Complete Chloroplast Genome and Phylogenomic Analysis of Davallia trichomanoides (Polypodiaceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Sequencing
2.2. Assembly and Annotation of the Plastome
2.3. Plastome Characteristics
2.4. SSR Analyses
2.5. Analysis of Codon Preference
2.6. Analysis of IR Boundary
2.7. Analysis of Selection Pressure
2.8. Comparative Analysis of Plastomes
2.9. Phylogenetic Relationship Analysis
2.10. Comparative Synteny Analysis
3. Results
3.1. Plastome Assembly and Genome Features
3.2. Repeat Sequences and SSR Analysis
3.3. Codon Usage of Plastome
3.4. IR Boundary Comparison
3.5. Comparative Analysis of Plastomes
3.6. Selection Pressure Analysis
3.7. Comparative Synteny Analysis
3.8. Phylogenetic Analysis
4. Discussion
4.1. Plastome Organization in D. trichomanoides
4.2. IR Boundary Dynamics
4.3. Patterns of Sequence Divergence and Marker Potential
4.4. Repeats and SSRs
4.5. Selection on PCGs
4.6. Collinearity and Structural Stability
4.7. Phylogenetic Placement and Taxonomic Congruence
4.8. Ecological Context of Epiphytic Ferns
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Y.; Cao, Q.; Yu, K.; Wang, Z.; Chen, S.; Chen, F.; Song, A. Chloroplast phylogenomics reveals the maternal ancestry of cultivated chrysanthemums. Genom. Commun. 2025, 2, e019. [Google Scholar] [CrossRef]
- Kan, J.; Nie, L.; Wang, M.; Tiwari, R.; Tembrock, L.R.; Wang, J. The Mendelian pea pan-plastome: Insights into genomic structure, evolutionary history, and genetic diversity of an essential food crop. Genom. Commun. 2024, 1, e004. [Google Scholar] [CrossRef]
- Hu, S.; Sablok, G.; Wang, B.; Qu, D.; Barbaro, E.; Viola, R.; Li, M.; Varotto, C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genom. 2015, 16, 306. [Google Scholar] [CrossRef]
- Robison, T.A.; Grusz, A.L.; Wolf, P.G.; Mower, J.P.; Fauskee, B.D.; Sosa, K.; Schuettpelz, E. Mobile elements shape plastome evolution in ferns. Genome Biol. Evol. 2018, 10, 2558–2571. [Google Scholar] [CrossRef]
- Kuo, L.Y.; Qi, X.; Ma, H.; Li, F.W. Order-level fern plastome phylogenomics: New insights from Hymenophyllales. Am. J. Bot. 2018, 105, 1545–1555. [Google Scholar] [CrossRef]
- Du, X.-Y.; Kuo, L.-Y.; Zuo, Z.-Y.; Li, D.-Z.; Lu, J.-M. Structural variation of plastomes provides key insight into the deep phylogeny of ferns. Front. Plant Sci. 2022, 13, 862772. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Yang, J.; He, L.J.; Liu, H.M.; Hu, J.Y.; Liang, S.Q.; Wei, X.P.; Zhao, C.F.; Zhang, X.C. Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae. Cladistics 2021, 37, 717–727. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Su, Y.; Wang, T. Comparative genomic analysis of Polypodiaceae chloroplasts reveals fine structural features and dynamic insertion sequences. BMC Plant Biol. 2021, 21, 31. [Google Scholar] [CrossRef]
- Ping, J.; Hao, J.; Wang, T.; Su, Y. Comparative analysis of plastid genomes reveals rearrangements, repetitive sequence features, and phylogeny in the Annonaceae. Front. Plant Sci. 2024, 15, 1351388. [Google Scholar] [CrossRef]
- Niu, Z.; Pan, J.; Zhu, S.; Li, L.; Xue, Q.; Liu, W.; Ding, X. Comparative analysis of the complete plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) reveals different evolutionary dynamics of IR/SSC boundary among photosynthetic orchids. Front. Plant Sci. 2017, 8, 1713. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H. The first complete chloroplast genome of Drynaria acuminata (Polypodiaceae), a local rare fern species. Mitochondrial DNA Part B Resour. 2021, 6, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, N.; Li, Z.; Liu, Y.; Yang, P.; Hong, Y.; He, Z.; Su, Y.; Wang, T. The complete chloroplast genome of Lemmaphyllum intermedium, a valuable medicinal fern. Mitochondrial DNA Part B Resour. 2021, 6, 423–424. [Google Scholar] [CrossRef]
- Min, Y.; Guan, J.; Li, S.; Liu, S.; Hong, Y.; Wang, Z.; Wang, T.; Su, Y. The complete chloroplast genome of Leptochilus hemionitideus, a traditional Chinese medical fern. Mitochondrial DNA Part B Resour. 2018, 3, 784–785. [Google Scholar] [CrossRef]
- Du, X.-Y.; Lu, J.-M.; Lu, S.-G.; Li, D.-Z. Complete plastome of an endemic fern species from China: Neocheiropteris palmatopedata (Polypodiaceae). Mitochondrial DNA Part B Resour. 2019, 4, 2394–2395. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, H.; Jiang, M.; Wang, L.; Wu, X.; Huang, L.; Liu, C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019, 47, W65–W73. [Google Scholar] [CrossRef]
- Liu, S.; Ni, Y.; Li, J.; Zhang, X.; Yang, H.; Chen, H.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Burland, T.G. DNASTAR’s Lasergene sequence analysis software. In Bioinformatics Methods and Protocols; Springer: New York, NY, USA, 2000; pp. 71–91. [Google Scholar]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.-H. The codon adaptation index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899–1900. [Google Scholar] [CrossRef]
- Zhang, Z. KaKs_Calculator 3.0: Calculating selective pressure on coding and non-coding sequences. Genom. Proteom. Bioinform. 2022, 20, 536–540. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Luo, X.; Chen, M.; Tang, W.; Zhan, L.; Dai, Z.; Lam, T.T.; Guan, Y.; Yu, G. Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 2022, 1, e56. [Google Scholar] [CrossRef] [PubMed]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Wicke, S.; Schneeweiss, G.M.; dePamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Wolf, P.G.; Der, J.P.; Duffy, A.M.; Davidson, J.B.; Grusz, A.L.; Pryer, K.M. The evolution of chloroplast genes and genomes in ferns. Plant Mol. Biol. 2011, 76, 251–261. [Google Scholar] [CrossRef]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. Ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef]
- Amar, H.M. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J. Genet. Eng. Biotechnol. 2020, 18, 42. [Google Scholar] [CrossRef]
- Song, W.; Ji, C.; Chen, Z.; Cai, H.; Wu, X.; Shi, C.; Wang, S. Comparative analysis of the complete chloroplast genomes of nine Musa species: Genomic features, comparative analysis, and phylogenetic implications. Front. Plant Sci. 2022, 13, 832884. [Google Scholar] [CrossRef]
- Wolf, P.G.; Roper, J.M.; Duffy, A.M. The evolution of chloroplast genome structure in ferns. Genome 2010, 53, 731–738. [Google Scholar] [CrossRef]
- Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions. J. Exp. Bot. 2001, 52, 2067–2078. [Google Scholar] [CrossRef]
- Fan, R.; Ma, W.; Liu, S.; Huang, Q. Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis. Ecol. Evol. 2021, 11, 4550–4563. [Google Scholar] [CrossRef] [PubMed]
- Krämer, C.; Boehm, C.R.; Liu, J.; Ting, M.K.Y.; Hertle, A.P.; Forner, J.; Ruf, S.; Schöttler, M.A.; Zoschke, R.; Bock, R. Removal of the large inverted repeat from the plastid genome reveals gene dosage effects and leads to increased genome copy number. Nat. Plants 2024, 10, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Shikanai, T.; Yamamoto, H. Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol. Plant 2017, 10, 20–29. [Google Scholar] [CrossRef] [PubMed]









| Category | Subcategory | Genes (Examples) | No. of Genes |
|---|---|---|---|
| Photosynthesis | Photosystem I | psaA, psaB, psaC, psaI, psaJ | 5 |
| Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ | 15 | |
| NADH dehydrogenase | ndhA *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | 10 | |
| Cytochrome b6f | petA, petG, petL, petN | 4 | |
| ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | 6 | |
| Rubisco | rbcL | 1 | |
| Protochlorophyllide reductase | chlB, chlN | 2 | |
| Genetic apparatus | Ribosomal proteins (LSU) | rpl14, rpl16, rpl2 *, rpl20, rpl21, rpl22, rpl23, rpl33, rpl36 | 9 |
| Ribosomal proteins (SSU) | rps11, rps12 **, rps14, rps18, rps19, rps2, rps3, rps4, rps7 | 10 | |
| RNA polymerase | rpoA, rpoC1 *, rpoC2 | 3 | |
| rRNAs | rrn16, rrn23, rrn4.5, rrn5 | 8 | |
| tRNAs | trnA-UGC *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-CAU, trnI-GAU *, trnL-UAA *, trnL-UAG, trnM-CAU, trnP-GGG, trnP-UGG, trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU *, trnV-UAC *, trnW-CCA, trnY-GUA | 32 | |
| Other/housekeeping | Misc. | accD, cemA, clpP **, ccsA, matK, infA | 6 |
| Conserved hypothetical chloroplast ORF | ycf12, ycf2, ycf3 **, ycf4 | 4 | |
| Total | 115 |
| Gene | Location | Exon1 | Exon2 | Exon3 | Intron1 | Intron2 |
|---|---|---|---|---|---|---|
| trnG-UCC | LSC | 31 | 42 | 894 | ||
| atpF | LSC | 144 | 411 | 1275 | ||
| rpoC1 | LSC | 177 | 831 | 1743 | ||
| trnL-UAA | LSC | 34 | 51 | 580 | ||
| trnV-UAC | LSC | 25 | 38 | 705 | ||
| rps12 | IRa | 232 | 26 | 114 | 844 | 71,702 |
| clpP | LSC | 71 | 290 | 242 | 1064 | 1084 |
| rpl2 | LSC | 284 | 64 | 1039 | ||
| trnI-GAU | IRb | 35 | 37 | 1080 | ||
| trnA-UGC | IRb | 37 | 36 | 877 | ||
| ndhA | SSC | 558 | 558 | 2044 | ||
| trnA-UGC-2 | IRa | 37 | 36 | 806 | ||
| trnI-GAU-2 | IRa | 35 | 37 | 1010 | ||
| trnT-UGU | IRb | 34 | 38 | 539 | ||
| trnT-UGU-2 | IRa | 34 | 38 | 609 | ||
| ycf3 | LSC | 124 | 188 | 162 | 1095 | 985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiang, Z.; Liu, K.; Lin, Y.; Dong, S. Complete Chloroplast Genome and Phylogenomic Analysis of Davallia trichomanoides (Polypodiaceae). Genes 2025, 16, 1310. https://doi.org/10.3390/genes16111310
Wang Y, Xiang Z, Liu K, Lin Y, Dong S. Complete Chloroplast Genome and Phylogenomic Analysis of Davallia trichomanoides (Polypodiaceae). Genes. 2025; 16(11):1310. https://doi.org/10.3390/genes16111310
Chicago/Turabian StyleWang, Yingying, Ziqi Xiang, Keqin Liu, Yuan Lin, and Siyuan Dong. 2025. "Complete Chloroplast Genome and Phylogenomic Analysis of Davallia trichomanoides (Polypodiaceae)" Genes 16, no. 11: 1310. https://doi.org/10.3390/genes16111310
APA StyleWang, Y., Xiang, Z., Liu, K., Lin, Y., & Dong, S. (2025). Complete Chloroplast Genome and Phylogenomic Analysis of Davallia trichomanoides (Polypodiaceae). Genes, 16(11), 1310. https://doi.org/10.3390/genes16111310
