Complete Mitochondrial Genomes of Two Water Mite Species in the Family Sperchontidae (Acari: Hydrachnidiae): Characterization and Phylogenetic Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification
2.2. Genomic DNA Extraction and PCR Amplification
2.3. Mitogenome Assembly, Annotation and Analysis
2.4. Phylogenetic Analysis
3. Results
3.1. Mitogenome Organization and Base Composition
3.2. Protein-Coding Genes and Codon Usage
3.3. Secondary Structure of tRNAs
3.4. Mitochondrial Gene Order and Rearrangements
3.5. Phylogenetic Analysis of Trombidiformes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proctor, H.C.; Smith, I.M.; Cook, D.R.; Smith, B.P. Thorp, J.H., Rogers, D.C., Eds.; Subphylum Chelicerata, Class Arachnida. In Thorp and Covich’s Freshwater Invertebrates, Ecology and General Biology, 4th ed.; Academic Press: London, UK, 2015; Volume 1, pp. 600–660. [Google Scholar]
- Jin, D.-C.; Yi, T.-C.; Zhang, X.; Gu, X.-Y.; Ding, Z.-H.; Li, H.-T.; Zheng, Y.-L.; Zhang, Y.-H.; Jia, L.; Guo, J.-J. Review of Progress in the Taxonomy of Water Mites from China II (Acari: Hydrachnidia). Syst. Appl. Acarol. 2024, 29, 1472–1496. [Google Scholar] [CrossRef]
- Cook, D.R. Water Mite Genera and Subgenera; American Entomological Institute: Ann Arbor, MI, USA, 1974. [Google Scholar]
- Harvey, M.S. The Australian Water Mites: A Guide to Families and Genera; CSIRO Publishing: Collingwood, Australia; Western Australian Museum: Perth, Australia, 1998. [Google Scholar]
- Di Sabatino, A.; Gerecke, R.; Gledhill, T.; Smit, H. Chelicerata: Acari II; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Tuzovskij, P.V. On the Systematic of the Water Mite Sperchon tuzovskiji Pešić & Smit, 2020 (Acari, Hydrachnidia: Sperchontidae). Zootaxa 2023, 5296, 497–500. [Google Scholar] [CrossRef]
- Kolesnikov, V.B.; Stolbov, V.A. Review of the Genus Sperchon Kramer, 1877 (Acari, Hydrachnidia: Sperchontidae) from Russia. Zootaxa 2025, 5666, 53–73. [Google Scholar] [CrossRef]
- Smit, H.; Pešić, V.; Gurung, M.M. The Water Mite Genus Sperchon Kramer, 1877 in Bhutan (Acari: Hydrachnidia: Sperchontidae), with the Description of Three New Species. Acarologia 2022, 62, 754–762. [Google Scholar] [CrossRef]
- Pešić, V.; Smit, H. Water Mites of the Genus Sperchon Kramer, 1877 of Kyrgyzstan (Acari: Hydrachnidia: Sperchontidae) with the Description of Seven New Species. Int. J. Acarol. 2020, 46, 611–633. [Google Scholar] [CrossRef]
- Zawal, A.; Skuza, L.; Michoński, G.; Bańkowska, A.; Szućko-Kociuba, I.; Gastineau, R. Complete Mitochondrial Genome of Hygrobates turcicus Pešić, Esen & Dabert, 2017 (Acari, Hydrachnidia, Hygrobatoidea). Sci. Rep. 2022, 12, 22063. [Google Scholar] [CrossRef]
- Hiruta, S.F.; Morimoto, S.; Yoshinari, G.; Goldschmidt, T.; Nishikawa, K.; Shimano, S. Complete mitochondrial genomes of two water mite species: Hygrobates (H.) longiporus and Hygrobates (Rivobates) taniguchii (Acari, Trombidiformes, Hygrobatoidea). Mitochondrial DNA Part B 2020, 5, 2969–2971. [Google Scholar] [CrossRef]
- Ernsting, B.R.; Edwards, D.D.; Aldred, K.J.; Fites, J.S.; Neff, C.R. Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): A unique gene order with implications for phylogenetic inference. Exp. Appl. Acarol. 2009, 49, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.D.; Jackson, L.E.; Johnson, A.J.; Ernsting, B.R. Mitochondrial genome sequence of Unionicola parkeri (Acari: Trombidiformes: Unionicolidae): Molecular synapomorphies between closely-related Unionicola gill mites. Exp. Appl. Acarol. 2011, 54, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gra cia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Dabert, M.; Witalinski, W.; Kazmierski, A.; Olszanowski, Z.; Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 2010, 56, 222–241. [Google Scholar] [CrossRef]
- Pepato, A.R.; Klimov, P.B. Origin and higher-level diversification of acariform mites—Evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol. Biol. 2015, 15, 178. [Google Scholar] [CrossRef]
- Bolton, S.J.; Chetverikov, P.E.; Ochoa, R.; Klimov, P.B. Where Eriophyoidea (Acariformes) Belong in the Tree of Life. Insects 2023, 14, 527. [Google Scholar] [CrossRef]
- Xue, X.-F.; Guo, J.-F.; Dong, Y.; Hong, X.-Y.; Shao, R. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: New evidence from eriophyoid mites. Sci. Rep. 2016, 6, 18920. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-N.; Xue, X.-F. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool. J. Linn. Soc. 2019, 187, 585–598. [Google Scholar] [CrossRef]
- Xue, X.-F.; Dong, Y.; Deng, W.; Hong, X.-Y.; Shao, R. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol. Phylogenet. Evol. 2017, 109, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fang, Y.; Chu, L.; Zuo, Z.; Liu, L.; Feng, R.; Zhang, Z.; Zhan, X.; Li, F.; Hu, C.; et al. The first complete mitochondrial genome of Bdelloidea (Trombidiformes, Eupodina) and comparative genomics provide insights into gene rearrangement and evolution of trombidiform mites. J. Stored Prod. Res. 2022, 98, 102009. [Google Scholar] [CrossRef]
- Thia, J.; Young, N.; Korhnen, P.; Yang, Q.; Gasser, R.; Umina, P.; Hoffmann, A. The mitogenome of Halotydeus destructor (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements. Ecol. Evol. 2021, 11, 14162–14174. [Google Scholar] [CrossRef] [PubMed]
- Hiruta, S.F.; Waki, T.; Shimano, S. Complete mitochondrial genomes of two snail mite: Riccardoella tokyoensis and R. reaumuri (Acariformes, Prostigmata, Ereynetidae). Mitochondrial DNA Part B 2022, 7, 345–347. [Google Scholar] [CrossRef]
- Shao, R.; Mitani, H.; Barker, S.C.; Takahashi, M.; Fukunaga, M. Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J. Mol. Evol. 2005, 60, 764–773. [Google Scholar] [CrossRef]
- Shao, R.; Barker, S.C.; Mitani, H.; Takahashi, M.; Fukunaga, M. Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari: Acariformes). J. Mol. Evol. 2006, 63, 251–261. [Google Scholar] [CrossRef]
- Alkathiry, H.A.; Alghamdi, S.Q.; Sinha, A.; Margos, G.; Stekolnikov, A.A.; Alagaili, A.N.; Darby, A.C.; Makepeace, B.L.; Khoo, J.J. Microbiome and mitogenomics of the chigger mite Pentidionis agamae: Potential role as an orientia vector and associations with divergent clades of Wolbachia and Borrelia. BMC Genom. 2024, 25, 380. [Google Scholar] [CrossRef]
- Yuan, M.-L.; Wei, D.-D.; Wang, B.-J.; Dou, W.; Wang, J.-J. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): High genome rearrangement and extremely truncated tRNAs. BMC Genom. 2010, 11, 597. [Google Scholar] [CrossRef]
- Chen, D.-S.; Jin, P.-Y.; Zhang, K.-J.; Ding, X.-L.; Yang, S.-X.; Ju, J.-F.; Zhao, J.-Y.; Hong, X.-Y. The complete mitochondrial genomes of six species of Tetranychus provide insights into the phylogeny and evolution of spider mites. PLoS ONE 2014, 9, e110625. [Google Scholar] [CrossRef]
- Sun, J.-T.; Lin, J.-H.; Zhang, Q.; Zhao, D.-S.; Chen, L.; Gao, W.-N.; Xue, X.-F.; Hong, X.-Y. The mitochondrial genome of the red tomato spider mite, Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) and its implications for phylogenetic analysis. Syst. Appl. Acarol. 2019, 24, 1724–1735. [Google Scholar] [CrossRef]
- Tian, W.; Yi, T.; Jin, D.; Zhou, Y. Complete mitochondrial genome of Stigmaeopsis miscanthi (Acari: Tetranychi dae). Mitochondrial DNA Part B 2022, 7, 836–837. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Vanholme, B.; Van Pottelberge, S.; Van Nieuwenhuyse, P.; Nauen, R.; Tirry, L.; Denholm, I. Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-mendelian inheritance in action. Proc. Natl. Acad. Sci. USA 2008, 105, 5980–5985. [Google Scholar] [CrossRef]
- Chen, D.-S.; Jin, P.-Y.; Hong, X.-Y. The Complete Mitochondrial Genome of Tetranychus truncatus Ehara (Acari: Tetranychidae). Mitochondrial DNA Part A 2016, 27, 1480–1481. [Google Scholar] [CrossRef]
- Liu, R.-D.; Tian, W.-J.; He, H.-D.; Liang, L.; Wu, D.-J.; Tian, J.-H.; Jin, D.-C.; Yi, T.-C. Comparative analysis under the family Tetranychidae with two new mitochondrial genomic resources of Stigmaeopsis nanjingensis and Stigmaeopsis continentalis (Acari: Tetranychidae). Syst. Appl. Acarol. 2025, 30, 76–87. [Google Scholar] [CrossRef]
- Palopoli, M.F.; Minot, S.; Pei, D.; Satterly, A.; Endrizzi, J. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: Novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genom. 2014, 15, 1124. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, H.-Y.; Song, Y.-F.; Yang, M.-F.; Li, L.-T.; Yu, L.-C.; Liu, J.-F. Complete mitochondrial genome of Pyemotes zhonghuajia (Acari: Pyemotidae). Syst. Appl. Acarol. 2022, 27, 1677–1686. [Google Scholar] [CrossRef]
- Xue, X.; Deng, W.; Qu, S.; Hong, X.; Shao, R. The mitochondrial genomes of sarcoptiform mites: Are any transfer RNA genes really lost? BMC Genom. 2018, 19, 466. [Google Scholar] [CrossRef]
- Dermauw, W.; Van Leeuwen, T.; Vanholme, B.; Tirry, L. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): A novel gene arrangement among arthropods. BMC Genom. 2009, 10, 107. [Google Scholar] [CrossRef]
- Gu, X.-B.; Liu, G.-H.; Song, H.-Q.; Liu, T.-Y.; Yang, G.-Y.; Zhu, X.-Q. The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Parasites Vectors 2014, 7, 340. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Staton, J.L.; Daehler, L.L.; Brown, W.M. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: Conservation of major features among arthropod classes. Mol. Biol. Evol. 1997, 14, 867–874. [Google Scholar] [CrossRef]
- Ding, J.H.; Sun, J.L.; Zhang, X. A new species of the water mite genus Sperchon Kramer, 1877 from China, with identifying Sperchon rostratus lundblad, 1969 through DNA Barcoding (Acari, Hydrachnidia, Sperchontidae). Zookeys 2017, 707, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, T.; Sun, T.; Gen, X. First record of water mite from Tibet with an updated key to the genus Sperchon (Acari: Hydrachnidia: Sperchontidae) from China. Entomotaxonomia 2018, 40, 209–216. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, X.; Li, G.; Mu, R.-R.; Zhang, H.-J. With DNA barcoding revealing sexual dimorphism in a water mite: The first description of male Sperchon fuxiensis (Acari: Hydrachnidia: Sperchontidae). Zootaxa 2019, 4560, 385–392. [Google Scholar] [CrossRef]
- Da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Ramos, M.J.; Antunes, A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genom. 2008, 9, 119. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Raychoudhury, R.; Lavrov, D.V.; Werren, J.H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 2008, 25, 2167–2180. [Google Scholar] [CrossRef]
- Tang, J.; Huang, W.; Zhang, Y. The complete mitochondrial genome of four Hylicinae (Hemiptera: Cicadellidae): Structural features and phylogenetic implications. Insects 2020, 11, 869. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Z.; Chen, T.; Dong, W. Comparative analysis of tRNA genes in the mitochondrial genome of Parasitidae (Parasitiformes: Mesostigmata). Int. J. Acarol. 2022, 48, 645–653. [Google Scholar] [CrossRef]
- Zhan, X.B.; Chen, B.; Fang, Y.; Dong, F.Y.; Fang, W.X.; Luo, Q.; Chu, L.M.; Feng, R.; Wang, Y.; Su, X.; et al. Mitochondrial analysis of oribatid mites provides insights into their atypical tRNA annotation, genome rearrangement and evolution. Parasites Vectors 2021, 14, 221. [Google Scholar] [CrossRef]
- Klimov, P.B.; Oconnor, B.M. Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in Acariform mites. BMC Genom. 2009, 10, 598. [Google Scholar] [CrossRef]
- Masta, S.E.; Boore, J.L. The Complete Mitochondrial Genome Sequence of the Spider Habronattus oregonensis Reveals Rearranged and Extremely Truncated tRNAs. Mol. Biol. Evol. 2004, 21, 893–902. [Google Scholar] [CrossRef]
- Lavrov, D.V.; Brown, W.M.; Boore, J.L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the Centipede Lithobius forficatus. Proc. Natl. Acad. Sci. USA 2000, 97, 13738–13742. [Google Scholar] [CrossRef]
- Dabert, M.; Proctor, H.; Dabert, J. Higher-Level Molecular Phylogeny of the Water Mites (Acariformes: Prostig mata: Parasitengonina: Hydrachnidiae). Mol. Phylogenetics Evol. 2016, 101, 75–90. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Zardoya, R.; Meyer, A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 1996, 13, 933–942. [Google Scholar] [CrossRef]
Primer Name | Amplified Fragment | Sequence (5′–3′) | Reference | |
---|---|---|---|---|
LCO1490 | cox1 | GGTCAACAAATCATAAAGATATTGG | [14] | |
HCO2198 | TAAACTTCAGGGTGACCAAAAAATCA | |||
COB-F | cob | TTTTGAGGTGCAACAGTAATTAC | [12] | |
COB-R | AAATATCATTCAGGTTGAATATG | |||
S. plumifer | pluIBF | cox1—cob | CAGGAACAGGATGAACAGTTTACCC | This study |
pluIBR | AGTTTATCTAAGTCTCTTTTTATCCCAGTT | |||
pluBIF | cob—cox1 | CCCCAATTTATTAGGAGACCCAGAA | ||
pluBIR | CCTAAGATAGATGAAACACCCGCCA | |||
Sperchon sp. | spIBF | cox1—cob | ATGAACAGTCTATCCACCTTTATCT | |
spIBR | TAAGATGAATGGTAATAGAAAATGAAAT | |||
spBIF | cob—cox1 | TGTCCAATGATTATGAGGAGGGTTC | ||
spBIR | ACGAAAGCGTGTGCTGTAACAATGG |
Order | Supercohort | Superfamily | Family | Species | GenBank Accession Number | Reference |
---|---|---|---|---|---|---|
Trombidiformes | Eupodides | Bdelloidea | Bdellidae | Spinibdella lignicola | NC067576 | [27] |
Eupodoidea | Penthaleidae | Halotydeus destructor | NC063625 | [28] | ||
Tydeoidea | Ereynetidae | Riccardoella tokyoensis | LC601992 | [29] | ||
R. reaumuri | LC601993 | [29] | ||||
Anystides | Trombiculoidea | Trombiculidae | Leptotrombidium pallidum | NC007177 | [30] | |
L. deliense | NC007600 | [31] | ||||
L. akamushi | NC007601 | [31] | ||||
Pentidionis agamae | NC086514 | [32] | ||||
Hygrobatoidea | Hygrobatidae | H. longiporus | LC552026 | [11] | ||
H. taniguchii | LC552027 | [11] | ||||
H. turcicus | NC068260 | [10] | ||||
Unionicolidae | Unionicola foili | NC011036 | [12] | |||
U. parkeri | NC014683 | [13] | ||||
Lebertioidea | Sperchontidae | Sperchon plumifer | NC039813 | This study | ||
Sperchon sp. | PX252369 | This study | ||||
Eleutherengonides | Tetranychoidea | Tetranychidae | Panonychus citri | HM189212 | [33] | |
Tetranychus urticae | KJ729023 | [34] | ||||
T. evansi | MN417333 | [35] | ||||
Stigmaeopsis miscanthi | MZ726369 | [36] | ||||
T. urticae | NC010526 | [37] | ||||
T. kanzawai | NC024676 | [34] | ||||
T. ludeni | NC024677 | [34] | ||||
T. malaysiensis | NC024678 | [34] | ||||
T. phaselus | NC024679 | [34] | ||||
T. pueraricola | NC024680 | [34] | ||||
T. truncatus | NC024874 | [38] | ||||
S. nanjingensis | NC082149 | [39] | ||||
S. continentalis | NC082150 | [39] | ||||
Cheyletoidea | Demodicidae | Demodex brevis | KM114225 | [40] | ||
D. folliculorum | NC026102 | [40] | ||||
Pyemotoidea | Pyemotidae | Pyemotes zhonghuajia | OM396909 | [41] | ||
Sarcoptiformes | Desmonomatides | Acaroidea | Acaridae | Rhizoglyphus robini | NC038058 | [42] |
Analgoidea | Pyroglyphidae | Dermatophagoides pteronyssinus | NC012218 | [43] | ||
Sarcoptoidea | Psoroptidae | Psoroptes cuniculi | NC024675 | [44] | ||
Histiostomatoidea | Histiostomatidae | Histiostoma feroniarum | NC038207 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Nie, X.; Xia, X.; Song, J.; Wen, Q.; Sun, K. Complete Mitochondrial Genomes of Two Water Mite Species in the Family Sperchontidae (Acari: Hydrachnidiae): Characterization and Phylogenetic Implications. Genes 2025, 16, 1236. https://doi.org/10.3390/genes16101236
Zhang X, Nie X, Xia X, Song J, Wen Q, Sun K. Complete Mitochondrial Genomes of Two Water Mite Species in the Family Sperchontidae (Acari: Hydrachnidiae): Characterization and Phylogenetic Implications. Genes. 2025; 16(10):1236. https://doi.org/10.3390/genes16101236
Chicago/Turabian StyleZhang, Xu, Xingru Nie, Xuhang Xia, Jiahui Song, Qingyu Wen, and Ke Sun. 2025. "Complete Mitochondrial Genomes of Two Water Mite Species in the Family Sperchontidae (Acari: Hydrachnidiae): Characterization and Phylogenetic Implications" Genes 16, no. 10: 1236. https://doi.org/10.3390/genes16101236
APA StyleZhang, X., Nie, X., Xia, X., Song, J., Wen, Q., & Sun, K. (2025). Complete Mitochondrial Genomes of Two Water Mite Species in the Family Sperchontidae (Acari: Hydrachnidiae): Characterization and Phylogenetic Implications. Genes, 16(10), 1236. https://doi.org/10.3390/genes16101236