
- Nikzamir, A.; Esteghamati, A.; Hammedian, A.A.; Mahmoudi, T. The Role of Vascular Endothelial Growth Factor +405 G/C Polymorphism and Albuminuria in Patients with Type 2 Diabetes Mellitus. Mol. Biol. Rep. 2012, 39, 881–886. [Google Scholar] [CrossRef]
- McKnight, A.-J.; Maxwell, A.P.; Patterson, C.C.; Brady, H.R.; Savage, D.A. Association of VEGF-1499C→T Polymorphism with Diabetic Nephropathy in Type 1 Diabetes Mellitus. J. Diabetes Complicat. 2007, 21, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Buraczynska, M.; Ksiazek, P.; Baranowicz-Gaszczyk, I.; Jozwiak, L. Association of the VEGF Gene Polymorphism with Diabetic Retinopathy in Type 2 Diabetes Patients. Nephrol. Dial. Transplant. 2007, 22, 827–832. [Google Scholar] [CrossRef]
- Fathi, M.; Nikzamir, A.R.; Esteghamati, A.; Nakhjavani, M.; Yekaninejad, M.S. Combination of Angiotensin Converting Enzyme Insertion/Deletion (I/D) (Rs4646994) and VEGF Polymorphism (+405G/C.; Rs2010963) Synergistically Associated with the Development, of Albuminuria in Iranian Patients with Type 2 Diabetes. Iran. Red Crescent Med. J. 2015, 17, e19469. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Prasad, P.; Kumar, K.P.; Ammini, A.C.; Gupta, A.; Gupta, R. Oxidative Stress Pathway Genes and Chronic Renal Insufficiency in Asian Indians with Type 2 Diabetes. J. Diabetes Complicat. 2009, 23, 102–111. [Google Scholar] [CrossRef]
- Yang, B.; Cross, D.F.; Ollerenshaw, M.; Millward, B.A.; Demaine, A.G. Polymorphisms of the Vascular Endothelial Growth Factor and Susceptibility to Diabetic Microvascular Complications in Patients with Type 1 Diabetes Mellitus. J. Diabetes Complicat. 2003, 17, 1–6. [Google Scholar] [CrossRef]
- Dabhi, B.; Mistry, K.N.; Patel, H.; Lal, S. Vascular Endothelial Growth Factor Insertion/Deletion Gene Polymorphism in West Indian Patients of Type 2 Diabetes and Diabetic Nephropathy. Indian J. Biochem. Biophys. 2015, 52, 209–212. [Google Scholar]
- Amle, D.; Mir, R.; Khaneja, A.; Agarwal, S.; Ahlawat, R.; Ray, P.C.; Saxena, A. Association of 18bp Insertion/Deletion Polymorphism, at −2549 Position of VEGF Gene, with Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients of North Indian Population. J. Diabetes Metab. Disord. 2015, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, A.; Saulnier, P.-J.; Stathopoulou, M.G.; Grarup, N.; Ndiaye, N.C.; Roussel, R.; Nezhad, M.A.; Dechaume, A.; Lantieri, O.; Hercberg, S.; et al. What Is the Contribution of Two Genetic Variants Regulating VEGF Levels to Type 2 Diabetes Risk and to Microvascular Complications? PLoS ONE 2013, 8, e55921. [Google Scholar] [CrossRef]
- Nussdorfer, P.; Petrovič, D.; Alibegović, A.; Cilenšek, I.; Petrovič, D. The KDR Gene Rs2071559 and the VEGF Gene Rs6921438 May Be Associated with Diabetic Nephropathy in Caucasians with Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 9439. [Google Scholar] [CrossRef]
- Trégouet, D.-A.; Groop, P.-H.; McGinn, S.; Forsblom, C.; Hadjadj, S.; Marre, M.; Parving, H.-H.; Tarnow, L.; Telgmann, R.; Godefroy, T.; et al. G/T Substitution in Intron 1 of the UNC13B Gene Is Associated with Increased Risk of Nephropathy in Patients with Type 1 Diabetes. Diabetes 2008, 57, 2843–2850. [Google Scholar] [CrossRef]
- Ma, R.C.W.; Cooper, M.E. Genetics of Diabetic Kidney Disease-From the Worst of Nightmares to the Light of Dawn? J. Am. Soc. Nephrol. 2017, 28, 389–393. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P.-A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V.; et al. Endothelium Structure and Function in Kidney Health and Disease. J. Am. Soc. Nephrol. 2019, 15, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, M.-J.; Kumar, A.; Lee, H.-W.; Yang, Y.; Kim, Y. Vascular Endothelial Growth Factor Signaling in Health and Disease: From Molecular Mechanisms to Therapeutic Perspectives. Signal Transduct. Target. Ther. 2025, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Flicek, P.; Ahmed, I.; Amode, M.R.; Barrell, D.; Beal, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fairley, S.; et al. Ensembl 2013. Nucleic Acids Res. 2013, 41, D48–D55. [Google Scholar] [CrossRef]
- Hagstrom, S.A.; Ying, G.; Pauer, G.J.; Sturgill-Short, G.M.; Huang, J.; Maguire, M.G.; Martin, D.F. VEGF-A and VEGFR-2 Gene Polymorphisms and Response to Anti-VEGF Therapy in the Comparison of AMD Treatments Trials (CATT). JAMA Ophthalmol. 2014, 132, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-Y.; Chiou, J.-J.; Tseng, W.-H.; Liu, C.-H.; Liu, C.-K.; Lin, Y.-J.; Wang, H.-H.; Yao, A.; Chen, Y.-T.; Hsu, C.-N. FASTSNP: An Always up-to-Date and Extendable Service for SNP Function Analysis and Prioritization. Nucleic Acids Res. 2006, 34, W635–641. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xin, K.; Chen, K.; Tang, H.; Chen, H.; Zhi, L.; Liu, H. Relationship of Common Variants in VEGFA Gene with Osteonecrosis of the Femoral Head: A Han Chinese Population Based Association Study. Sci. Rep. 2018, 8, 16221. [Google Scholar] [CrossRef] [PubMed]


| Parameters | Case–Control Study Groups (n = 498) | |||||
|---|---|---|---|---|---|---|
| HC | DM | p Value * | DM-DN | DM+DN | p Value * | |
| N | 246 | 352 | n.a. | 155 | 197 | n.a. |
| Sex [m; n (%)] | 136 (55.3) | 181 (51.4) | 0.361 | 74 (47.7) | 107 (54.3) | 0.238 |
| Age (years) | 71 ± 9.2 | 68 ± 8.9 | <0.001 | 68 ± 9.1 | 69 ± 8.8 | 0.427 |
| DM duration (years) | n.a. | 16.3 ± 8.0 | n.a. | 15.7 ± 8.3 | 16.8 ± 7.8 | 0.508 |
| HbA1c (%) | n.d. | 7.35 ± 1.31 | n.a. | 7.20 ± 1.34 | 7.47 ± 1.29 | 0.019 |
| Insulin treatment (%) | n.a. | 105 (29.8) | n.a. | 50 (32.3) | 55 (27.9) | 0.412 |
| Hypertension (%) | 0 | 224 (63.6) | <0.001 | 98 (63.2) | 126 (63.9) | 0.911 |
| Cardiovascular disease (%) | 0 | 110 (31.3) | <0.001 | 41 (26.5) | 69 (35.0) | 0.105 |
| Creatinine (mg/dL) | 0.77 ± 0.15 | 1.46 ± 1.37 | <0.001 | 0.90 ± 0.18 | 1.84 ± 1.67 | <0.001 |
| Urea (mg/dL) | 30 ± 7.9 | 59 ± 34 | <0.001 | 42 ± 13.6 | 71 ± 38.3 | <0.001 |
| Albuminuria (mg/d) | n.d. | 470 ± 856 | n.a. | 43.9 ± 53.3 | 782 ± 1019 | <0.001 |
| Proteinuria (mg/d) | n.d. | 788 ± 1468 | n.a. | 105 ± 80.0 | 788 ± 1468 | <0.001 |
| VEGFA | Alleles | HT | DC | DN | ORG |
|---|---|---|---|---|---|
| rs3025053 | GG | 201 | 133 | 170 | 0.84 (0.56, 1.24) |
| GA | 34 | 20 | 22 | ||
| AA | 0 | 0 | 0 | ||
| rs3025040 | CC | 173 | 97 | 138 | 0.92 (0.65, 1.31) |
| CT | 60 | 50 | 50 | ||
| TT | 8 | 4 | 4 | ||
| rs10434 | AA | 51 | 28 | 43 | 0.96 (0.73, 1.27) |
| AG | 123 | 77 | 11 | ||
| GG | 65 | 46 | 40 | ||
| rs25648 | CC | 178 | 115 | 133 | 1.15 (0.84, 1.57) |
| CT | 55 | 29 | 47 | ||
| TT | 5 | 2 | 8 | ||
| rs3024994 | CC | 227 | 145 | 189 | 0.65 (0.35, 1.21) |
| CT | 13 | 8 | 5 | ||
| TT | 0 | 0 | 0 | ||
| rs3025035 | CC | 210 | 132 | 166 | 1.00 (0.67, 1.49) |
| CT | 33 | 17 | 27 | ||
| TT | 1 | 0 | 0 | ||
| rs2146323 | CC | 105 | 73 | 88 | 1.01 (0.79, 1.29) |
| CA | 108 | 70 | 84 | ||
| AA | 19 | 8 | 20 | ||
| rs3024997 | GG | 81 | 55 | 69 | 0.92 (0.73, 1.15) |
| GA | 111 | 63 | 95 | ||
| AA | 44 | 31 | 28 | ||
| rs2010963 | CC | 44 | 32 | 28 | 1.12 (0.90, 1.40) |
| CG | 120 | 68 | 97 | ||
| GG | 79 | 53 | 70 | ||
| rs833070 | GG | 84 | 57 | 52 | 1.26 (1.01, 1.59) |
| GA | 121 | 69 | 105 | ||
| AA | 34 | 24 | 38 |
| VEGFA | Alleles | DC | DN | ORG |
|---|---|---|---|---|
| rs3025053 | GG | 133 | 170 | 0.86 (0.45, 1.63) |
| GA | 20 | 22 | ||
| AA | 0 | 0 | ||
| rs3025040 | CC | 97 | 138 | 0.71 (0.46, 1.11) |
| CT | 50 | 50 | ||
| TT | 4 | 4 | ||
| rs10434 | AA | 28 | 43 | 0.78 (0.50, 1.20) |
| AG | 77 | 11 | ||
| GG | 46 | 40 | ||
| rs25648 | CC | 115 | 133 | 1.55 (0.95, 2.54) |
| CT | 29 | 47 | ||
| TT | 2 | 8 | ||
| rs3024994 | CC | 145 | 189 | 0.50 (0.17, 1.48) |
| CT | 8 | 5 | ||
| TT | 0 | 0 | ||
| rs3025035 | CC | 132 | 166 | 1.25 (0.66, 2.36) |
| CT | 17 | 27 | ||
| TT | 0 | 0 | ||
| rs2146323 | CC | 73 | 88 | 1.19 (0.81, 1.76) |
| CA | 70 | 84 | ||
| AA | 8 | 20 | ||
| rs3024997 | GG | 55 | 69 | 0.90 (0.63, 1.30) |
| GA | 63 | 95 | ||
| AA | 31 | 28 | ||
| rs2010963 | CC | 32 | 28 | 1.18 (0.82, 1.70) |
| CG | 68 | 97 | ||
| GG | 53 | 70 | ||
| rs833070 | GG | 57 | 52 | 1.46 (1.01, 2.12) |
| GA | 69 | 105 | ||
| AA | 24 | 38 |
| VEGFA | Alleles | HT | DN | ORG |
|---|---|---|---|---|
| rs3025053 | GG | 201 | 170 | 0.77 (0.44, 1.36) |
| GA | 34 | 22 | ||
| AA | 0 | 0 | ||
| rs3025040 | CC | 173 | 138 | 0.98 (0.65, 1.47) |
| CT | 60 | 50 | ||
| TT | 8 | 4 | ||
| rs10434 | AA | 51 | 43 | 0.85 (0.56, 1.30) |
| AG | 123 | 11 | ||
| GG | 65 | 40 | ||
| rs25648 | CC | 178 | 133 | 1.25 (0.82, 1.89) |
| CT | 55 | 47 | ||
| TT | 5 | 8 | ||
| rs3024994 | CC | 227 | 189 | 0.49 (0.18, 1.35) |
| CT | 13 | 5 | ||
| TT | 0 | 0 | ||
| rs3025035 | CC | 210 | 166 | 1.02 (0.59, 1.75) |
| CT | 33 | 27 | ||
| TT | 1 | 0 | ||
| rs2146323 | CC | 105 | 88 | 1.02 (0.73, 1.44) |
| CA | 108 | 84 | ||
| AA | 19 | 20 | ||
| rs3024997 | GG | 81 | 69 | 0.88 (0.63, 1.22) |
| GA | 111 | 95 | ||
| AA | 44 | 28 | ||
| rs2010963 | CC | 44 | 28 | 0.80 (0.55, 1.17) |
| CG | 120 | 97 | ||
| GG | 79 | 70 | ||
| rs833070 | GG | 84 | 52 | 1.43 (1.03, 1.99) |
| GA | 121 | 105 | ||
| AA | 34 | 38 |
| Variant | References | Ethnicity | DM | Trait | Ν | Selection Criteria | Ν | Selection Criteria | N | Selection Criteria | Analyses |
|---|---|---|---|---|---|---|---|---|---|---|---|
| rs2010963 | Nikzamir (2012) [36] | Asians | T2DM | DN | 255 | pers. macr/ria | 235 | pers. norm/ria | DC-C | ||
| McKnight (2007) [37] | Caucasians | T1DM | DN | 242 | pers. macr/ria | 301 | pers. norm/ria | 400 | Healthy controls | DC-C, HT-DC-C, HT-C | |
| Buraczynska (2007) [38] | Caucasians | T2DM | DN | 245 | pers. macr/ria | 181 | pers. norm/ria | DC-C | |||
| Luo (2019) [27] | Asians | T2DM | DN | 650 | pers. macr/ria | 580 | pers. norm/ria | DC-C | |||
| Fathi (2015) [39] | East Asians | T2DM | DN | 255 | pers. micr/ria | 235 | pers. norm/ria | DC-C | |||
| current study | - | T2DM | DN | 197 | pers. macr/ria | 155 | pers. norm/ria | 246 | Healthy controls | DC-C, HT-DC-C, HT-C | |
| rs699947 | McKnight (2007) [37] | Caucasians | T1DM | DN | 242 | DN | 301 | Diabetics without DN | 400 | Healthy controls | DC-C |
| Luo (2019) [27] | East Asians | T2DM | DN | 650 | DN | 580 | Diabetics without DN | DC-C | |||
| −1499 C > T (rs833061) | McKnight (2007) [37] | Caucasians | T1DM | DN | 242 | proteinuria > 0.5 g/24 h, DM ≥ 10 yrs and DR | 301 | DM ≥ 15 yrs, norm/ria, no anti-HT meds | 400 | non-diabetics | DC-C |
| Tiwari (2009) [40] | Asian Indians | T2DM | Diabetic CRI | 90 | moderate CRI, pers. s. Cr ≥ 2 mg/dL, DM ≥ 2 yrs, DR | 75 | DM ≥ 10 yrs and s. Cr < 2 mg/dL | DC-C | |||
| Tiwari (2009) [40] | Asian Indians | T2DM | Diabetic CRI | 106 | moderate CRI, s. Cr ≥ 2 mg/dL, DM ≥ 2 yrs, DR | 149 | DM ≥ 10 yrs and s. Cr < 2 mg/dL | DC-C | |||
| −2549 I/D (rs35569394) | Yang (2003) [41] | Caucasians | T1DM | DN | 102 | DM ≥ 10 yrs, pers. macroalbuminuria, retinopathy, without hematuria | 66 | DM ≥ 20 yrs without retinopathy or proteinuria | 141 | non-diabetics | DC-C, HT-DC-C, HT-C |
| Buraczynska (2007) [38] | Caucasians | T2DM | DN | 245 | pers. macr/ria of whom 43% with DR | 91 | DM ≥ 10 yrs, no nephropathy | 493 | non-diabetics | DC-C, HT-DC-C, HT-C | |
| Dabhi (2015) [42] | Asians | T2DM | DN | 102 | pers. micr/ria or proteinuria | 103 | diabetics with norm/ria | 143 | non-diabetics | DC-C, HT-DC-C, HT-C | |
| Amle (2015) [43] | Asians | T2DM | DN | 40 | macr/ria | 40 | only diabetics | 40 | non-diabetics matched for age, gender | DC-C, HT-DC-C, HT-C | |
| rs6921438 | Bonnefond (2013)-D2NG Study [44] | Caucasians | T2DM | 547 | different stages of renal involvement | 286 | normoalbuminuria, DM ≥ 10 yrs | DC-C | |||
| Bonnefond (2013)-Corbeil [44] | Caucasians | T2DM | 683 | stage of kidney disease higher than 2 | 561 | normoalbuminuria, DM ≥ 10 yrs | DC-C | ||||
| Nussdorfer (2024) [45] | Caucasians | T2DM | DN | 344 | pers. micr/ria or macroalbuminuria | 553 | normoalbuminuria, DM ≥ 10 yrs | DC-C | |||
| rs10738760 | Bonnefond (2013)-D2NG Study [44] | Caucasians | T2DM | 547 | different stages of renal involvement | 286 | normoalbuminuria, DM ≥ 10 yrs | DC-C | |||
| Bonnefond (2013)-Corbeil [44] | Caucasians | T2DM | 683 | stage of kidney disease higher than 2 | 561 | normoalbuminuria, DM ≥ 10 yrs | DC-C | ||||
| rs2146323, rs3024997, rs3025000 | Tregouet (2008)-Denmark [46] | Caucasians | T1DM | 489 | persistent macroalbuminuria | 463 | normoalbuminuria, DM ≥ 15 yrs | DC-C | |||
| Tregouet (2008)-Finland [46] | Caucasians | T1DM | 412 | persistent macroalbuminuria | 614 | normoalbuminuria, DM ≥ 15 yrs | DC-C | ||||
| Tregouet (2008)-France [46] | Caucasians | T1DM | 300 | persistent macroalbuminuria | 391 | normoalbuminuria, DM ≥ 15 yrs | DC-C |
| Diseased Controls Versus Cases | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Gene | Variant | RS | Studies (n) | Cases/Controls (n) | RE ORG | 95% LL | 95% UL | I2 (%) | PQ | PE |
| VEGFA | rs2010963 | 6 | 1842/1595 | 0.92 | 0.67 | 1.27 | 83.59 | <0.001 | 0.27 | |
| All in HWE | 6 | |||||||||
| VEGFA | rs699947 | 2 | 892/881 | 1.32 | 0.96 | 1.82 | 68.90 | 0.07 | - | |
| All in HWE | 2 | |||||||||
| VEGFA | −1499 C > T | rs833061 | 3 | 435/524 | 1.28 | 0.63 | 2.57 | 88.86 | 0.00 | 0.16 |
| All in HWE | 3 | |||||||||
| VEGFA | I/D-2549 | rs35569394 | 4 | 489/300 | 1.34 | 0.85 | 2.12 | 66.93 | 0.03 | 0.11 |
| All in HWE | 4 | |||||||||
| VEGFA | rs6921438 | 3 | 1574/1400 | 1.03 | 0.74 | 1.43 | 85.27 | 0.001 | 0.15 | |
| All in HWE | 3 | |||||||||
| VEGFA | rs10738760 | 2 | 1223/843 | 0.98 | 0.85 | 1.14 | 0 | 0.40 | - | |
| All in HWE | 2 | |||||||||
| Healthy controls versus cases | ||||||||||
| VEGFA | I/D-2549 | rs35569394 | 4 | 489/817 | 1.18 | 0.78 | 1.77 | 70.91 | 0.02 | 0.23 |
| All in HWE | ||||||||||
| VEGFA | rs2010963 | 2 | 736/440 | 0.99 | 0.73 | 1.24 | 50.93 | 0.15 | - | |
| All in HWE | ||||||||||
| Healthy controls versus diseased controls versus cases | ||||||||||
| VEGFA | I/D-2549 | rs35569394 | 4 | 489/300/817 | 1.11 | 0.83 | 1.47 | 69.3 | 0.02 | 0.1 |
| All in HWE | 4 | |||||||||
| VEGFA | rs2010963 | 2 | 736/244/440 | 1.00 | 0.80 | 1.25 | 48.65 | 0.16 | - | |
| All in HWE | ||||||||||
| Gene | Variant | RS | Studies (n) | Cases/Controls (n) | RE OR | 95% LL | 95% UL | I2 (%) | PQ | PE |
|---|---|---|---|---|---|---|---|---|---|---|
| VEGFA | C > A | rs2146323 | 3 | 1176/1323 | 0.85 | 0.76 | 0.95 | 0.2 | 0.2 | |
| VEGFA | G > A | rs3024997 | 3 | 1176/1323 | 1.03 | 0.90 | 1.18 | 0.27 | 0.27 | |
| VEGFA | C > T | rs3025000 | 3 | 1176/1323 | 1.01 | 0.89 | 1.14 | 0.18 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziastoudi, M.; Cholevas, C.; Zorz, C.; Dardiotis, E.; Tsironi, E.E.; Divani, M.; Eleftheriadis, T.; Stefanidis, I. The Role of VEGFA in T2DM-Nephropathy: A Genetic Association Study and Meta-Analysis. Genes 2025, 16, 1386. https://doi.org/10.3390/genes16111386
Tziastoudi M, Cholevas C, Zorz C, Dardiotis E, Tsironi EE, Divani M, Eleftheriadis T, Stefanidis I. The Role of VEGFA in T2DM-Nephropathy: A Genetic Association Study and Meta-Analysis. Genes. 2025; 16(11):1386. https://doi.org/10.3390/genes16111386
Chicago/Turabian StyleTziastoudi, Maria, Christos Cholevas, Constantinos Zorz, Efthimios Dardiotis, Evangelia E. Tsironi, Maria Divani, Theodoros Eleftheriadis, and Ioannis Stefanidis. 2025. "The Role of VEGFA in T2DM-Nephropathy: A Genetic Association Study and Meta-Analysis" Genes 16, no. 11: 1386. https://doi.org/10.3390/genes16111386
APA StyleTziastoudi, M., Cholevas, C., Zorz, C., Dardiotis, E., Tsironi, E. E., Divani, M., Eleftheriadis, T., & Stefanidis, I. (2025). The Role of VEGFA in T2DM-Nephropathy: A Genetic Association Study and Meta-Analysis. Genes, 16(11), 1386. https://doi.org/10.3390/genes16111386

