Toward a Multi-Trait Genetic Panel Targeting Training, Rehabilitation, and Chronic Disease Prevention: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Genes Associated with Endurance Performance
3.1. Angiotensin I Converting Enzyme (ACE)
3.2. PPARG Coactivator 1alpha (PPARGC1A)
3.3. Homeostatic Iron Regulator (HFE)
3.4. Uncoupling Protein 2 (UCP2) and Uncoupling Protein 3 (UCP3)
3.5. Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A)
3.6. Peroxisome Proliferator-Activated Receptor Alpha (PPARA)
4. Genes Associated with Power Performance
4.1. Actinin Alpha 3 (ACTN3)
4.2. Solute Carrier Family 16 Member 1 (SLC16A1/MCT1)
4.3. Insulin-like Growth Factor 1 (IGF1)
4.4. Adenosine Monophosphate Deaminase 1 (AMPD1)
4.5. Angiotensinogen (AGT)
4.6. Angiotensin II Receptor Type 2 (AGTR2)
5. Genes Associated with Strength Performance
5.1. Arkadia (RNF111) N-Terminal Like PKA Signaling Regulator 2N (ARK2N/C18ORF25)
5.2. Androgen Receptor (AR)
5.3. Peroxisome Proliferator-Activated Receptor Gamma (PPARG)
5.4. MMS22 Like (MMS22L), Leucine-Rich Pentatricopeptide Repeat-Containing (LRPPRC), Phosphatase and Actin Regulator 1 (PHACTR1) and Methylenetetrahydrofolate Reductase (MTHFR)
6. Genes Associated with Injuries
6.1. Collagen Type I Alpha 1 Chain (COL1A1) and Collagen Type V Alpha 1 Chain (COL5A1)
6.2. Interleukin 6 (IL6)
6.3. Vascular Endothelial Growth Factor A (VEGFA)
6.4. Noggin (NOG)
7. Genes Predisposing Individuals to Metabolic Risk Modulated by Physical Exercise
7.1. FTO Alpha-Ketoglutarate-Dependent Dioxygenase (FTO)
7.2. Peroxisome Proliferator-Activated Receptor Gamma (PPARG)
7.3. Adrenoceptor Beta 3 (ADRB3)
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TGS | Total Genotype Score |
| T2D | Type 2 Diabetes Mellitus |
| HbA1c | Glycated Hemoglobin |
| TNFα | Tumor Necrosis Factor-Alpha |
| IL-6 | Interleukin-6 |
| LDL | Low-Density Lipoprotein |
| HDL | High-Density Lipoprotein |
| BMI | Body Mass Index |
| ASD | Autism Spectrum Disorder |
| AD | Alzheimer’s Disease |
| PD | Parkinson Disease |
| SNPs | Single-Nucleotide Polymorphism |
| ACE | Angiotensin Converting Enzyme |
| PPARGC1A | Peroxisome Proliferator Activated receptor Gamma Coactivator 1-Alpha |
| HFE | Homeostatic Iron Regulator |
| UCP2 | Uncoupling Protein 2 |
| UCP3 | Uncoupling Protein 3 |
| CDKN1A | Cyclin-Dependent Kinase Inhibitor 1A |
| PPARA | Peroxisome Proliferator-Activated Receptor alpha |
| Ang II | Angiotensin II |
| RAAS | Renin–Angiotensin–Aldosterone System |
| Ang I | Angiotensin I |
| NO | Nitric Oxide |
| TFAM | Mitochondrial Transcription Factor A |
| MEF2 | Myocite Enhancer Factor 2 |
| ACTN3 | Actinin Alpha 3 |
| SLC16A1/MCT1 | Solute Carrier Family 16 member 1 |
| IGF-1 | Insulin-like Growth Factor 1 |
| AMPD1 | Adenosine Monophosfate Deaminase 1 |
| AGT | Angiotensinogen |
| AGTR2 | Angiotensin II Receptor Type 2 |
| MCT1 | Monocarboxylate Transporter 1 |
| CAD | Coronary Artery Disease |
| C18ORF25/ARK2N | Chromosome 18 Open Reading Frame 25 |
| AR | Androgen Receptor |
| PPARG | Peroxisome Proliferator-Activated Receptor Gamma |
| MMS22L | Methyl Methanesulfonate Sensitivity Protein-22 Like |
| LRPPRC | Leucine-Rich Pentatricopeptide Repeat-Containing |
| PHACTR1 | Phosphatase and Actin Regulator 1 |
| MTHFR | Methylenetetrahydrofolate Reductase |
| COL1A1 | Collagen Type 1 Alpha 1 |
| COL5A1 | Collagen Type V Alpha 1 |
| VEGFA | Vascular Endothelial Growth Factor A |
| NOG | Noggin |
| FTO | Fat Mass and Obesity Associate |
| ADRB3 | Adrenoreceptor Beta 3 |
| ACL | Anterior Cruciate Ligament |
References
- Howley, E.T. Type of activity: Resistance, aerobic and leisure versus occupational physical activity. Med. Sci. Sports Exerc. 2001, 33 (Suppl. 6), S364–S420. [Google Scholar] [CrossRef]
- Naureen, Z.; Perrone, M.; Paolacci, S.; Maltese, P.E.; Dhuli, K.; Kurti, D.; Dautaj, A.; Miotto, R.; Casadei, A.; Fioretti, B.; et al. Genetic test for the personalization of sport training. Acta Bio-Medica 2020, 91, e2020012. [Google Scholar]
- Peters, M.E.; LoBue, C. The many facets of physical activity, sports, and mental health. Int. Rev. Psychiatry 2024, 36, 193–195. [Google Scholar] [CrossRef]
- Kelly, R.S.; Kelly, M.P.; Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim. Biophys. Acta. Mol. Basis Dis. 2020, 1866, 165936. [Google Scholar]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Coffey, V.G.; Carey, A.L.; Ponnampalam, A.P.; Canny, B.J.; Powell, D.; Hawley, J.A. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med. Sci. Sports Exerc. 2009, 41, 546–565. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sports Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef]
- Zhelankin, A.V.; Iulmetova, L.N.; Ahmetov, I.I.; Generozov, E.V.; Sharova, E.I. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life 2023, 13, 659. [Google Scholar] [CrossRef]
- Blume, K.; Wolfarth, B. Identification of Potential Performance-Related Predictors in Young Competitive Athletes. Front. Physiol. 2019, 10, 1394. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Semenova, E.A.; Bondareva, E.A.; Borisov, O.V.; Andryushchenko, O.N.; Andryushchenko, L.B.; Zmijewski, P.; Generozov, E.V.; Ahmetov, I.I. Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biol. Sport 2021, 38, 659–666. [Google Scholar] [CrossRef]
- Vankeerberghen, A.; Scudiero, O.; De Boeck, K.; Macek, M., Jr.; Pignatti, P.F.; Van Hul, N.; Nuytten, H.; Salvatore, F.; Castaldo, G.; Zemkova, D.; et al. Distribution of human beta-defensin polymorphisms in various control and cystic fibrosis populations. Genomics 2005, 85, 574–581. [Google Scholar] [CrossRef]
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef]
- Beck, K.L.; Thomson, J.S.; Swift, R.J.; von Hurst, P.R. Role of nutrition in performance enhancement and postexercise recovery. Open Access J. Sports Med. 2015, 6, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska-Skrendo, A.; Cięszczyk, P.; Chycki, J.; Sawczuk, M.; Smółka, W. Genetic Markers Associated with Power Athlete Status. J. Hum. Kinet. 2019, 68, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Emery, C.A.; Pasanen, K. Current trends in sport injury prevention. Best Pract. Res. Clin. Rheumatol. 2019, 33, 3–15. [Google Scholar]
- Emery, C.A.; Tyreman, H. Sport participation, sport injury, risk factors and sport safety practices in Calgary and area junior high Schools. J. Paediatr. Child Health 2009, 14, 439e44. [Google Scholar] [CrossRef] [PubMed]
- Emery, C.A.; Meeuwisse, W.H.; McAllister, J.R. A survey of sport participation, sport injury and sport safety practices in adolescents. Clin. J. Sport Med. 2006, 16, 20e6. [Google Scholar]
- Conn, J.M.; Annest, J.L.; Gilchrist, J. Sports and recreation related injury episodes in the US population. Inj. Prev. 2003, 9, 117e23. [Google Scholar] [CrossRef]
- Vostrikova, A.; Pechenkina, V.; Danilova, M.; Boronnikova, S.; Kalendar, R. Gene Polymorphism and Total Genetic Score in Martial Arts Athletes with Different Athletic Qualifications. Genes 2022, 13, 1677. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J.; Grgic, J.; Lucia, A.; Del Coso, J. Can Genetic Testing Identify Talent for Sport? Genes 2019, 10, 972. [Google Scholar] [CrossRef]
- Walsh, R. Lifestyle and mental health. Am. Psychol. 2011, 66, 579–592. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Amanat, S.; Ghahri, S.; Dianatinasab, A.; Fararouei, M.; Dianatinasab, M. Exercise and Type 2 Diabetes. Adv. Exp. Med. Biol. 2020, 1228, 91–105. [Google Scholar]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms linking inflammation to insulin resistance. Int. J. Endocrinol. 2015, 2015, 508409. [Google Scholar] [CrossRef] [PubMed]
- Pappachan, J.M.; Fernandez, C.J.; Ashraf, A.P. Rising tide: The global surge of type 2 diabetes in children and adolescents demands action now. World J. Diabetes 2024, 15, 797–809. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Jorge, M.L.; de Oliveira, V.N.; Resende, N.M.; Paraiso, L.F.; Calixto, A.; Diniz, A.L.; Resende, E.S.; Ropelle, E.R.; Carvalheira, J.B.; Espindola, F.S.; et al. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism 2011, 60, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- AminiLari, Z.; Fararouei, M.; Amanat, S.; Sinaei, E.; Dianatinasab, S.; AminiLari, M.; Daneshi, N.; Dianatinasab, M. The Effect of 12 Weeks Aerobic, Resistance, and Combined Exercises on Omentin-1 Levels and Insulin Resistance Among Type 2 Diabetic Middle-Aged Women. Diabetes Metab. J. 2017, 41, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, J.; Izquierdo, M.; ARGuelles, I.; Forga, L.; Larrión, J.L.; García-Unciti, M.; Idoate, F.; Gorostiaga, E.M. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 2005, 28, 662–667. [Google Scholar] [CrossRef]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Fagard, R.H. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005, 46, 667–675. [Google Scholar] [CrossRef]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, G.; Mao, S.; Zhang, S. The impact of physical exercise interventions on social, behavioral, and motor skills in children with autism: A systematic review and meta-analysis of randomized controlled trials. Front. Pediatr. 2025, 13, 1475019. [Google Scholar] [CrossRef]
- López-Ortiz, S.; Valenzuela, P.L.; Seisdedos, M.M.; Morales, J.S.; Vega, T.; Castillo-García, A.; Nisticò, R.; Mercuri, N.B.; Lista, S.; Lucia, A.; et al. Exercise interventions in Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021, 72, 101479. [Google Scholar]
- Ernst, M.; Folkerts, A.K.; Gollan, R.; Lieker, E.; Caro-Valenzuela, J.; Adams, A.; Cryns, N.; Monsef, I.; Dresen, A.; Roheger, M.; et al. Physical exercise for people with Parkinson’s disease: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2024, 4, CD013856. [Google Scholar]
- Kujala, U.M. Physical activity, genes, and lifetime predisposition to chronic disease. Eur. Rev. Aging Phys. Act. 2011, 8, 31–36. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Vinogradova, O.L.; Williams, A.G. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 292–303. [Google Scholar] [CrossRef]
- Malczewska-Lenczowska, J.; Orysiak, J.; Majorczyk, E.; Zdanowicz, R.; Szczepańska, B.; Starczewski, M.; Kaczmarski, J.; Dybek, T.; Pokrywka, A.; Ahmetov, I.I.; et al. Total Hemoglobin Mass, Aerobic Capacity, and HBB Gene in Polish Road Cyclists. J. Strength Cond. Res. 2016, 30, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Konopka, M.J.; Zeegers, M.P.; Solberg, P.A.; Delhaije, L.; Meeusen, R.; Ruigrok, G.; Rietjens, G.; Sperlich, B. Factors associated with high-level endurance performance: An expert consensus derived via the Delphi technique. PLoS ONE 2022, 17, e0279492. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Kanzleiter, T.; Rath, M.; Penkov, D.; Puchkov, D.; Schulz, N.; Blasi, F.; Schürmann, A. Pknox1/Prep1 regulates mitochondrial oxidative phosphorylation components in skeletal muscle. Mol. Cell. Biol. 2014, 34, 290–298. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Zempo, H.; Fuku, N.; Kikuchi, N.; Miyachi, M.; Murakami, H. Heritability estimates of endurance-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2018, 28, 834–845. [Google Scholar] [CrossRef]
- Sturrock, E.D.; Anthony, C.S.; Danilov, S.M. Chapter 98—Peptidyl-Dipeptidase A/Angiotensin I-Converting Enzyme A2. In Handbook of Proteolytic Enzymes; Rawlings Neil, D., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 480–494. [Google Scholar]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Caputo, I.; Bertoldi, G.; Driussi, G.; Cacciapuoti, M.; Calò, L.A. The RAAS Goodfellas in Cardiovascular System. J. Clin. Med. 2023, 12, 6873. [Google Scholar] [CrossRef] [PubMed]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Kelly, A.L. Genetic association research in football: A systematic review. Eur. J. Sport Sci. 2021, 21, 714–752. [Google Scholar] [CrossRef]
- Barley, J.; Blackwood, A.; Carter, N.D.; Crews, D.E.; Cruickshank, J.K.; Jeffery, S.; Ogunlesi, A.O.; Sagnella, G.A. Angiotensin converting enzyme insertion/deletion polymorphism: Association with ethnic origin. J. Hypertens. 1994, 12, 955–957. [Google Scholar] [CrossRef]
- Wei, Q. The ACE and ACTN3 polymorphisms in female soccer athletes. Genes Environ. 2021, 43, 5. [Google Scholar] [CrossRef]
- Taylor, R.R.; Mamotte, C.D.; Fallon, K.; van Bockxmeer, F.M. Elite athletes and the gene for angiotensin-converting enzyme. J. Appl. Physiol. 1999, 87, 1035–1037. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef]
- Alvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernández-García, B.; Rodríguez, C.; Braga, S.; et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, I.B.; Woods, D.R.; Montgomery, H.E.; Shneider, O.V.; Kazakov, V.I.; Tomilin, N.V.; Rogozkin, V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet. 2001, 9, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, H.; Evrengul, H.; Tanriverdi, S.; Turgut, S.; Akdag, B.; Kaftan, H.A.; Semiz, E. Improved endothelium dependent vasodilation in endurance athletes and its relation with ACE I/D polymorphism. Circ. J. 2005, 69, 1105–1110. [Google Scholar] [CrossRef]
- Zhang, B.; Tanaka, H.; Shono, N.; Miura, S.; Kiyonaga, A.; Shindo, M.; Saku, K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 2003, 63, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Moochhala, S.M.; Tham, S.Y.; Lu, J.; Chia, M.; Byrne, C.; Hu, Q.; Lee, L.K. Relationship between angiotensin-converting enzyme ID polymorphism and VO(2max) of Chinese males. Life Sci. 2003, 73, 2625–2630. [Google Scholar] [CrossRef]
- Falahati, A.; Arazi, H. Association of ACE gene polymorphism with cardiovascular determinants of trained and untrained Iranian men. Genes Environ. 2019, 41, 8. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current Progress in Sports Genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar] [PubMed]
- Montgomery, H.; Marshall, R.; Hemingway, H.; Myerson, S.; Clarkson, P.; Dollery, C.; Hayward, M.; Holliman, D.E.; Jubb, M.; World, M.; et al. Human gene for physical performance. Nature 1998, 393, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ACE I allele–the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef]
- Collins, M.; Xenophontos, S.L.; Cariolou, M.A.; Mokone, G.G.; Hudson, D.E.; Anastasiades, L.; Noakes, T.D. The ACE gene and endurance performance during the South African Ironman Triathlons. Med. Sci. Sports Exerc. 2004, 36, 1314–1320. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Popov, D.V.; Astratenkova, I.V.; Druzhevskaia, A.M.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. Using molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Fiziol. Cheloveka. 2008, 34, 86–91. [Google Scholar]
- Pescatello, L.S.; Corso, L.M.; Santos, L.P.; Livingston, J.; Taylor, B.A. Angiotensin-converting enzyme and the genomics of endurance performance. In Routledge Handbook of Sport and Exercise Systems Genetics; Routledge: London, UK, 2019; pp. 216–250. [Google Scholar]
- Vaughan, D.; Huber-Abel, F.A.; Graber, F.; Hoppeler, H.; Flück, M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur. J. Appl. Physiol. 2013, 113, 1719–1729. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sports Med. 2018, 48, 907–931. [Google Scholar] [CrossRef]
- Kelly, A.L.; Williams, C.A. Physical Characteristics and the Talent Identification and Development Processes in Male Youth Soccer: A Narrative Review. Strength Cond. J. 2020, 42, 15–34. [Google Scholar] [CrossRef]
- Thompson, W.R.; Binder-Macleod, S.A. Association of genetic factors with selected measures of physical performance. Phys. Ther. 2006, 86, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.; Hickman, M.; Jamshidi, Y.; Brull, D.; Vassiliou, V.; Jones, A.; Humphries, S.; Montgomery, H. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 2001, 108, 230–232. [Google Scholar] [CrossRef]
- Danser, A.H.; Batenburg, W.W.; van den Meiracker, A.H.; Danilov, S.M. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol. Ther. 2007, 113, 607–618. [Google Scholar] [CrossRef]
- Williams, A.G.; Rayson, M.P.; Jubb, M.; World, M.; Woods, D.R.; Hayward, M.; Martin, J.; Humphries, S.E.; Montgomery, H.E. The ACE gene and muscle performance. Nature 2000, 403, 614. [Google Scholar] [CrossRef]
- Erskine, R.M.; Williams, A.G.; Jones, D.A.; Stewart, C.E.; Degens, H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand. J. Med. Sci. Sports 2014, 24, 642–648. [Google Scholar] [PubMed]
- Orysiak, J.; Mazur-Różycka, J.; Busko, K.; Gajewski, J.; Szczepanska, B.; Malczewska-Lenczowska, J. Individual and Combined Influence of ACE and ACTN3 Genes on Muscle Phenotypes in Polish Athletes. J. Strength Cond. Res. 2018, 32, 2776–2782. [Google Scholar] [CrossRef]
- Wollinger, L.M.; Dal Bosco, S.M.; Rempe, C.; Almeida, S.E.; Berlese, D.B.; Castoldi, R.P.; Arndt, M.E.; Contini, V.; Genro, J.P. Role of ACE and AGT gene polymorphisms in genetic susceptibility to diabetes mellitus type 2 in a Brazilian sample. Genet. Mol. Res. 2015, 14, 19110–19116. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Perkovic, V.; de Galan, B.E.; Zoungas, S.; Pillai, A.; Jardine, M.; Patel, A.; Cass, A.; Neal, B.; Poulter, N.; et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. 2009, 20, 1813–1821. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Fassi, A.; Ilieva, A.P.; Bruno, S.; Iliev, I.P.; Brusegan, V.; Rubis, N.; Gherardi, G.; Arnoldi, F.; Ganeva, M.; et al. Preventing microalbuminuria in type 2 diabetes. New Engl. J. Med. 2004, 351, 1941–1951. [Google Scholar] [CrossRef]
- Naresh, V.V.; Reddy, A.L.; Sivaramakrishna, G.; Sharma, P.V.; Vardhan, R.V.; Kumar, V.S. Angiotensin converting enzyme gene polymorphism in type II diabetics with nephropathy. Indian J. Nephrol. 2009, 19, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.T.; Abbas, S.; Siddiqi, Z.; Mahdi, F. Association between ACE(rs4646994), FABP2 (rs1799883), MTHFR(rs1801133), FTO (rs9939609) Genes Polymorphism and Type 2 Diabetes with Dyslipidemia. Int. J. Mol. Cell. Med. 2017, 6, 121–130. [Google Scholar]
- Jayapalan, J.J.; Muniandy, S.; Chan, S.P. Null association between ACE gene I/D polymorphism and diabetic nephropathy among multiethnic Malaysian subjects. Indian J. Hum. Genet. 2010, 16, 78–86. [Google Scholar] [CrossRef]
- Liang, H.; Ward, W.F. PGC-1alpha: A key regulator of energy metabolism. Adv. Physiol. Educ. 2006, 30, 145–151. [Google Scholar] [CrossRef]
- Lucia, A.; Gómez-Gallego, F.; Barroso, I.; Rabadán, M.; Bandrés, F.; San Juan, A.F.; Chicharro, J.L.; Ekelund, U.; Brage, S.; Earnest, C.P.; et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. 2005, 99, 344–348. [Google Scholar] [CrossRef]
- Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Steinbacher, P.; Feichtinger, R.G.; Kedenko, L.; Kedenko, I.; Reinhardt, S.; Schönauer, A.L.; Leitner, I.; Sänger, A.M.; Stoiber, W.; Kofler, B.; et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE 2015, 10, e0123881. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.R.; Lockey, S.J.; Heffernan, S.M.; Herbert, A.J.; Stebbings, G.K.; Day, S.H.; Collins, M.; Pitsiladis, Y.P.; Erskine, R.M.; Williams, A.G. The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance. J. Sports Sci. 2023, 41, 56–62. [Google Scholar] [CrossRef]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2010, 20, e145–e150. [Google Scholar] [CrossRef]
- Maciejewska, A.; Sawczuk, M.; Cieszczyk, P.; Mozhayskaya, I.A.; Ahmetov, I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012, 30, 101–113. [Google Scholar] [CrossRef]
- Stefan, N.; Thamer, C.; Staiger, H.; Machicao, F.; Machann, J.; Schick, F.; Venter, C.; Niess, A.; Laakso, M.; Fritsche, A.; et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrinol. Metab. 2007, 92, 1827–1833. [Google Scholar] [CrossRef]
- Nishida, Y.; Iyadomi, M.; Higaki, Y.; Tanaka, H.; Kondo, Y.; Otsubo, H.; Horita, M.; Hara, M.; Tanaka, K. Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern. Med. 2015, 54, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Barroso, I.; Luan, J.; Ekelund, U.; Crowley, V.E.; Brage, S.; Sandhu, M.S.; Jakes, R.W.; Middelberg, R.P.; Harding, A.H.; et al. PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312] O2max. Med. Sci. Sports Exerc. 2003, 35, 1998–2004. [Google Scholar] [CrossRef]
- Gineviciene, V.; Jakaitiene, A.; Aksenov, M.O.; Aksenova, A.V.; Druzhevskaya, A.M.; Astratenkova, I.V.; Egorova, E.S.; Gabdrakhmanova, L.J.; Tubelis, L.; Kucinskas, V.; et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ridderstråle, M.; Johansson, L.E.; Rastam, L.; Lindblad, U. Increased risk of obesity associated with the variant allele of the PPARGC1A Gly482Ser polymorphism in physically inactive elderly men. Diabetologia 2006, 49, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Barroso, I.; Luan, J.; Sandhu, M.S.; Franks, P.W.; Crowley, V.; Schafer, A.J.; O’Rahilly, S.; Wareham, N.J. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. Diabetologia 2006, 49, 501–505. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Luan, J.; Andersen, G.; Muller, Y.L.; Wheeler, E.; Brito, E.C.; O’Rahilly, S.; Pedersen, O.; Baier, L.J.; Knowler, W.C.; et al. The Gly482Ser genotype at the PPARGC1A gene and elevated blood pressure: A meta-analysis involving 13,949 individuals. J. Appl. Physiol. 2008, 105, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Yang, K.J.; Piao, L.S. Correlation Between PPARGC1A Gene Rs8192678 G>A Polymorphism and Susceptibility to Type-2 Diabetes. Open Life Sci. 2019, 14, 43–52. [Google Scholar] [CrossRef]
- Ha, C.D.; Cho, J.K.; Han, T.; Lee, S.H.; Kang, H.S. Relationship of PGC-1α gene polymorphism with insulin resistance syndrome in Korean children. Asia-Pac. J. Public Health 2015, 27, NP544–NP551. [Google Scholar] [CrossRef]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. New Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef]
- Hollerer, I.; Bachmann, A.; Muckenthaler, M.U. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 2017, 102, 809–817. [Google Scholar] [CrossRef]
- McKay, A.K.; Pyne, D.B.; Burke, L.M.; Peeling, P. Iron metabolism: Interactions with energy and carbohydrate availability. Nutrients 2020, 12, 3692. [Google Scholar] [CrossRef]
- Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport nutrigenomics: Personalized nutrition for athletic performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef]
- Porto, G.; Brissot, P.; Swinkels, D.W.; Zoller, H.; Kamarainen, O.; Patton, S.; Alonso, I.; Morris, M.; Keeney, S. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH). Eur. J. Hum. Genet. 2016, 24, 479–495. [Google Scholar]
- Allen, K.J.; Gurrin, L.C.; Constantine, C.C.; Osborne, N.J.; Delatycki, M.B.; Nicoll, A.J.; McLaren, C.E.; Bahlo, M.; Nisselle, A.E.; Vulpe, C.D.; et al. Iron-overload-related disease in HFE hereditary hemochromatosis. New Engl. J. Med. 2008, 358, 221–230. [Google Scholar] [PubMed]
- Hanson, E.H.; Imperatore, G.; Burke, W. HFE gene and hereditary hemochromatosis: A HuGE review. Hum. Genome Epidemiol. Am. J. Epidemiol. 2001, 154, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Hermine, O.; Dine, G.; Genty, V.; Marquet, L.A.; Fumagalli, G.; Tafflet, M.; Guillem, F.; Van Lierde, F.; Rousseaux-Blanchi, M.-P.; Palierne, C.; et al. Eighty percent of French sport winners in Olympic, World and Europeans competitions have mutations in the hemochromatosis HFE gene. Biochimie 2015, 119, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, J.L.; Hoyos, J.; Gómez-Gallego, F.; Villa, J.G.; Bandrés, F.; Celaya, P.; Jiménez, F.; Alonso, J.M.; Córdova, A.; Lucia, A. Mutations in the hereditary haemochromatosis gene HFE in professional endurance athletes. Br. J. Sports Med. 2004, 38, 418–421. [Google Scholar] [CrossRef]
- Brutsaert, T.D.; Hernandez-Cordero, S.; Rivera, J.; Viola, T.; Hughes, G.; Haas, J.D. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am. J. Clin. Nutr. 2003, 77, 441–448. [Google Scholar] [CrossRef]
- Grealy, R.; Herruer, J.; Smith, C.L.; Hiller, D.; Haseler, L.J.; Griffiths, L.R. Evaluation of a 7-gene genetic profile for athletic endurance phenotype in ironman championship triathletes. PLoS ONE 2015, 10, e0145171. [Google Scholar] [CrossRef]
- Astle, W.J.; Elding, H.; Jiang, T.; Allen, D.; Ruklisa, D.; Mann, A.L.; Mead, D.; Bouman, H.; Riveros-Mckay, F.; Kostadima, M.A.; et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 2016, 167, 1415–1429. [Google Scholar] [CrossRef]
- Semenova, E.A.; Miyamoto-Mikami, E.; Akimov, E.B.; Al-Khelaifi, F.; Murakami, H.; Zempo, H.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Borisov, O.V.; et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020, 120, 665–673. [Google Scholar] [CrossRef]
- Thakkar, D.; Sicova, M.; Guest, N.S.; Garcia-Bailo, B.; El-Sohemy, A. HFE Genotype and Endurance Performance in Competitive Male Athletes. Med. Sci. Sports Exerc. 2021, 53, 1385–1390. [Google Scholar]
- Colli, M.L.; Gross, J.L.; Canani, L.H. Mutation H63D in the HFE gene confers risk for the development of type 2 diabetes mellitus but not for chronic complications. J. Diabetes Its Complicat. 2011, 25, 25–30. [Google Scholar] [CrossRef]
- Qi, L.; Meigs, J.; Manson, J.E.; Ma, J.; Hunter, D.; Rifai, N.; Hu, F.B. HFE genetic variability, body iron stores, and the risk of type 2 diabetes in U.S. women. Diabetes 2005, 54, 3567–3572. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Bao, W.; Rong, S.; Fang, M.; Wang, D.; Yao, P.; Hu, F.B.; Liu, L. Hemochromatosis gene (HFE) polymorphisms and risk of type 2 diabetes mellitus: A meta-analysis. Am. J. Epidemiol. 2012, 176, 461–472. [Google Scholar] [CrossRef]
- Fleury, C.; Sanchis, D. The mitochondrial uncoupling protein-2: Current status. Int. J. Biochem. Cell Biol. 1999, 31, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Holdys, J.; Gronek, P.; Kryściak, J.; Stanisławski, D. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports. Acta Biochim. Pol. 2013, 60, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Buemann, B.; Schierning, B.; Toubro, S.; Bibby, B.M.; Sørensen, T.; Dalgaard, L.; Pedersen, O.; Astrup, A. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 467–471. [Google Scholar]
- Astrup, A.; Toubro, S.; Dalgaard, L.T.; Urhammer, S.A.; Sorensen, T.I.; Pedersen, O. Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 1030–1034. [Google Scholar]
- Ahmetov, I.I.; Williams, A.G.; Popov, D.V.; Lyubaeva, E.V.; Hakimullina, A.M.; Fedotovskaya, O.N.; Mozhayskaya, I.A.; Vinogradova, O.L.; Astratenkova, I.V.; Montgomery, H.E.; et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet. 2009, 126, 751–761. [Google Scholar] [CrossRef]
- Gronek, P.; Gronek, J.; Lulińska-Kuklik, E.; Spieszny, M.; Niewczas, M.; Kaczmarczyk, M.; Petr, M.; Fischerova, P.; Ahmetov, I.I.; Żmijewski, P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (−9/+9), UCP2(Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J. Hum. Kinet. 2018, 64, 87–98. [Google Scholar] [CrossRef]
- Sessa, F.; Chetta, M.; Petito, A.; Franzetti, M.; Bafunno, V.; Pisanelli, D.; Sarno, M.; Iuso, S.; Margaglione, M. Gene polymorphisms and sport attitude in Italian athletes. Genet. Test. Mol. Biomark. 2011, 15, 285–290. [Google Scholar] [CrossRef]
- Fang, Q.C.; Jia, W.P.; Yang, M.; Bao, Y.Q.; Chen, L.; Zhang, R.; Xiang, K.S. Effect of polymorphism of uncoupling protein 3 gene -55 (C>T) on the resting energy expenditure, total body fat and regional body fat in Chinese. Chin. J. Med. Genet. 2005, 22, 485–488. [Google Scholar]
- Liu, Y.J.; Liu, P.Y.; Long, J.; Lu, Y.; Elze, L.; Recker, R.R.; Deng, H.W. Linkage and association analyses of the UCP3 gene with obesity phenotypes in Caucasian families. Physiol. Genom. 2005, 22, 197–203. [Google Scholar] [CrossRef]
- Schrauwen, P.; Xia, J.; Walder, K.; Snitker, S.; Ravussin, E. A novel polymorphism in the proximal UCP3 promoter region: Effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 1242–1245. [Google Scholar] [CrossRef]
- Jia, J.J.; Zhang, X.; Ge, C.R.; Jois, M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes. Rev. 2009, 10, 519–526. [Google Scholar] [CrossRef]
- Walder, K.; Norman, R.A.; Hanson, R.L.; Schrauwen, P.; Neverova, M.; Jenkinson, C.P.; Easlick, J.; Warden, C.H.; Pecqueur, C.; Raimbault, S.; et al. Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima indians. Hum. Mol. Genet. 1998, 7, 1431–1435. [Google Scholar] [CrossRef]
- Yu, X.; Jacobs, D.R., Jr.; Schreiner, P.J.; Gross, M.D.; Steffes, M.W.; Fornage, M. The uncoupling protein 2 Ala55Val polymorphism is associated with diabetes mellitus: The CARDIA study. Clin. Chem. 2005, 51, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Lee, W.J.; Wang, W.; Huang, M.T.; Lee, Y.C.; Pan, W.H. Ala55Val polymorphism on UCP2 gene predicts greater weight loss in morbidly obese patients undergoing gastric banding. Obes. Surg. 2007, 17, 926–933. [Google Scholar] [CrossRef]
- Wang, H.; Chu, W.S.; Lu, T.; Hasstedt, S.J.; Kern, P.A.; Elbein, S.C. Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E1–E7. [Google Scholar] [CrossRef]
- Dalgaard, L.T.; Andersen, G.; Larsen, L.H.; Sørensen, T.I.; Andersen, T.; Drivsholm, T.; Borch-Johnsen, K.; Fleckner, J.; Hansen, T.; Din, N.; et al. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity. Obes. Res. 2003, 11, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Niu, T.; Song, Y.; Tinker, L.; Kuller, L.H.; Liu, S. Genetic variants in the UCP2-UCP3 gene cluster and risk of diabetes in the Women’s Health Initiative Observational Study. Diabetes 2008, 57, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Kotani, K.; Fujiwara, S.; Sano, Y.; Domichi, M.; Tsuzaki, K.; Sakane, N. The common -55 C/T polymorphism in the promoter region of the uncoupling protein 3 gene reduces prevalence of obesity and elevates serum high-density lipoprotein cholesterol levels in the general Japanese population. Metabolism 2008, 57, 410–415. [Google Scholar] [CrossRef]
- Halsall, D.J.; Luan, J.; Saker, P.; Huxtable, S.; Farooqi, I.S.; Keogh, J.; Wareham, N.J.; O’Rahilly, S. Uncoupling protein 3 genetic variants in human obesity: The c-55t promoter polymorphism is negatively correlated with body mass index in a UK Caucasian population. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, E.; Klannemark, M.; Agardh, E.; Groop, L.; Agardh, C.D. Putative role of polymorphisms in UCP1-3 genes for diabetic nephropathy. J. Diabetes Its Complicat. 2004, 18, 103–107. [Google Scholar] [CrossRef]
- Otabe, S.; Clement, K.; Dina, C.; Pelloux, V.; Guy-Grand, B.; Froguel, P.; Vasseur, F. A genetic variation in the 5′ flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity. Diabetologia 2000, 43, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.M.; Wang, J.G.; Staessen, J.A.; Kertmen, E.; Schmidt-Petersen, K.; Zidek, W.; Paul, M.; Brand, E. Uncoupling protein 1 and 3 polymorphisms are associated with waist-to-hip ratio. J. Mol. Med. 2003, 81, 327–332. [Google Scholar] [CrossRef]
- Berentzen, T.; Dalgaard, L.T.; Petersen, L.; Pedersen, O.; Sørensen, T.I. Interactions between physical activity and variants of the genes encoding uncoupling proteins -2 and -3 in relation to body weight changes during a 10-y follow-up. Int. J. Obes. 2005, 29, 93–99. [Google Scholar] [CrossRef]
- Ochoa, M.C.; Santos, J.L.; Azcona, C.; Moreno-Aliaga, M.J.; Martínez-González, M.A.; Martínez, J.A.; Marti, A.; GENOI Members. Association between obesity and insulin resistance with UCP2-UCP3 gene variants in Spanish children and adolescents. Mol. Genet. Metab. 2007, 92, 351–358. [Google Scholar] [CrossRef]
- Ticli, G.; Cazzalini, O.; Stivala, L.A.; Prosperi, E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int. J. Mol. Sci. 2022, 23, 7058. [Google Scholar] [CrossRef]
- Cazzalini, O.; Scovassi, A.I.; Savio, M.; Stivala, L.A.; Prosperi, E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 2010, 704, 12–20. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Cao, X.; Li, H.; Cai, H.; Ma, Y.; Huang, Y.; Lan, X.; Lei, C.; Ma, Y.; et al. MiR-208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. J. Cell. Physiol. 2019, 234, 3720–3729. [Google Scholar] [CrossRef]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J., Jr.; Olson, E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef]
- Fu, L.; Wang, H.; Liao, Y.; Zhou, P.; Xu, Y.; Zhao, Y.; Xie, S.; Zhao, S.; Li, X. miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets. RNA Biol. 2020, 17, 743–754. [Google Scholar] [PubMed]
- Semenova, E.A.; Zempo, H.; Miyamoto-Mikami, E.; Kumagai, H.; Larin, A.K.; Sultanov, R.I.; Babalyan, K.A.; Zhelankin, A.V.; Tobina, T.; Shiose, K.; et al. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells 2022, 11, 3910. [Google Scholar] [CrossRef] [PubMed]
- Ricoy, J.R.; Encinas, A.R.; Cabello, A.; Madero, S.; Arenas, J. Histochemical study of the vastus lateralis muscle fibre types of athletes. J. Physiol. Biochem. 1998, 54, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.L.; Klitgaard, H.; Saltin, B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: Influence of training. Acta Physiol. Scand. 1994, 151, 135–142. [Google Scholar] [CrossRef]
- Damer, A.; El Meniawy, S.; McPherson, R.; Wells, G.; Harper, M.E.; Dent, R. Association of muscle fiber type with measures of obesity: A systematic review. Obes. Rev. 2022, 23, e13444. [Google Scholar] [CrossRef]
- Kazancı, D.; Polat, T.; Kaynar, Ö.; Bilici, M.F.; Tacal Aslan, B.; Ulucan, K. PPARA and IL6: Exploring associations with athletic performance and genotype polymorphism. Cell. Mol. Biol. 2023, 69, 69–75. [Google Scholar] [CrossRef]
- Russell, A.P.; Feilchenfeldt, J.; Schreiber, S.; Praz, M.; Crettenand, A.; Gobelet, C.; Meier, C.A.; Bell, D.R.; Kralli, A.; Giacobino, J.P.; et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 2003, 52, 2874–2881. [Google Scholar]
- Lopez-Leon, S.; Tuvblad, C.; Forero, D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport 2016, 33, 3–6. [Google Scholar]
- Jamshidi, Y.; Montgomery, H.E.; Hense, H.W.; Myerson, S.G.; Torra, I.P.; Staels, B.; World, M.J.; Doering, A.; Erdmann, J.; Hengstenberg, C.; et al. Peroxisome proliferator--activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation 2002, 105, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Flavell, D.M.; Astratenkova, I.V.; Komkova, A.I.; Lyubaeva, E.V.; Tarakin, P.P.; Shenkman, B.S.; Vdovina, A.B.; Netreba, A.I.; et al. PPARalpha gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006, 97, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, A.; Sawczuk, M.; Cięszczyk, P. Variation in the PPARα gene in Polish rowers. J. Sci. Med. Sport 2011, 14, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Tural, E.; Kara, N.; Agaoglu, S.A.; Elbistan, M.; Tasmektepligil, M.Y.; Imamoglu, O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014, 41, 5799–5804. [Google Scholar] [CrossRef]
- Fruchart, J.C.; Duriez, P.; Staels, B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr. Opin. Lipidol. 1999, 10, 245–257. [Google Scholar]
- Petr, M.; Stastny, P.; Zajac, A.; Tufano, J.J.; Maciejewska-Skrendo, A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 1472. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Popov, D.V.; Mozhaĭskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zhurnal Im. I.M. Sechenova 2007, 93, 837–843. [Google Scholar]
- Broos, S.; Windelinckx, A.; De Mars, G.; Huygens, W.; Peeters, M.W.; Aerssens, J.; Vlietinck, R.; Beunen, G.P.; Thomis, M.A. Is PPARα intron 7 G/C polymorphism associated with muscle strength characteristics in nonathletic young men? Scand. J. Med. Sci. Sports 2013, 23, 494–500. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Egorova, E.S.; Mustafina, L.J. The PPARA gene polymorphism in team sports athletes. Cent. Eur. J. Sport Sci. Med. 2013, 1, 19–24. [Google Scholar]
- Ginevičienė, V.; Pranckevičienė, E.; Milašius, K.; Kučinskas, V. Relating fitness phenotypes to genotypes in Lithuanian elite athletes. Acta Medica Litu. 2010, 17, 1–10. [Google Scholar] [CrossRef]
- Végh, D.; Reichwalderová, K.; Slaninová, M.; Vavák, M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes 2022, 13, 1525. [Google Scholar] [CrossRef]
- Al-Samawi, R.I.; Al-Kashwan, T.A.; Algenabi, A.H.A. Associations of the PPARα and Lipoprotein Lipase Enzyme Gene Polymorphisms with Dyslipidemia in Obese and Non-obese Males. J. Obes. Metab. Syndr. 2024, 33, 213–221. [Google Scholar] [CrossRef]
- Flavell, D.M.; Jamshidi, Y.; Hawe, E.; Pineda Torra, I.; Taskinen, M.R.; Frick, M.H.; Nieminen, M.S.; Kesäniemi, Y.A.; Pasternack, A.; Staels, B.; et al. Peroxisome proliferator-activated receptor alpha gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation 2002, 105, 1440–1445. [Google Scholar] [CrossRef]
- Doney, A.S.; Fischer, B.; Lee, S.P.; Morris, A.D.; Leese, G.; Palmer, C.N. Association of common variation in the PPARA gene with incident myocardial infarction in individuals with type 2 diabetes: A Go-DARTS study. Nucl. Recept. 2005, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Márkus, B.; Vörös, K.; Supák, D.; Melczer, Z.; Cseh, K.; Kalabay, L. Association of PPAR Alpha Intron 7 G/C, PPAR Gamma 2 Pro12Ala, and C161T Polymorphisms with Serum Fetuin-A Concentrations. PPAR Res. 2017, 2017, 7636019. [Google Scholar] [CrossRef]
- Pitsiladis, Y.; Wang, G.; Wolfarth, B.; Scott, R.; Fuku, N.; Mikami, E.; He, Z.; Fiuza-Luces, C.; Eynon, N.; Lucia, A. Genomics of elite sporting performance: What little we know and necessary advances. Br. J. Sports Med. 2013, 47, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, T.; Simon, P.; Moser, D.A. Epigenetics in sports. Sports Med. 2013, 43, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Weyerstraß, J.; Stewart, K.; Wesselius, A.; Zeegers, M. Nine genetic polymorphisms associated with power athlete status—A Meta-Analysis. J. Sci. Med. Sport 2018, 21, 213–220. [Google Scholar] [CrossRef]
- Ipekoglu, G.; Cetin, T.; Apaydin, N.; Calcali, T.; Senel, E. The Role of AGT, AMPD1, HIF1α, IL-6 Gene Polymorphisms in the Athletes’ Power Status: A Meta-Analysis. J. Hum. Kinet. 2023, 89, 77–87. [Google Scholar] [CrossRef]
- Williams, K.; Ingerslev, L.R.; Bork-Jensen, J.; Wohlwend, M.; Hansen, A.N.; Small, L.; Ribel-Madsen, R.; Astrup, A.; Pedersen, O.; Auwerx, J.; et al. Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat. Commun. 2020, 11, 2695. [Google Scholar] [CrossRef]
- Zurlo, F.; Larson, K.; Bogardus, C.; Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Investig. 1990, 86, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Hagberg, J.M.; Pérusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006-2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Hanson, E.D.; Lucia, A.; Houweling, P.J.; Garton, F.; North, K.N.; Bishop, D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013, 43, 803–817. [Google Scholar] [CrossRef] [PubMed]
- North, K.N.; Beggs, A.H. Deficiency of a skeletal muscle isoform of alpha-actinin (alpha-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscul. Disord. 1996, 6, 229–235. [Google Scholar] [CrossRef]
- Del Coso, J.; Hiam, D.; Houweling, P.; Pérez, L.M.; Eynon, N.; Lucía, A. More than a ‘speed gene’: ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur. J. Appl. Physiol. 2019, 119, 49–60. [Google Scholar] [CrossRef]
- El Ouali, E.M.; Barthelemy, B.; Del Coso, J.; Hackney, A.C.; Laher, I.; Govindasamy, K.; Mesfioui, A.; Granacher, U.; Zouhal, H. A Systematic Review and Meta-analysis of the Association Between ACTN3 R577X Genotypes and Performance in Endurance Versus Power Athletes and Non-athletes. Sports Med. Open 2024, 10, 37. [Google Scholar]
- Ahmetov, I.I.; Donnikov, A.E.; Trofimov, D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol. Sport 2014, 31, 105–108. [Google Scholar] [CrossRef]
- Houweling, P.J.; Papadimitriou, I.D.; Seto, J.T.; Pérez, L.M.; Coso, J.D.; North, K.N.; Lucia, A.; Eynon, N. Is evolutionary loss our gain? The role of ACTN3 p. Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum. Mutat. 2018, 39, 1774–1787. [Google Scholar]
- Demirci, B.; Bulgay, C.; Ceylan, H.İ.; Öztürk, M.E.; Öztürk, D.; Kazan, H.H.; Ergun, M.A.; Cerit, M.; Semenova, E.A.; Larin, A.K.; et al. Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses. Genes 2023, 14, 1190. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Rabinovich, M.; Kassem, E.; Meckel, Y. ACTN3 Polymorphism: Comparison Between Elite Swimmers and Runners. Sports Med. Open 2015, 1, 13. [Google Scholar] [CrossRef]
- Arejano, G.G.; Hoffmann, L.V.; Ferreira Wyse, L.; Espíndola Correia, P.; Pieniz, S.; Torma Botelho, F.; Schneider, A.; Schadock, I.; Castilho Barros, C. Genetic polymorphisms in the angiotensin converting enzyme, actinin 3 and paraoxonase 1 genes in women with diabetes and hypertension. Arch. Endocrinol. Metab. 2023, 68, e210204. [Google Scholar] [CrossRef]
- Riedl, I.; Osler, M.E.; Benziane, B.; Chibalin, A.V.; Zierath, J.R. Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle. Physiol. Rep. 2015, 3, e12314. [Google Scholar] [CrossRef]
- Felmlee, M.A.; Jones, R.S.; Rodriguez-Cruz, V.; Follman, K.E.; Morris, M.E. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol. Rev. 2020, 72, 466–485. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, M.; Yao, X.; Fei, Y.; Lin, Z.; Li, Z.; Cai, K.; Zhao, Y.; Luo, Z. HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Rep. 2020, 33, 108487. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, C.; Wang, S.; Zhuo, S.; Zhu, J.; Li, Z.; Liu, Y.; Yang, L.; Chen, Y. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. Sci. Adv. 2024, 10, eadn4508. [Google Scholar] [CrossRef]
- Brooks, G.A. Are arterial, muscle and working limb lactate exchange data obtained on men at altitude consistent with the hypothesis of an intracellular lactate shuttle? Adv. Exp. Med. Biol. 1999, 474, 185–204. [Google Scholar]
- Juel, C.; Holten, M.K.; Dela, F. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J. Physiol. 2004, 556, 297–304. [Google Scholar] [CrossRef]
- Sawczuk, M.; Banting, L.K.; Cięszczyk, P.; Maciejewska-Karłowska, A.; Zarębska, A.; Leońska-Duniec, A.; Jastrzębski, Z.; Bishop, D.J.; Eynon, N. MCT1 A1470T: A novel polymorphism for sprint performance? J. Sci. Med. Sport 2015, 18, 114–118. [Google Scholar] [CrossRef]
- Gasser, B.; Dössegger, A.; Giraud, M.N.; Flück, M. T-Allele Carriers of Mono Carboxylate Transporter One Gene Polymorphism rs1049434 Demonstrate Altered Substrate Metabolization during Exhaustive Exercise. Genes 2024, 15, 918. [Google Scholar] [CrossRef]
- Dzitkowska-Zabielska, M.; Bojarczuk, A.; Borczyk, M.; Piechota, M.; Korostyński, M.; Adamczyk, J.G.; Trybek, G.; Massidda, M.; Cięszczyk, P. Transmission Distortion of MCT1 rs1049434 among Polish Elite Athletes. Genes 2022, 13, 870. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Bosnyák, E.; Semenova, E.A.; Szmodis, M.; Griff, A.; Móra, Á.; Almási, G.; Trájer, E.; Udvardy, A.; Kostryukova, E.S.; et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport 2021, 38, 465–474. [Google Scholar] [CrossRef] [PubMed]
- İpekoğlu, G.; Çetin, T.; Sırtbaş, T.; Kılıç, R.; Odabaşı, M.; Bayraktar, F. Candidate gene polymorphisms and power athlete status: A meta-analytical approach. J. Physiol. Biochem. 2025, 81, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Pasqualetti, M.; Onori, M.E.; Canu, G.; Moretti, G.; Minucci, A.; Baroni, S.; Mordente, A.; Urbani, A.; Galvani, C. The Relationship Between ACE, ACTN3 and MCT1 Genetic Polymorphisms and Athletic Performance in Elite Rugby Union Players: A Preliminary Study. Genes 2022, 13, 969. [Google Scholar] [CrossRef]
- McGinley, C.; Bishop, D.J. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J. Appl. Physiol. 2016, 121, 1290–1305. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.D. Intermittent hypoxic training: Fact and fancy. High Alt. Med. Biol. 2002, 3, 177–193. [Google Scholar] [CrossRef]
- Gore, C.J.; Hahn, A.G.; Aughey, R.J.; Martin, D.T.; Ashenden, M.J.; Clark, S.A.; Garnham, A.P.; Roberts, A.D.; Slater, G.J.; McKenna, M.J. Live high: Train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol. Scand. 2001, 173, 275–286. [Google Scholar] [CrossRef]
- Faiss, R.; Girard, O.; Millet, G.P. Advancing hypoxic training in team sports: From intermittent hypoxic training to repeated sprint training in hypoxia. Br. J. Sports Med. 2013, 47, i45–i50. [Google Scholar] [CrossRef]
- Lundby, C.; Robach, P. Does ‘altitude training’ increase exercise performance in elite athletes? Exp. Physiol. 2016, 101, 783–788. [Google Scholar] [CrossRef]
- Millet, G.P.; Faiss, R.; Brocherie, F.; Girard, O. Hypoxic training and team sports: A challenge to traditional methods? Br. J. Sports Med. 2013, 47, i6–i7. [Google Scholar] [CrossRef]
- Roels, B.; Millet, G.P.; Marcoux, C.J.; Coste, O.; Bentley, D.J.; Candau, R.B. Effects of hypoxic interval training on cycling performance. Med. Sci. Sports Exerc. 2005, 37, 138–146. [Google Scholar] [CrossRef]
- Roels, B.; Thomas, C.; Bentley, D.J.; Mercier, J.; Hayot, M.; Millet, G. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J. Appl. Physiol. 2007, 102, 79–86. [Google Scholar] [CrossRef]
- Clark, S.A.; Aughey, R.J.; Gore, C.J.; Hahn, A.G.; Townsend, N.E.; Kinsman, T.A.; Chow, C.M.; McKenna, M.J.; Hawley, J.A. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. J. Appl. Physiol. 2004, 96, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.; Bentley, D.J.; Roels, B.; Mc Naughton, L.R.; Mercier, J.; Cameron-Smith, D. Effects of intermittent training on anaerobic performance and MCT transporters in athletes. PLoS ONE 2014, 9, e95092. [Google Scholar] [CrossRef]
- Lee, Y.B.; Kim, D.H.; Kim, S.M.; Kim, N.H.; Choi, K.M.; Baik, S.H.; Park, Y.G.; Han, K.; Yoo, H.J. Risk of type 2 diabetes according to the cumulative exposure to metabolic syndrome or obesity: A nationwide population-based study. J. Diabetes Investig. 2020, 11, 1583–1593. [Google Scholar] [CrossRef]
- Cupeiro, R.; Benito, P.; Amigo, T.; González-Lamuño, D. The association of SLC16A1 (MCT1) gene polymorphism with body composition changes during weight loss interventions: A randomized trial with sex-dependent analysis. Appl. Physiol. Nutr. Metab. = Physiol. Appl. Nutr. Et Metab. 2025, 50, 1–12. [Google Scholar] [CrossRef]
- Nicholls, A.R.; Holt, R.I. Growth Hormone and Insulin-Like Growth Factor-1. Front. Horm. Res. 2016, 47, 101–114. [Google Scholar]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Otero-Tarrazón, A.; Perelló-Amorós, M.; Jorge-Pedraza, V.; Moshayedi, F.; Sánchez-Moya, A.; García-Pérez, I.; Fernández-Borràs, J.; García de la Serrana, D.; Navarro, I.; Blasco, J.; et al. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front. Endocrinol. 2023, 14, 1101356. [Google Scholar] [CrossRef] [PubMed]
- Eustache, I.; Seyfritz, N.; Gueritaud, J.P. Effects of insulin-like growth factors on organotypic cocultures of embryonic rat brainstem slices and skeletal muscle fibers. Brain Res. Dev. Brain Res. 1994, 81, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Kurland, E.S.; Vereault, D.; Adler, R.A.; Rackoff, P.J.; Craig, W.Y.; Witte, S.; Rogers, J.; Bilezikian, J.P. Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: Implications for genetic studies of bone mineral density. J. Clin. Endocrinol. Metab. 1998, 83, 2286–2290. [Google Scholar] [CrossRef]
- Wu, Y.; Li, R.; Wu, X.; Guo, W.; Zhong, W.; Li, Y.; Song, Y.; Tao, B.; Chen, J.; Han, D.; et al. Overexpression of growth hormone improved hepatic glucose catabolism and relieved liver lipid deposition in common carp (Cyprinus carpio L.) fed a high-starch diet. Front. Endocrinol. 2022, 13, 1038479. [Google Scholar] [CrossRef]
- Eklund, E.; Hellberg, A.; Berglund, B.; Brismar, K.; Hirschberg, A.L. IGF-I and IGFBP-1 in Relation to Body Composition and Physical Performance in Female Olympic Athletes. Front. Endocrinol. 2021, 12, 708421. [Google Scholar] [CrossRef]
- Mendes, J.; Palma, J.; Santos, A.; Ribeiro, J.; Oliveiros, B.; Silva, H. Association of rs35767 polymorphism in the IGF1 gene with athletic performance in power and endurance sports: A meta-analysis. Growth Horm. IGF Res. 2024, 79, 101627. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Eliakim, A. Can IGF-I polymorphism affect power and endurance athletic performance? Growth Horm. IGF Res. 2013, 23, 175–178. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Remmel, L.; Nemet, D.; Jürimäe, J.; Eliakim, A. The prevalence of IGF-I axis genetic polymorphisms among decathlon athletes. Growth Horm. IGF Res. 2022, 64, 101468. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Eliakim, A. The combined frequency of IGF and myostatin polymorphism among track field athletes and swimmers. Growth Horm. IGF Res. 2017, 32, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Kostek, M.C.; Devaney, J.M.; Gordish-Dressman, H.; Harris, T.B.; Thompson, P.D.; Clarkson, P.M.; Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; Pescatello, L.S.; et al. A polymorphism near IGF1 is associated with body composition and muscle function in women from the Health, Aging, and Body Composition Study. Eur. J. Appl. Physiol. 2010, 110, 315–324. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32, S157–S163. [Google Scholar] [CrossRef]
- Seppä, S.; Voutilainen, R.; Tenhola, S. Markers of Insulin Sensitivity in 12-Year-Old Children Born from Preeclamptic Pregnancies. J. Pediatr. 2015, 167, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Teppala, S.; Shankar, A. Association between serum IGF-1 and diabetes among U.S. adults. Diabetes Care 2010, 33, 2257–2259. [Google Scholar] [CrossRef]
- Thankamony, A.; Capalbo, D.; Marcovecchio, M.L.; Sleigh, A.; Jørgensen, S.W.; Hill, N.R.; Mooslehner, K.; Yeo, G.S.; Bluck, L.; Juul, A.; et al. Low circulating levels of IGF-1 in healthy adults are associated with reduced β-cell function, increased intramyocellular lipid, and enhanced fat utilization during fasting. J. Clin. Endocrinol. Metab. 2014, 99, 2198–2207. [Google Scholar] [CrossRef]
- Gouda, W.; Mageed, L.; Azmy, O.; Okasha, A.; Shaker, Y.; Ashour, E. Association of genetic variants in IGF-1 gene with susceptibility to gestational and type 2 diabetes mellitus. Meta Gene 2019, 21, 100588. [Google Scholar] [CrossRef]
- Wang, T.; Maimaitituersun, G.; Shi, H.; Chen, C.; Ma, Q.; Su, Y.; Yao, H.; Zhu, J. The relationship between polymorphism of insulin-like growth factor I gene and susceptibility to type 2 diabetes in Uygur population, Xinjiang, China. Genes Genom. 2022, 44, 499–508. [Google Scholar] [CrossRef]
- Zeng, Q.; Zou, D.; Zeng, Q.; Chen, X.; Wei, Y.; Guo, R. Association Between Insulin-like Growth Factor-1 rs35767 Polymorphism and Type 2 Diabetes Mellitus Susceptibility: A Meta-Analysis. Front. Genet. 2021, 12, 774489. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Morisaki, H.; Morisaki, T.; Holmes, E.W. Identification of functional domains in AMPD1 by mutational analysis. Biochem. Biophys. Res. Commun. 1994, 205, 1010–1017. [Google Scholar] [CrossRef]
- Hafen, P.S.; Law, A.S.; Matias, C.; Miller, S.G.; Brault, J.J. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1. J. Appl. Physiol. 2022, 133, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Jakaitienė, A.; Pranculis, A.; Milašius, K.; Tubelis, L.; Utkus, A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014, 15, 58. [Google Scholar] [CrossRef]
- Norman, B.; Sabina, R.L.; Jansson, E. Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects. J. Appl. Physiol. 2001, 91, 258–264. [Google Scholar] [CrossRef]
- Morisaki, H.; Morisaki, T.; Kariko, K.; Genetta, T.; Holmes, E.W. Positive and negative elements mediate control of alternative splicing in the AMPD1 gene. Gene 2000, 246, 365–372. [Google Scholar] [CrossRef]
- Sabina, R.L.; Swain, J.L.; Colmes, E.W. Myoadenylate deaminase deficiency. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Walle, D., Eds.; McGraw-Hill: New York, NY, USA, 1995; pp. 1769–1780. [Google Scholar]
- Cieszczyk, P.; Ostanek, M.; Leońska-Duniec, A.; Sawczuk, M.; Maciejewska, A.; Eider, J.; Ficek, K.; Sygit, K.; Kotarska, K. Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. J. Sports Sci. 2012, 30, 31–35. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Taylor, K.D.; Guo, X.; Quiñones, M.J.; Cui, J.; Li, X.; Hang, T.; Yang, H.; Holmes, E.; Hsueh, W.A.; et al. Variation in the gene for muscle-specific AMP deaminase is associated with insulin clearance, a highly heritable trait. Diabetes 2005, 54, 1222–1227. [Google Scholar] [CrossRef]
- Kaliszczak, R.; Kornacewicz-Jach, Z.; Ciechanowicz, A.; Chlubek, D. Association of C34T AMPD1 gene polymorphism with features of metabolic syndrome in patients with coronary artery disease or heart failure. Scand. J. Clin. Lab. Investig. 2009, 69, 102–112. [Google Scholar]
- Norman, B.; Mahnke-Zizelman, D.K.; Vallis, A.; Sabina, R.L. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle. J. Appl. Physiol. 1998, 85, 1273–1278. [Google Scholar] [CrossRef]
- Safranow, K.; Suchy, J.; Jakubowska, K.; Olszewska, M.; Bińczak-Kuleta, A.; Kurzawski, G.; Rzeuski, R.; Czyżycka, E.; Łoniewska, B.; Kornacewicz-Jach, Z.; et al. AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases. J. Appl. Genet. 2011, 52, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Toyama, K.; Morisaki, H.; Kitamura, Y.; Gross, M.; Tamura, T.; Nakahori, Y.; Vance, J.M.; Speer, M.; Kamatani, N.; Morisaki, T. Haplotype analysis of human AMPD1 gene: Origin of common mutant allele. J. Med. Genet. 2004, 41, e74. [Google Scholar] [CrossRef]
- Kanugula, A.K.; Kaur, J.; Batra, J.; Ankireddypalli, A.R.; Velagapudi, R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus 2023, 15, e40725. [Google Scholar] [CrossRef]
- Leung, P.S. The peptide hormone angiotensin II: Its new functions in tissues and organs. Curr. Protein Pept. Sci. 2004, 5, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Corvol, P.; Jeunemaitre, X. Molecular genetics of human hypertension: Role of angiotensinogen. Endocr. Rev. 1997, 18, 662–677. [Google Scholar]
- Jeunemaitre, X.; Soubrier, F.; Kotelevtsev, Y.V.; Lifton, R.P.; Williams, C.S.; Charru, A.; Hunt, S.C.; Hopkins, P.N.; Williams, R.R.; Lalouel, J.M. Molecular basis of human hypertension: Role of angiotensinogen. Cell 1992, 71, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Jones, A.; Woods, D.R. Skeletal muscle RAS and exercise performance. Int. J. Biochem. Cell Biol. 2003, 35, 855–866. [Google Scholar] [CrossRef]
- González-Estrada, G.D.; Berrio, G.B.; Gómez-Ríos, D. Association between ACE, ACTN3, AGT, BDKRB2, and IL-6 gene polymorphisms and elite status in Colombian athletes. J. Phys. Educ. Sport 2023, 23, 1036–1043. [Google Scholar]
- Zarębska, A.; Sawczyn, S.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karłowska, A.; Sawczuk, M.; Leońska-Duniec, A.; Eider, J.; Grenda, A.; Cięszczyk, P. Association of rs699 (M235T) polymorphism in the AGT gene with power but not endurance athlete status. J. Strength Cond. Res. 2013, 27, 2898–2903. [Google Scholar] [CrossRef]
- Buxens, A.; Ruiz, J.R.; Arteta, D.; Artieda, M.; Santiago, C.; González-Freire, M.; Martínez, A.; Tejedor, D.; Lao, J.I.; Gómez-Gallego, F.; et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand. J. Med. Sci. Sports 2011, 21, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gallego, F.; Santiago, C.; González-Freire, M.; Yvert, T.; Muniesa, C.A.; Serratosa, L.; Altmäe, S.; Ruiz, J.R.; Lucia, A. The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2009, 34, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto-Mikami, E.; Murakami, H.; Tsuchie, H.; Takahashi, H.; Ohiwa, N.; Miyachi, M.; Kawahara, T.; Fuku, N. Lack of association between genotype score and sprint/power performance in the Japanese population. J. Sci. Med. Sport 2017, 20, 98–103. [Google Scholar] [CrossRef]
- Skov, J.; Persson, F.; Frøkiær, J.; Christiansen, J.S. Tissue Renin-Angiotensin systems: A unifying hypothesis of metabolic disease. Front. Endocrinol. 2014, 5, 23. [Google Scholar] [CrossRef]
- Underwood, P.C.; Adler, G.K. The renin angiotensin aldosterone system and insulin resistance in humans. Curr. Hypertens. Rep. 2013, 15, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Shakhanova, A.; Aukenov, N.; Nurtazina, A.; Massabayeva, M.; Babenko, D.; Adiyeva, M.; Shaimardonov, N. Association of polymorphism genes LPL, ADRB2, AGT and AGTR1with risk of hyperinsulinism and insulin resistance in the Kazakh population. Biomed. Rep. 2020, 13, 35. [Google Scholar] [CrossRef]
- Prat-Larquemin, L.; Oppert, J.M.; Clément, K.; Hainault, I.; Basdevant, A.; Guy-Grand, B.; Quignard-Boulangé, A. Adipose angiotensinogen secretion, blood pressure, and AGT M235T polymorphism in obese patients. Obes. Res. 2004, 12, 556–561. [Google Scholar] [CrossRef]
- Takakura, Y.; Yoshida, T.; Yoshioka, K.; Umekawa, T.; Kogure, A.; Toda, H.; Kagawa, K.; Fukui, S.; Yoshikawa, T. Angiotensinogen gene polymorphism (Met235Thr) influences visceral obesity and insulin resistance in obese Japanese women. Metabolism 2006, 55, 819–824. [Google Scholar] [CrossRef]
- Mehri, S.; Koubaa, N.; Hammami, S.; Mahjoub, S.; Chaaba, R.; Nakbi, A.; Zouari, B.; Abid, M.; Ben Arab, S.; Baudin, B.; et al. Genotypic interactions of renin-angiotensin system genes with diabetes type 2 in a Tunisian population. Life Sci. 2010, 87, 49–54. [Google Scholar] [CrossRef]
- Brasier, A.R.; Li, J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 1996, 27, 465–475. [Google Scholar] [CrossRef]
- Lin, J.; Hu, F.B.; Qi, L.; Curhan, G.C. Genetic polymorphisms of angiotensin-2 type 1 receptor and angiotensinogen and risk of renal dysfunction and coronary heart disease in type 2 diabetes mellitus. BMC Nephrol. 2009, 10, 9. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef]
- Johnston, A.P.; Baker, J.; De Lisio, M.; Parise, G. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. J. Renin-Angiotensin-Aldosterone Syst. 2011, 12, 75–84. [Google Scholar] [CrossRef]
- Mustafina, L.J.; Naumov, V.A.; Cieszczyk, P.; Popov, D.V.; Lyubaeva, E.V.; Kostryukova, E.S.; Fedotovskaya, O.N.; Druzhevskaya, A.M.; Astratenkova, I.V.; Glotov, A.S.; et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp. Physiol. 2014, 99, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Yvert, T.P.; Zempo, H.; Gabdrakhmanova, L.J.; Kikuchi, N.; Miyamoto-Mikami, E.; Murakami, H.; Naito, H.; Cieszczyk, P.; Leznicka, K.; Kostryukova, E.S.; et al. AGTR2 and sprint/power performance: A case-control replication study for rs11091046 polymorphism in two ethnicities. Biol. Sport 2018, 35, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Dossin, F.; Heard, E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb. Perspect. Biol. 2022, 14, a040196. [Google Scholar] [CrossRef]
- Sullivan, J.C. Sex and the renin-angiotensin system: Inequality between the sexes in response to RAS stimulation and inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1220–R1226. [Google Scholar] [CrossRef] [PubMed]
- Kuschel, L.B.; Sonnenburg, D.; Engel, T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare 2022, 10, 1937. [Google Scholar] [CrossRef]
- Zempo, H.; Miyamoto-Mikami, E.; Kikuchi, N.; Fuku, N.; Miyachi, M.; Murakami, H. Heritability estimates of muscle strength-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2017, 27, 1537–1546. [Google Scholar] [CrossRef]
- Sriramachandran, A.M.; Meyer-Teschendorf, K.; Pabst, S.; Ulrich, H.D.; Gehring, N.H.; Hofmann, K.; Praefcke, G.J.K.; Dohmen, R.J. Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nat. Commun. 2019, 10, 3678. [Google Scholar] [CrossRef]
- Blazev, R.; Carl, C.S.; Ng, Y.K.; Molendijk, J.; Voldstedlund, C.T.; Zhao, Y.; Xiao, D.; Kueh, A.J.; Miotto, P.M.; Haynes, V.R.; et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 2022, 34, 1561–1577.e9. [Google Scholar] [CrossRef]
- Ng, Y.K.; Blazev, R.; McNamara, J.W.; Dutt, M.; Molendijk, J.; Porrello, E.R.; Elliott, D.A.; Parker, B.L. Affinity Purification-Mass Spectrometry and Single Fiber Physiology/Proteomics Reveals Mechanistic Insights of C18ORF25. J. Proteome Res. 2024, 23, 1285–1297. [Google Scholar] [CrossRef]
- Çığırtaş, R.; Bulgay, C.; Kazan, H.H.; Akman, O.; Sporiš, G.; John, G.; Yusupov, R.A.; Sultanov, R.I.; Zhelankin, A.V.; Semenova, E.A.; et al. The ARK2N (C18ORF25) Genetic Variant Is Associated with Muscle Fiber Size and Strength Athlete Status. Metabolites 2024, 14, 684. [Google Scholar] [CrossRef] [PubMed]
- Serrano, N.; Colenso-Semple, L.M.; Lazauskus, K.K.; Siu, J.W.; Bagley, J.R.; Lockie, R.G.; Costa, P.B.; Galpin, A.J. Extraordinary fast-twitch fiber abundance in elite weightlifters. PLoS ONE 2019, 14, e0207975. [Google Scholar] [CrossRef]
- Trezise, J.; Blazevich, A.J. Anatomical and Neuromuscular Determinants of Strength Change in Previously Untrained Men Following Heavy Strength Training. Front. Physiol. 2019, 10, 1001. [Google Scholar] [CrossRef]
- Ruple, B.A.; Godwin, J.S.; Mesquita, P.H.C.; Osburn, S.C.; Sexton, C.L.; Smith, M.A.; Ogletree, J.C.; Goodlett, M.D.; Edison, J.L.; Ferrando, A.A.; et al. Myofibril and Mitochondrial Area Changes in Type I and II Fibers Following 10 Weeks of Resistance Training in Previously Untrained Men. Front. Physiol. 2021, 12, 728683. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Ruegg, U.T.; Takeda, S. ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy. Int. J. Mol. Sci. 2018, 19, 2804. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.R.; Kraemer, W.J.; Focht, B.C.; Volek, J.S.; DuPont, W.H.; Caldwell, L.K.; Maresh, C.M. Endocrinological Roles for Testosterone in Resistance Exercise Responses and Adaptations. Sports Med. 2017, 47, 1709–1720. [Google Scholar] [CrossRef]
- Dubois, V.; Laurent, M.; Boonen, S.; Vanderschueren, D.; Claessens, F. Androgens and skeletal muscle: Cellular and molecular action mechanisms underlying the anabolic actions. Cell. Mol. Life Sci. 2012, 69, 1651–1667. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Mac, R.P.; Lee, M.; Yarasheski, K.E.; Sinha-Hikim, I.; Dzekov, C.; Dzekov, J.; et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J. Clin. Endocrinol. Metab. 2005, 90, 678–688. [Google Scholar] [CrossRef]
- Palazzolo, I.; Gliozzi, A.; Rusmini, P.; Sau, D.; Crippa, V.; Simonini, F.; Onesto, E.; Bolzoni, E.; Poletti, A. The role of the polyglutamine tract in androgen receptor. J. Steroid Biochem. Mol. Biol. 2008, 108, 245–253. [Google Scholar] [CrossRef]
- Ackerman, C.M.; Lowe, L.P.; Lee, H.; Hayes, M.G.; Dyer, A.R.; Metzger, B.E.; Lowe, W.L.; Urbanek, M.; Hapo Study Cooperative Research Group. Ethnic variation in allele distribution of the androgen receptor (AR) (CAG)n repeat. J. Androl. 2012, 33, 210–215. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Kemppainen, J.A.; Voegel, J.J.; Gronemeyer, H.; Wilson, E.M. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J. Biol. Chem. 1999, 274, 37219–37225. [Google Scholar] [CrossRef]
- van Royen, M.E.; van Cappellen, W.A.; de Vos, C.; Houtsmuller, A.B.; Trapman, J. Stepwise androgen receptor dimerization. J. Cell Sci. 2012, 125, 1970–1979. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, G.; Yang, M.; Cheong, A.; Harris, J.M.; Irvine, R.A.; Lambert, P.F.; Moore, N.L.; Raynor, M.; Neufing, P.J.; Coetzee, G.A.; et al. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet. 2004, 13, 1677–1692. [Google Scholar] [CrossRef]
- Sheppard, R.L.; Spangenburg, E.E.; Chin, E.R.; Roth, S.M. Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development. Physiol. Genom. 2011, 43, 1135–1143. [Google Scholar] [CrossRef]
- Chambon, C.; Duteil, D.; Vignaud, A.; Ferry, A.; Messaddeq, N.; Malivindi, R.; Kato, S.; Chambon, P.; Metzger, D. Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc. Natl. Acad. Sci. USA 2010, 107, 14327–14332. [Google Scholar] [CrossRef]
- Walsh, S.; Zmuda, J.M.; Cauley, J.A.; Shea, P.R.; Metter, E.J.; Hurley, B.F.; Ferrell, R.E.; Roth, S.M. Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. J. Appl. Physiol. 2005, 98, 132–137. [Google Scholar] [CrossRef]
- Campbell, B.C.; Gray, P.B.; Eisenberg, D.T.; Ellison, P.; Sorenson, M.D. Androgen receptor CAG repeats and body composition among Ariaal men. Int. J. Androl. 2009, 32, 140–148. [Google Scholar] [CrossRef]
- Nielsen, T.L.; Hagen, C.; Wraae, K.; Bathum, L.; Larsen, R.; Brixen, K.; Andersen, M. The impact of the CAG repeat polymorphism of the androgen receptor gene on muscle and adipose tissues in 20-29-year-old Danish men: Odense Androgen Study. Eur. J. Endocrinol. 2010, 162, 795–804. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; V Shikhova, Y.; R Dondukovskaya, R.; A Topanova, A.; A Semenova, E.; V Astratenkova, I.; Ahmetov, I.I. Androgen receptor gene microsatellite polymorphism is associated with muscle mass and strength in bodybuilders and power athlete status. Ann. Hum. Biol. 2021, 48, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; Sato, K.; Gallaugher, M.P.B.; Oikawa, S.Y.; McNicholas, P.D.; Fujita, S.; Phillips, S.M. Muscle Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men. Front. Physiol. 2018, 9, 1373. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.B.; Haun, C.T.; Roberson, P.A.; Mumford, P.W.; Kephart, W.C.; Romero, M.A.; Osburn, S.C.; Vann, C.G.; Young, K.C.; Beck, D.T.; et al. Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS ONE 2018, 13, e0195203. [Google Scholar] [CrossRef] [PubMed]
- Wyce, A.; Bai, Y.; Nagpal, S.; Thompson, C.C. Research Resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol. Endocrinol. 2010, 24, 1665–1674. [Google Scholar] [CrossRef]
- Yin, L.; Lu, L.; Lin, X.; Wang, X. Crucial role of androgen receptor in resistance and endurance trainings-induced muscle hypertrophy through IGF-1/IGF-1R- PI3K/Akt- mTOR pathway. Nutr. Metab. 2020, 17, 26. [Google Scholar] [CrossRef]
- Tirabassi, G.; Cignarelli, A.; Perrini, S.; Delli Muti, N.; Furlani, G.; Gallo, M.; Pallotti, F.; Paoli, D.; Giorgino, F.; Lombardo, F.; et al. Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action. Int. J. Endocrinol. 2015, 2015, 298107. [Google Scholar] [CrossRef]
- Stanworth, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. Androgen receptor CAG repeat polymorphism is associated with serum testosterone levels, obesity and serum leptin in men with type 2 diabetes. Eur. J. Endocrinol. 2008, 159, 739–746. [Google Scholar] [CrossRef]
- Stanworth, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. Dyslipidaemia is associated with testosterone, oestradiol and androgen receptor CAG repeat polymorphism in men with type 2 diabetes. Clin. Endocrinol. 2011, 74, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Heald, A.H.; Yadegar Far, G.; Livingston, M.; Fachim, H.; Lunt, M.; Narayanan, R.P.; Siddals, K.; Moreno, G.; Jones, R.; Malipatil, N.; et al. Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycaemia in men with type 2 diabetes mellitus: A prospective cohort study. Cardiovasc. Endocrinol. Metab. 2020, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Spiegelman, B.M. PPARgamma: A nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 2001, 276, 37731–37734. [Google Scholar] [CrossRef] [PubMed]
- Fajas, L.; Auboeuf, D.; Raspé, E.; Schoonjans, K.; Lefebvre, A.M.; Saladin, R.; Najib, J.; Laville, M.; Fruchart, J.C.; Deeb, S.; et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J. Biol. Chem. 1997, 272, 18779–18789. [Google Scholar] [CrossRef]
- Tontonoz, P.; Hu, E.; Graves, R.A.; Budavari, A.I.; Spiegelman, B.M. mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994, 8, 1224–1234. [Google Scholar] [CrossRef]
- Yen, C.J.; Beamer, B.A.; Negri, C.; Silver, K.; Brown, K.A.; Yarnall, D.P.; Burns, D.K.; Roth, J.; Shuldiner, A.R. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: Identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 1997, 241, 270–274. [Google Scholar] [CrossRef]
- Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamäki, J.; Mykkänen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W.; Auwerx, J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998, 20, 284–287. [Google Scholar] [CrossRef]
- Masugi, J.; Tamori, Y.; Mori, H.; Koike, T.; Kasuga, M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. Biochem. Biophys. Res. Commun. 2000, 268, 178–182. [Google Scholar] [CrossRef]
- Ek, J.; Andersen, G.; Urhammer, S.A.; Hansen, L.; Carstensen, B.; Borch-Johnsen, K.; Drivsholm, T.; Berglund, L.; Hansen, T.; Lithell, H.; et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians. Diabetologia 2001, 44, 1170–1176. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Mozhayskaya, I.A.; Lyubaeva, E.V.; Vinogradova, O.L.; Rogozkin, V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008, 146, 630–632. [Google Scholar] [CrossRef]
- Maciejewska-Karlowska, A.; Sawczuk, M.; Cieszczyk, P.; Zarebska, A.; Sawczyn, S. Association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene and strength athlete status. PLoS ONE 2013, 8, e67172. [Google Scholar] [CrossRef]
- Li, S.; He, C.; Nie, H.; Pang, Q.; Wang, R.; Zeng, Z.; Song, Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 919087. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Moreland, E.; Homma, H.; Semenova, E.A.; Saito, M.; Larin, A.K.; Kobatake, N.; Yusupov, R.A.; Okamoto, T.; Nakazato, K.; et al. Genes and Weightlifting Performance. Genes 2021, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Piwko, W.; Mlejnkova, L.J.; Mutreja, K.; Ranjha, L.; Stafa, D.; Smirnov, A.; Brodersen, M.M.; Zellweger, R.; Sturzenegger, A.; Janscak, P.; et al. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J. 2016, 35, 2584–2601. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef]
- Cui, J.; Wang, L.; Ren, X.; Zhang, Y.; Zhang, H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front. Physiol. 2019, 10, 595. [Google Scholar] [CrossRef]
- Wiezlak, M.; Diring, J.; Abella, J.; Mouilleron, S.; Way, M.; McDonald, N.Q.; Treisman, R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J. Cell Sci. 2012, 125, 5860–5872. [Google Scholar] [CrossRef]
- Schwahn, B.; Rozen, R. Polymorphisms in the methylenetetrahydrofolate reductase gene: Clinical consequences. Am. J. Pharmacogenomics 2001, 1, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, A.; Ahmetov, I.I.; Sawczyn, S.; Weiner, A.S.; Kaczmarczyk, M.; Ficek, K.; Maciejewska-Karlowska, A.; Sawczuk, M.; Leonska-Duniec, A.; Klocek, T.; et al. Association of the MTHFR 1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes. J. Sports Sci. 2014, 32, 375–382. [Google Scholar] [CrossRef]
- Poodineh, M.; Saravani, R.; Mirhosseini, M.; Sargazi, S. Association of Two Methylenetetrahydrofolate Reductase Polymorphisms (rs1801133, rs1801131) with the Risk of Type 2 Diabetes in South-East of Iran. Rep. Biochem. Mol. Biol. 2019, 8, 178–183. [Google Scholar]
- Yan, Y.; Liang, H.; Yang, S.; Wang, J.; Xie, L.; Qin, X.; Li, S. Methylenetetrahydrofolate reductase A1298C polymorphism and diabetes risk: Evidence from a meta-analysis. Ren. Fail. 2014, 36, 1013–1017. [Google Scholar] [CrossRef]
- Zhou, B.S.; Bu, G.Y.; Li, M.; Chang, B.G.; Zhou, Y.P. Tagging SNPs in the MTHFR gene and risk of ischemic stroke in a Chinese population. Int. J. Mol. Sci. 2014, 15, 8931–8940. [Google Scholar] [CrossRef]
- Maestro, A.; Del Coso, J.; Aguilar-Navarro, M.; Gutiérrez-Hellín, J.; Morencos, E.; Revuelta, G.; Ruiz Casares, E.; Perucho, T.; Varillas-Delgado, D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front. Genet. 2022, 13, 1035899. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K.; Turkiewicz, A.; Hughes, V.; Frobell, R.; Englund, M. High genetic contribution to anterior cruciate ligament rupture: Heritability ~69. Br. J. Sports Med. 2020, 55, 102392. [Google Scholar] [CrossRef]
- Sun, Z.; Cięszczyk, P.; Humińska-Lisowska, K.; Michałowska-Sawczyn, M.; Yue, S. Genetic Determinants of the Anterior Cruciate Ligament Rupture in Sport: An Up-to-Date Systematic Review. J. Hum. Kinet. 2023, 87, 105–117. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.; Shao, Z.; Li, C.; Li, Y.; Liu, Q.; Zhang, Y.; Tan, B.; Liu, Y. Identifying multiple collagen gene family members as potential gastric cancer biomarkers using integrated bioinformatics analysis. PeerJ 2020, 8, e9123. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Kim, S.H.; Seo, W.Y.; Jeong, Y.; Shin, M.C.; Ryu, D.; Lee, S.B.; Choi, Y.J.; Kim, K. Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts. BMB Rep. 2021, 54, 329–334. [Google Scholar] [CrossRef]
- Iriyama, S.; Ogura, Y.; Nishikawa, S.; Hosoi, J.; Amano, S. Regeneration of collagen fibrils at the papillary dermis by reconstructing basement membrane at the dermal-epidermal junction. Sci. Rep. 2022, 12, 795. [Google Scholar] [CrossRef]
- Junkiert-Czarnecka, A.; Pilarska-Deltow, M.; Bąk, A.; Heise, M.; Haus, O. New variants in COL5A1 gene among Polish patients with Ehlers-Danlos syndrome: Analysis of nine cases. Postep. Dermatol. I Alergol. 2019, 36, 29–33. [Google Scholar] [CrossRef]
- Lin, Z.; Zeng, J.; Wang, X. Compound phenotype of osteogenesis imperfecta and Ehlers-Danlos syndrome caused by combined mutations in COL1A1 and COL5A1. Biosci. Rep. 2019, 39, BSR20181409. [Google Scholar] [CrossRef]
- Żyluk, A. The role of genetic factors in carpal tunnel syndrome etiology: A review. Adv. Clin. Exp. Med. 2020, 29, 623–628. [Google Scholar] [CrossRef]
- Xie, P.; Liu, B.; Zhang, L.; Chen, R.; Yang, B.; Dong, J.; Rong, L. Association of COL1A1 polymorphisms with osteoporosis: A meta-analysis of clinical studies. Int. J. Clin. Exp. Med. 2015, 8, 14764–14781. [Google Scholar]
- Mann, V.; Hobson, E.E.; Li, B.; Stewart, T.L.; Grant, S.F.; Robins, S.P.; Aspden, R.M.; Ralston, S.H. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Investig. 2001, 107, 899–907. [Google Scholar] [CrossRef]
- Bornstein, P.; McKay, J.; Morishima, J.K.; Devarayalu, S.; Gelinas, R.E. Regulatory elements in the first intron contribute to transcriptional control of the human alpha 1(I) collagen gene. Proc. Natl. Acad. Sci. USA 1987, 84, 8869–8873. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Chen, K.; Wu, B.; Liu, H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: A meta-analysis. Oncotarget 2017, 8, 27627–27634. [Google Scholar] [CrossRef]
- Garcia-Giralt, N.; Nogués, X.; Enjuanes, A.; Puig, J.; Mellibovsky, L.; Bay-Jensen, A.; Carreras, R.; Balcells, S.; Díez-Pérez, A.; Grinberg, D. Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density. J. Bone Miner. Res. 2002, 17, 384–393. [Google Scholar] [CrossRef]
- Jin, H.; Evangelou, E.; Ioannidis, J.P.; Ralston, S.H. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: Meta-analysis of published studies. Osteoporos. Int. 2011, 22, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Posthumus, M. Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exerc. Sport Sci. Rev. 2011, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Mokone, G.G.; Schwellnus, M.P.; Noakes, T.D.; Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sports 2006, 16, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Laguette, M.J.; Abrahams, Y.; Prince, S.; Collins, M. Sequence variants within the 3′-UTR of the COL5A1 gene alters mRNA stability: Implications for musculoskeletal soft tissue injuries. Matrix Biol. 2011, 30, 338–345. [Google Scholar] [CrossRef]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Calò, C.M. Influence of the COL5A1 rs12722 on musculoskeletal injuries in professional soccer players. J. Sports Med. Phys. Fit. 2015, 55, 1348–1353. [Google Scholar]
- Miyamoto-Mikami, E.; Miyamoto, N.; Kumagai, H.; Hirata, K.; Kikuchi, N.; Zempo, H.; Kimura, N.; Kamiya, N.; Kanehisa, H.; Naito, H.; et al. COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in Japanese athletes. BMC Med. Genet. 2019, 20, 192. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Ji, Z.; Gao, S.; Aizezi, A.; Fan, Y.; Wang, Z.; Ning, K. Association of COL5A1 gene polymorphisms and musculoskeletal soft tissue injuries: A meta-analysis based on 21 observational studies. J. Orthop. Surg. Res. 2022, 17, 129. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Steensberg, A.; Schjerling, P. Exercise and interleukin-6. Curr. Opin. Hematol. 2001, 8, 137–141. [Google Scholar] [CrossRef]
- Maculewicz, E.; Antkowiak, B.; Antkowiak, O.; Mastalerz, A.; Białek, A.; Cywińska, A.; Borecka, A.; Humińska-Lisowska, K.; Garbacz, A.; Lorenz, K.; et al. IL-6 Polymorphisms Are Not Related to Obesity Parameters in Physically Active Young Men. Genes 2021, 12, 1498. [Google Scholar] [CrossRef]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, S3. [Google Scholar] [CrossRef]
- Irie, K.; Uchiyama, E.; Iwaso, H. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee 2003, 10, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef]
- Skutek, M.; van Griensven, M.; Zeichen, J.; Brauer, N.; Bosch, U. Cyclic mechanical stretching enhances secretion of Interleukin 6 in human tendon fibroblasts. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, J.; Celorrio, D.; Barrio, I.; Odriozola, A.; Gil, S.M.; Fernandez-Lopez, J.R.; Nozal, R.; Ortuzar, I.; Lekue, J.A.; Aznar, J.M. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med. Sci. Sports Exerc. 2018, 50, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef]
- September, A.V.; Nell, E.M.; O’Connell, K.; Cook, J.; Handley, C.J.; van der Merwe, L.; Schwellnus, M.; Collins, M. A pathway-based approach investigating the genes encoding interleukin-1β, interleukin-6 and the interleukin-1 receptor antagonist provides new insight into the genetic susceptibility of Achilles tendinopathy. Br. J. Sports Med. 2011, 45, 1040–1047. [Google Scholar] [CrossRef]
- Kelempisioti, A.; Eskola, P.J.; Okuloff, A.; Karjalainen, U.; Takatalo, J.; Daavittila, I.; Niinimäki, J.; Sequeiros, R.B.; Tervonen, O.; Solovieva, S.; et al. Genetic susceptibility of intervertebral disc degeneration among young Finnish adults. BMC Med. Genet. 2011, 12, 153. [Google Scholar] [CrossRef]
- Bashashati, M.; Moradi, M.; Sarosiek, I. Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine 2017, 99, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Rana, B.K.; Flatt, S.W.; Health, D.D.; Pakiz, B.; Quintana, E.L.; Natarajan, L.; Rock, C.L. The IL-6 Gene Promoter SNP and Plasma IL-6 in Response to Diet Intervention. Nutrients 2017, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, L.; Zhou, X.; Wu, L.; Li, D.; Chen, G. The association between Interleukin-6 rs1800795/rs1800797 polymorphisms and risk of rotator cuff tear in a Chinese population. Biosci. Rep. 2020, 40, BSR20200193. [Google Scholar] [CrossRef]
- Rahim, M.; Mannion, S.; Klug, B.; Hobbs, H.; van der Merwe, W.; Posthumus, M.; Collins, M.; September, A.V. Modulators of the extracellular matrix and risk of anterior cruciate ligament ruptures. J. Sci. Med. Sport 2017, 20, 152–158. [Google Scholar] [CrossRef]
- Galicia, J.C.; Tai, H.; Komatsu, Y.; Shimada, Y.; Akazawa, K.; Yoshie, H. Polymorphisms in the IL-6 receptor (IL-6R) gene: Strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes Immun. 2004, 5, 513–516. [Google Scholar] [CrossRef]
- Burger, M.C.; de Wet, H.; Collins, M. Interleukin and growth factor gene variants and risk of carpal tunnel syndrome. Gene 2015, 564, 67–72. [Google Scholar] [CrossRef]
- Zhao, M.; Hu, Y.; Yu, Y.; Lin, Q.; Yang, J.; Su, S.B.; Xu, G.T.; Yang, T. Involvement of IL-37 in the Pathogenesis of Proliferative Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2955–2962. [Google Scholar] [CrossRef]
- Rahim, M.; El Khoury, L.Y.; Raleigh, S.M.; Ribbans, W.J.; Posthumus, M.; Collins, M.; September, A.V. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis-Associated Genes. Omics: A J. Integr. Biol. 2016, 20, 520–527. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Brogan, I.J.; Khan, N.; Isaac, K.; Hutchinson, J.A.; Pravica, V.; Hutchinson, I.V. Novel polymorphisms in the promoter and 5′ UTR regions of the human vascular endothelial growth factor gene. Hum. Immunol. 1999, 60, 1245–1249. [Google Scholar] [CrossRef]
- Saetan, N.; Honsawek, S.; Tanavalee, A.; Ngarmukos, S.; Yuktanandana, P.; Poovorawan, Y. Association between Common Variants in VEGFA Gene and the Susceptibility of Primary Knee Osteoarthritis. Cartilage 2022, 13, 66–76. [Google Scholar] [CrossRef]
- Watson, C.J.; Webb, N.J.; Bottomley, M.J.; Brenchley, P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: Correlation with variation in VEGF protein production. Cytokine 2000, 12, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Q.; Liu, J.; Wang, Y.; Zheng, G.; Lin, L.; Yu, H.; Tang, W.; Huang, Z. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: A meta-analysis. Oncotarget 2017, 8, 30539–30551. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Kim, G.W.; Seo, J.S.; Kim, S.J.; Sa, K.H.; Park, J.Y.; Lee, J.; Kim, S.Y.; Goronzy, J.J.; Weyand, C.M.; et al. VEGF gene polymorphisms and susceptibility to rheumatoid arthritis. Rheumatology 2004, 43, 1173–1177. [Google Scholar] [CrossRef]
- Brazier, J.; Antrobus, M.; Stebbings, G.K.; Day, S.H.; Heffernan, S.M.; Cross, M.J.; Williams, A.G. Tendon and Ligament Injuries in Elite Rugby: The Potential Genetic Influence. Sports 2019, 7, 138. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, D.C.; Rahim, M.; Suijkerbuijk, M.A.M.; Laguette, M.N.; Cieszczyk, P.; Ficek, K.; Huminska-Lisowska, K.; Häger, C.K.; Stattin, E.; Nilsson, K.G.; et al. Investigation of multiple populations highlight VEGFA polymorphisms to modulate anterior cruciate ligament injury. J. Orthop. Res. 2022, 40, 1604–1612. [Google Scholar] [CrossRef]
- Shukla, M.; Gupta, R.; Pandey, V.; Rochette, J.; Dhandapany, P.S.; Tiwari, P.K.; Amrathlal, R.S. VEGFA Promoter Polymorphisms rs699947 and rs35569394 Are Associated With the Risk of Anterior Cruciate Ligament Ruptures Among Indian Athletes: A Cross-sectional Study. Orthop. J. Sports Med. 2020, 8, 2325967120964472. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Wang, Y.L.; Yang, S.; Liao, C.S.; Li, S.F.; Han, P.F. Correlation between vascular endothelial growth factor A gene polymorphisms and tendon and ligament injury risk: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2024, 19, 122. [Google Scholar] [CrossRef]
- Loebig, M.; Klement, J.; Schmoller, A.; Betz, S.; Heuck, N.; Schweiger, U.; Peters, A.; Schultes, B.; Oltmanns, K.M. Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS ONE 2010, 5, e12610. [Google Scholar] [CrossRef]
- Prior, S.J.; Hagberg, J.M.; Paton, C.M.; Douglass, L.W.; Brown, M.D.; McLenithan, J.C.; Roth, S.M. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1848–H1855. [Google Scholar] [CrossRef]
- La Montagna, R.; Canonico, R.; Alfano, L.; Bucci, E.; Boffo, S.; Staiano, L.; Fulco, B.; D’Andrea, E.; De Nicola, A.; Maiorano, P.; et al. Genomic analysis reveals association of specific SNPs with athletic performance and susceptibility to injuries in professional soccer players. J. Cell. Physiol. 2020, 235, 2139–2148. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Khakimullina, A.M.; Popov, D.V.; Missina, S.S.; Vinogradova, O.L.; Rogozkin, V.A. Polymorphism of the vascular endothelial growth factor gene (VEGF) and aerobic performance in athletes. Fiziol. Cheloveka. 2008, 34, 97–101. [Google Scholar]
- Rahim, M.; Hobbs, H.; van der Merwe, W.; Posthumus, M.; Collins, M.; September, A.V. Investigation of angiogenesis genes with anterior cruciate ligament rupture risk in a South African population. J. Sports Sci. 2018, 36, 551–557. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Murakami, H.; Iemitsu, M. Single Nucleotide Polymorphisms and Tendon/Ligament Injuries in Athletes: A Systematic Review and Meta-analysis. Int. J. Sports Med. 2025, 46, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, J.; Sciortino, C.M.; Romero, M.F.; Ulatowski, L.M.; Ballock, R.T.; Economides, A.N.; Eimon, P.M.; Harland, R.M.; Warman, M.L. Human disease-causing NOG missense mutations: Effects on noggin secretion, dimer formation, and bone morphogenetic protein binding. Proc. Natl. Acad. Sci. USA 2001, 98, 11353–11358. [Google Scholar] [CrossRef]
- Peiris, D.; Pacheco, I.; Spencer, C.; MacLeod, R.J. The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G753–G766. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.A.; Takada, S.; Zimmerman, L.B.; Fan, C.M.; Harland, R.M.; McMahon, A.P. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 1998, 12, 1438–1452. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Takahashi, I.; Komatsu, M.; Sawaishi, Y.; Higashi, K.; Nishimura, G.; Saito, H.; Takada, G. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome. Clin. Genet. 2001, 60, 447–451. [Google Scholar] [CrossRef]
- Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury 2005, 36, 1392–1404. [Google Scholar] [CrossRef]
- Mulloy, B.; Rider, C.C. The Bone Morphogenetic Proteins and Their Antagonists. Vitam. Horm. 2015, 99, 63–90. [Google Scholar]
- Dimitriou, R.; Tsiridis, E.; Carr, I.; Simpson, H.; Giannoudis, P.V. The role of inhibitory molecules in fracture healing. Injury 2006, 37, S20–S29. [Google Scholar] [CrossRef]
- Abe, E.; Yamamoto, M.; Taguchi, Y.; Lecka-Czernik, B.; O’Brien, C.A.; Economides, A.N.; Stahl, N.; Jilka, R.L.; Manolagas, S.C. Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: Antagonism by noggin. J. Bone Miner. Res. 2000, 15, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Carr, I.M.; West, R.M.; Markham, A.F.; Giannoudis, P.V. Genetic predisposition to fracture non-union: A case control study of a preliminary single nucleotide polymorphisms analysis of the BMP pathway. BMC Musculoskelet. Disord. 2011, 12, 44. [Google Scholar] [CrossRef]
- Jacob, Y.; Anderton, R.S.; Cochrane Wilkie, J.L.; Rogalski, B.; Laws, S.M.; Jones, A.; Spiteri, T.; Hince, D.; Hart, N.H. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. Sports Med. Open 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef]
- Koike, S.; Richards, M.; Wong, A.; Hardy, R. Fat mass and obesity-associated (FTO) rs9939609 polymorphism modifies the relationship between body mass index and affective symptoms through the life course: A prospective birth cohort study. Transl. Psychiatry 2018, 8, 62. [Google Scholar] [CrossRef]
- Saber-Ayad, M.; Manzoor, S.; Radwan, H.; Hammoudeh, S.; Wardeh, R.; Ashraf, A.; Jabbar, H.; Hamoudi, R. The FTO genetic variants are associated with dietary intake and body mass index amongst Emirati population. PLoS ONE 2019, 14, e0223808. [Google Scholar]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Rutters, F.; Lemmens, S.G.; Born, J.M.; Bouwman, F.; Nieuwenhuizen, A.G.; Mariman, E.; Westerterp-Plantenga, M.S. Genetic associations with acute stress-related changes in eating in the absence of hunger. Patient Educ. Couns. 2010, 79, 367–371. [Google Scholar] [CrossRef]
- Wardle, J.; Llewellyn, C.; Sanderson, S.; Plomin, R. The FTO gene and measured food intake in children. Int. J. Obes. 2009, 33, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Karra, E.; O’Daly, O.G.; Choudhury, A.I.; Yousseif, A.; Millership, S.; Neary, M.T.; Scott, W.R.; Chandarana, K.; Manning, S.; Hess, M.E.; et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 2013, 123, 3539–3551. [Google Scholar] [CrossRef]
- Broom, D.R.; Batterham, R.L.; King, J.A.; Stensel, D.J. Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. American journal of physiology. Regul. Integr. Comp. Physiol. 2009, 296, R29–R35. [Google Scholar] [CrossRef]
- Martins, C.; Morgan, L.M.; Bloom, S.R.; Robertson, M.D. Effects of exercise on gut peptides, energy intake and appetite. J. Endocrinol. 2007, 193, 251–258. [Google Scholar] [CrossRef]
- Manning, S.; Batterham, R.L. The role of gut hormone peptide YY in energy and glucose homeostasis: Twelve years on. Annu. Rev. Physiol. 2014, 76, 585–608. [Google Scholar] [CrossRef]
- De Vriese, C.; Gregoire, F.; Lema-Kisoka, R.; Waelbroeck, M.; Robberecht, P.; Delporte, C. Ghrelin degradation by serum and tissue homogenates: Identification of the cleavage sites. Endocrinology 2004, 145, 4997–5005. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.P.; Gao, Y.; Geng, L.; Brimijoin, S. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int. J. Obes. 2017, 41, 1413–1419. [Google Scholar] [CrossRef]
- Delhanty, P.J.; Neggers, S.J.; van der Lely, A.J. Mechanisms in endocrinology: Ghrelin: The differences between acyl- and des-acyl ghrelin. Eur. J. Endocrinol. 2012, 167, 601–608. [Google Scholar] [CrossRef]
- Kuppens, R.J.; Diène, G.; Bakker, N.E.; Molinas, C.; Faye, S.; Nicolino, M.; Bernoux, D.; Delhanty, P.J.; van der Lely, A.J.; Allas, S.; et al. Elevated ratio of acylated to unacylated ghrelin in children and young adults with Prader-Willi syndrome. Endocrine 2015, 50, 633–642. [Google Scholar] [CrossRef]
- Dorling, J.L.; Clayton, D.J.; Jones, J.; Carter, W.G.; Thackray, A.E.; King, J.A.; Pucci, A.; Batterham, R.L.; Stensel, D.J. A randomized crossover trial assessing the effects of acute exercise on appetite, circulating ghrelin concentrations, and butyrylcholinesterase activity in normal-weight males with variants of the obesity-linked FTO rs9939609 polymorphism. Am. J. Clin. Nutr. 2019, 110, 1055–1066. [Google Scholar]
- Zimmer, K.R.; Lencina, C.L.; Zimmer, A.R.; Thiesen, F.V. Influence of physical exercise and gender on acetylcholinesterase and butyrylcholinesterase activity in human blood samples. Int. J. Environ. Health Res. 2012, 22, 279–286. [Google Scholar] [CrossRef]
- Kilpeläinen, T.O.; Qi, L.; Brage, S.; Sharp, S.J.; Sonestedt, E.; Demerath, E.; Ahmad, T.; Mora, S.; Kaakinen, M.; Sandholt, C.H.; et al. Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011, 8, e1001116. [Google Scholar] [CrossRef]
- Wang, X.; Huang, N.; Yang, M.; Wei, D.; Tai, H.; Han, X.; Gong, H.; Zhou, J.; Qin, J.; Wei, X.; et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis. 2017, 8, e2702. [Google Scholar] [CrossRef]
- Wu, W.; Feng, J.; Jiang, D.; Zhou, X.; Jiang, Q.; Cai, M.; Wang, X.; Shan, T.; Wang, Y. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci. Rep. 2017, 7, 41606. [Google Scholar] [CrossRef] [PubMed]
- Danaher, J.; Stathis, C.G.; Wilson, R.A.; Moreno-Asso, A.; Wellard, R.M.; Cooke, M.B. High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females. Nutr. Metab. 2020, 17, 68. [Google Scholar] [CrossRef]
- Andersen, M.K.; Ängquist, L.; Bork-Jensen, J.; Jonsson, A.E.; Stinson, S.E.; Sandholt, C.H.; Thodberg, M.; Pikkupeura, L.M.; Ongstad, E.L.; Grarup, N.; et al. Physical Activity and Insulin Sensitivity Independently Attenuate the Effect of FTO rs9939609 on Obesity. Diabetes Care 2023, 46, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.W.; Jin, H.S.; Eom, Y.B. The interaction between FTO rs9939609 and physical activity is associated with a 2-fold reduction in the risk of obesity in Korean population. Am. J. Hum. Biol. 2021, 33, e23489. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Li, S.; Zhao, J.H.; Luan, J.; Bingham, S.A.; Khaw, K.T.; Ekelund, U.; Wareham, N.J.; Loos, R.J. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am. J. Clin. Nutr. 2009, 90, 425–428. [Google Scholar]
- Santos, G.M.; Neves, F.D.A.R.; Amato, A.A. Thermogenesis in white adipose tissue: An unfinished story about PPARγ. Biochim. Et Biophys. Acta 2015, 1850, 691–695. [Google Scholar] [CrossRef]
- Robinson, E.; Grieve, D.J. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol. Ther. 2009, 122, 246–263. [Google Scholar] [CrossRef]
- Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.M.; Vohl, M.C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.; et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000, 26, 76–80. [Google Scholar] [CrossRef]
- Al-Shali, K.Z.; House, A.A.; Hanley, A.J.; Khan, H.M.; Harris, S.B.; Zinman, B.; Mamakeesick, M.; Fenster, A.; Spence, J.D.; Hegele, R.A. Genetic variation in PPARG encoding peroxisome proliferator-activated receptor gamma associated with carotid atherosclerosis. Stroke 2004, 35, 2036–2040. [Google Scholar]
- Galbete, C.; Toledo, E.; Martínez-González, M.A.; Martínez, J.A.; Guillén-Grima, F.; Marti, A. Pro12Ala variant of the PPARG2 gene increases body mass index: An updated meta-analysis encompassing 49,092 subjects. Obesity 2013, 21, 1486–1495. [Google Scholar]
- Hsiao, T.J.; Lin, E. The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma (PPARG) gene in relation to obesity and metabolic phenotypes in a Taiwanese population. Endocrine 2015, 48, 786–793. [Google Scholar] [PubMed]
- Goni, L.; García-Granero, M.; Milagro, F.I.; Cuervo, M.; Martínez, J.A. Phenotype and genotype predictors of BMI variability among European adults. Nutr. Diabetes 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.M.; Rankinen, T.; Weisnagel, S.J.; Rice, T.; Rao, D.C.; Bergman, R.N.; Bouchard, C.; Pérusse, L. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: Results from the HERITAGE Family Study. Diabetologia 2010, 53, 679–689. [Google Scholar] [PubMed]
- Blond, M.B.; Schnurr, T.M.; Rosenkilde, M.; Quist, J.S.; Gram, A.S.; Reichkendler, M.H.; Auerbach, P.L.; Nordby, P.; Skovgaard, L.T.; Ribel-Madsen, R.; et al. PPARGPro12Ala Ala carriers exhibit greater improvements in peripheral insulin sensitivity in response to 12 weeks of aerobic exercise training. Physiol. Genom. 2019, 51, 254–260. [Google Scholar]
- Kilpeläinen, T.O.; Lakka, T.A.; Laaksonen, D.E.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Lindi, V.; et al. SNPs in PPARG associate with type 2 diabetes and interact with physical activity. Med. Sci. Sports Exerc. 2008, 40, 25–33. [Google Scholar] [CrossRef]
- Lindi, V.I.; Uusitupa, M.I.; Lindström, J.; Louheranta, A.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes 2002, 51, 2581–2586. [Google Scholar] [CrossRef]
- Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997, 46, 3–10. [Google Scholar]
- Stumvoll, M.; Wahl, H.G.; Löblein, K.; Becker, R.; Machicao, F.; Jacob, S.; Häring, H. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma2 gene is associated with increased antilipolytic insulin sensitivity. Diabetes 2001, 50, 876–881. [Google Scholar]
- Hue, L.; Taegtmeyer, H. The Randle cycle revisited: A new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E578–E591. [Google Scholar]
- Maeda, N.; Takahashi, M.; Funahashi, T.; Kihara, S.; Nishizawa, H.; Kishida, K.; Nagaretani, H.; Matsuda, M.; Komuro, R.; Ouchi, N.; et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001, 50, 2094–2099. [Google Scholar] [CrossRef]
- Emorine, L.J.; Marullo, S.; Briend-Sutren, M.M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A.D. Molecular characterization of the human beta 3-adrenergic receptor. Science 1989, 245, 1118–1121. [Google Scholar] [CrossRef]
- Erhardt, E.; Czakó, M.; Csernus, K.; Molnár, D.; Kosztolányi, G. The frequency of Trp64Arg polymorphism of the beta3-adrenergic receptor gene in healthy and obese Hungarian children and its association with cardiovascular risk factors. Eur. J. Clin. Nutr. 2005, 59, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Sakane, N.; Sato, J.; Tsushita, K.; Tsujii, S.; Kotani, K.; Tominaga, M.; Kawazu, S.; Sato, Y.; Usui, T.; Kamae, I.; et al. Effects of lifestyle intervention on weight and metabolic parameters in patients with impaired glucose tolerance related to beta-3 adrenergic receptor gene polymorphism Trp64Arg(C/T): Results from the Japan Diabetes Prevention Program. J. Diabetes Investig. 2016, 7, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Guillén, M.; Portolés, O.; Sorlí, J.V.; Alonso, V.; Folch, J.; Sáiz, C. Gender specific associations of the Trp64Arg mutation in the beta3-adrenergic receptor gene with obesity-related phenotypes in a Mediterranean population: Interaction with a common lipoprotein lipase gene variation. J. Intern. Med. 2001, 250, 348–360. [Google Scholar] [PubMed]
- Morita, E.; Taniguchi, H.; Sakaue, M. Trp64Arg polymorphism in beta3-adrenergic receptor gene is associated with decreased fat oxidation both in resting and aerobic exercise in the Japanese male. Exp. Diabetes Res. 2009, 2009, 605139. [Google Scholar] [CrossRef]
- Jesus, Í.C.; Alle, L.F.; Munhoz, E.C.; Silva, L.R.D.; Lopes, W.A.; Tureck, L.V.; Purim, K.S.M.; Titski, A.C.K.; Leite, N. Trp64Arg polymorphism of the ADRB3 gene associated with maximal fat oxidation and LDL-C levels in non-obese adolescents. J. Pediatr. 2018, 94, 425–431. [Google Scholar]
- Takeuchi, S.; Katoh, T.; Yamauchi, T.; Kuroda, Y. ADRB3 polymorphism associated with BMI gain in Japanese men. Exp. Diabetes Res. 2012, 2012, 973561. [Google Scholar] [CrossRef]
- Strazzullo, P.; Iacone, R.; Siani, A.; Cappuccio, F.P.; Russo, O.; Barba, G.; Barbato, A.; D’Elia, L.; Trevisan, M.; Farinaro, E. Relationship of the Trp64Arg polymorphism of the beta3-adrenoceptor gene to central adiposity and high blood pressure: Interaction with age. Cross-sectional and longitudinal findings of the Olivetti Prospective Heart Study. J. Hypertens. 2001, 19, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Vaisse, C.; Manning, B.S.; Basdevant, A.; Guy-Grand, B.; Ruiz, J.; Silver, K.D.; Shuldiner, A.R.; Froguel, P.; Strosberg, A.D. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 1995, 333, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Højlund, K.; Christiansen, C.; Bjørnsbo, K.S.; Poulsen, P.; Bathum, L.; Henriksen, J.E.; Lammert, O.; Beck-Nielsen, H. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the beta3-adrenergic receptor gene. Diabetes Obes. Metab. 2006, 8, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Oguri, K.; Tachi, T.; Matsuoka, T. Visceral fat accumulation and metabolic syndrome in children: The impact of Trp64Arg polymorphism of the beta3-adrenergic receptor gene. Acta Paediatr. 2013, 102, 613–619. [Google Scholar] [CrossRef]
- Milano-Gai, G.E.; Furtado-Alle, L.; Mota, J.; Lazarotto, L.; Milano, G.E.; de Souza Lehtonen, R.R.; Titski, A.C.K.; Jesus, Í.C.; Tureck, L.V.; Radominski, R.B.; et al. 12-Week aerobic exercise and nutritional program minimized the presence of the 64Arg allele on insulin resistance. J. Pediatr. Endocrinol. Metab. 2018, 31, 1033–1042. [Google Scholar] [CrossRef]
- Iemitsu, M.; Fujie, S.; Murakami, H.; Sanada, K.; Kawano, H.; Gando, Y.; Kawakami, R.; Tanaka, N.; Miyachi, M. Higher cardiorespiratory fitness attenuates the risk of atherosclerosis associated with ADRB3 Trp64Arg polymorphism. Eur. J. Appl. Physiol. 2014, 114, 1421–1428. [Google Scholar] [CrossRef]
- Marti, A.; Corbalán, M.S.; Martínez-Gonzalez, M.A.; Martinez, J.A. TRP64ARG polymorphism of the beta 3-adrenergic receptor gene and obesity risk: Effect modification by a sedentary lifestyle. Diabetes Obes. Metab. 2002, 4, 428–430. [Google Scholar]
- Schmidt, R.J.; Steeves, M.; Bayrak-Toydemir, P.; Benson, K.A.; Coe, B.P.; Conlin, L.K.; Ganapathi, M.; Garcia, J.; Gollob, M.H.; Jobanputra, V.; et al. Recommendations for risk allele evidence curation, classification, and reporting from the ClinGen Low Penetrance/Risk Allele Working Group. Genet. Med. 2024, 26, 101036. [Google Scholar] [CrossRef] [PubMed]

| Gene | Full Name | Locus | Polymorphism | Predisposing Allele | Allelic Frequency (%) | Associated Phenotype |
|---|---|---|---|---|---|---|
| Genetic Variants Associated with Endurance Performance | ||||||
| ACE | Angiotensin I converting enzyme | 17q23.3 | rs1799752 (I/D) | Alu I | I: 40% D: 60% | Enhanced endurance performance [55,56,57] |
| PPARGC1A | PPARG coactivator 1alpha | 4p15.1 | rs8192678 (G1444A) | G (Gly482) | G: 73% A: 27% | Greater oxidative capacity, higher mitochondrial content, and enhanced fatigue resistance [88] |
| HFE | Homeostatic iron regulator | 6p21.3 | rs1800562 (G845A); rs1799945 (C187G) | A (Cys282) G (Asp63) | G: 99% A: 1% C: 93% G: 7% | Enhanced intestinal iron absorption and improved aerobic capacity [101,102,103,107,109,110] |
| UCP2 | Uncoupling protein 2 | 11q13.4 | rs660339 (C164T) | T (Val55) | C: 58% T: 42% | Enhanced maximal oxygen uptake, improved exercise efficiency, metabolic efficiency and endurance performance [119,120,121] |
| UCP3 | Uncoupling protein 3 | 11q13.4 | rs1800849 (-55C/T) | T | C: 70% T: 30% | Enhanced aerobic potential [124,126] |
| CDKN1A | Cyclin-dependent kinase inhibitor 1a | 6p21.2 | rs236448 (A/C) | A | A: 74% C: 26% | Enhanced endurance capacity and superior performance in aerobic-based sports [146] |
| PPARA | Peroxisome proliferator-activated receptor alpha | 22q13.31 | rs4253778 (G/C) | G | G: 73% C: 27% | Higher maximal aerobic capacity and enhanced oxygen pulse [159] |
| Genetic Variants Associated with Power Performance | ||||||
| ACTN3 | Actinin alpha 3 | 11q13.1 | rs1815739 (C1729T) | C (Arg577) | C: 60% T: 40% | Enhanced muscle hypertrophy and power [178,180] |
| SLC16A1/ MCT1 | Solute carrier family 16 member 1 | 1p13.2 | rs1049434 (A1470T) | T | A: 32% T: 68% | Increased anaerobic energy production [191] |
| IGF1 | Insulin-like growth factor 1 | 12q23.2 | rs35767 (C1245T) | T | C: 30% T: 70% | Improved power and endurance performance [215] |
| AMPD1 | Adenosine monophosphate deaminase 1 | 1p13.3 | rs17602729 (C34T) | C | C: 96% T: 4% | Increased anaerobic, high-intensity physical tasks [233] |
| AGT | Angiotensinogen | 1q42.2 | rs699 (T4072C) | C | T: 29% C: 71% | Higher levels of Ang II with increased power [243,244] |
| AGTR2 | Angiotensin II receptor type 2 | Xq23 | rs11091046 (C3123A) | A | C: 53% A: 47% | Higher percentage of fast-twitch fibers and increased power [260] |
| Genetic Variants Associated with Strength Performance | ||||||
| ARK2N/C18ORF25 | Arkadia (RNF111) N-terminal like PKA signaling regulator 2N | 4q13.3 | rs6507691 (C/T) | T | C: 69% T: 31% | Enhanced muscle hypertrophy and contraction [273] |
| AR | Androgen receptor | Xq12 | (CAG)n | CAG ≥ 21 | ~5–10% | Facilitated muscular adaptation to strength training [287] |
| PPARG | Peroxisome proliferator-activated receptor gamma | 3p25 | rs1801282 (C34G) | G | C: 93% G: 7% | Improved insulin sensitivity and enhanced glucose uptake in skeletal muscle [302] |
| MMS22L | MMS22 like | 6q14.1 | rs9320823 (T/C) | T | T: 31% C: 69% | Increased muscular strength [306,308] |
| LRPPRC | Leucine-rich pentatricopeptide repeat containing | 2p21 | rs10186876 (A/G) | A | A: 68% G: 32% | Enhancement in contractile force generation during resistance exercise [306,308] |
| PHACTR1 | Phosphatase and actin regulator 1 | 6p24.1 | rs6905419 (C/T) | C | C: 71% T: 29% | Increased muscular strength [306,308] |
| MTHFR | Methylenetetrahydrofolate reductase | 1p36.22 | rs1801131 (A/C) | C | A: 75% C: 25% | Improved energy metabolism and more effective oxidative stress regulation [306,308,312] |
| Genetic Variants Associated with Injuries | ||||||
| COL1A1 | Collagen type I alpha 1 chain | 17q21.33 | rs1800012 (+1245G/T); rs1107946 (-1997G/T) | T T | G: 91% T: 9% G: 26% T: 74% | Enhanced mechanical resilience of connective structures [329] |
| COL5A1 | Collagen type V alpha 1 chain | 9q34.2 | rs12722 (C/T) | T | C: 65% T: 35% | Higher risk or severity of musculoskeletal injuries [335] |
| IL6 | Interleukin 6 | 7p15.3 | rs1800795 (G/C); rs1800797 (A/G) | G A | G: 86% C: 14% A: 14% G: 86% | Higher injuries risk [344] |
| VEGFA | Vascular endothelial growth factor A | 6p21.1 | rs699947 (−2578C/A); rs1570360 (−1154G/A); rs2010963 (−634C/G) | C G C | C: 68% A: 32% G: 81% A: 19% C: 33% G: 67% | Increased risk of tendon or ligament injuries [362,363,364,365,366,367] |
| NOGGIN | Noggin | 17q22 | rs1372857 (G/A) | G | G: 46% A: 54% | Higher incidence and severity of muscle injuries [381] |
| Genetic Variants That Predispose to Metabolic Risk Mitigated by Physical Exercise | ||||||
| FTO | FTO alpha-ketoglutarate-dependent dioxygenase (FTO) | 16q12.2 | rs9939609 (T/A) | A | T: 66% A: 34% | Modulation of FTO molecular pathways reducing obesity risk in genetically predisposed individuals [398,402,403,404] |
| PPARG | Peroxisome proliferator-activated receptor gamma | 3p25 | rs1801282 (C34G) | C (Pro12) | C: 93% G: 7% | Enhanced metabolic responsiveness to aerobic training [412,413] |
| ADRB3 | Adrenoceptor beta 3 | 8p12 | rs4994 (T190C) | C (Arg64) | T: 88% C: 12% | Reduction in the cardiovascular risk linked to this genotype [432] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imperatore, A.; Mennitti, C.; De Fonzo, G.; Amitrano, R.; Gentile, A.; Calvanese, M.; Iafusco, F.; Coppola, S.; Digno, M.; Borrelli, P.; et al. Toward a Multi-Trait Genetic Panel Targeting Training, Rehabilitation, and Chronic Disease Prevention: A Narrative Review. Genes 2025, 16, 1309. https://doi.org/10.3390/genes16111309
Imperatore A, Mennitti C, De Fonzo G, Amitrano R, Gentile A, Calvanese M, Iafusco F, Coppola S, Digno M, Borrelli P, et al. Toward a Multi-Trait Genetic Panel Targeting Training, Rehabilitation, and Chronic Disease Prevention: A Narrative Review. Genes. 2025; 16(11):1309. https://doi.org/10.3390/genes16111309
Chicago/Turabian StyleImperatore, Antonio, Cristina Mennitti, Giulia De Fonzo, Raffaele Amitrano, Alessandro Gentile, Mariella Calvanese, Fernanda Iafusco, Serena Coppola, Mattia Digno, Paola Borrelli, and et al. 2025. "Toward a Multi-Trait Genetic Panel Targeting Training, Rehabilitation, and Chronic Disease Prevention: A Narrative Review" Genes 16, no. 11: 1309. https://doi.org/10.3390/genes16111309
APA StyleImperatore, A., Mennitti, C., De Fonzo, G., Amitrano, R., Gentile, A., Calvanese, M., Iafusco, F., Coppola, S., Digno, M., Borrelli, P., Lombardo, B., Frisso, G., Berni Canani, R., Tinto, N., D’Argenio, V., & Scudiero, O. (2025). Toward a Multi-Trait Genetic Panel Targeting Training, Rehabilitation, and Chronic Disease Prevention: A Narrative Review. Genes, 16(11), 1309. https://doi.org/10.3390/genes16111309

