Analysis of Semen Proteomic Differences Among Three Genotypes of FecB Rams in Duolang Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Test Animals
2.2. Equipment, Drugs, and Reagents Used
2.3. Semen Collection and Dilution Equilibration
2.4. Preparation of Straw Frozen Semen
2.5. Data Analysis
2.5.1. Protein Identification and Quantification
2.5.2. Functional Analysis of Proteins and DEP
3. Results
3.1. Overview of the Number of Proteins Identified by DIA
3.2. Functional Annotation of Proteins
3.2.1. Protein GO Functional Annotation
3.2.2. Functional Annotations
3.2.3. Functional Annotation of All KEGG
3.2.4. Annotation of All Structural Domains
3.2.5. Annotation of All Subcellular Localization Information
3.2.6. PCA
3.3. Screening for Differential Proteins
3.3.1. Enrichment Analysis of Differential Proteins
3.3.2. Comparison of KEGG Enrichment Analysis
3.3.3. Structural Domain Enrichment Analysis of Comparative Samples
3.3.4. Subcellular Localization Analysis of Differential Proteins in the Different Comparison Groups
3.3.5. Differential Protein Interaction Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s Disease |
| APP | Amyloid Precursor Protein |
| BP | Biological Process |
| CC | Cellular Component |
| COG | Cluster of Orthologous Groups |
| DIA | Data-Independent Acquisition |
| DEPs | Differentially Expressed Proteins |
| DTT | Dithiothreitol |
| FC | Fold Change |
| FSH | Follicle-Stimulating Hormone |
| GO | Gene Ontology |
| GnRH | Gonadotropin-Releasing Hormone |
| GSEA | Gene Set Enrichment Analysis |
| HPG | Hypothalamic-Pituitary-Gonadal |
| IGF | Insulin-like Growth Factor |
| IAM | Iodoacetamide |
| IPR | Inter Pro Scan |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LH | Luteinizing Hormone |
| MF | Molecular Function |
| NES | Normalized Enrichment Score |
| NAFLD | Nonalcoholic Fatty Liver Disease |
| PCA | Principal Component Analysis |
| PD | Parkinson’s Disease |
| PS1 | Presenilin 1 |
| PS2 | Presenilin 2 |
| ROS | Reactive Oxygen Species |
| SDS | Sodium Dodecyl Sulfate |
| SNAP-25 | Synaptosomal Associated Protein 25 |
| TEAB | Triethylammonium Bicarbonate |
| TFA | Trifluoroacetic Acid |
| UHPLC | Ultra-High-Performance Liquid Chromatography |
References
- Guo, X.F.; Zhong, R.Z.; Zhang, X.S.; Zhang, J.L.; Wang, X.Y.; He, X.Y.; Chu, M.X.; Fang, Y. Effect of FecB gene mutation on superovulation in sheep. J. Domest. Anim. Ecol. 2024, 45, 43–47. [Google Scholar]
- Guo, H.C.; Wang, X.S. Research progress of FecB gene in Small Tail Han sheep. Livest. Poult. Ind. 2024, 35, 26–28. [Google Scholar]
- Pan, Z.Y.; Di, R.; Liu, Q.Y.; Chu, M.X. Research advances on BMPR1B as a major gene for prolificacy in sheep. J. Domest. Anim. Ecol. 2015, 36, 1–6. [Google Scholar]
- Samanta, L.; Parida, R.; Dias, T.R.; Agarwal, A. The enigmatic seminal plasma: A proteomics insight from ejaculation to fertilization. Reprod. Biol. Endocrinol. 2018, 16, 41–68. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Iwasaki, A.; Gagnon, C. Gagnon Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992, 57, 409–416. [Google Scholar] [CrossRef]
- Yang, L. Related Studies on Proteomics of Buffalo Semen. Master’s Thesis, Guangxi University, Nanning, China, 2012. [Google Scholar]
- Ochsendorf, F.R. Infections in the male genital tract and reactive oxygen species. Hum. Reprod. Update 1999, 5, 399–420. [Google Scholar] [CrossRef]
- Agarwal, A.; Said, T.M. Said Oxidative stress, DNA damage and apoptosis in male infertility: A clinical approach. BJU Int. 2005, 95, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Mukai, C.; Travis, A. Travis What sperm can teach us about energy production. Reprod. Domest. Anim. Zuchthyg. 2012, 47 (Suppl. S4), 164–169. [Google Scholar] [CrossRef] [PubMed]
- Li, P.F. Proteomics Comparative Analysis of Semen Quality Characteristics in Winter and Summer. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2019. [Google Scholar]
- Halangk, W.; Bohnensack, R.; Kunz, W. Interdependence of mitochondrial ATP production and extramitochondrial ATP utilization in intact spermatozoa. Biochim. Biophys. Acta 1985, 808, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.; Durairajanayagam, D.; Cui, Z.; Ayaz, A.; Gupta, S.; Willard, B.; Gopalan, B.; Sabanegh, E. Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology 2015, 85, 580–588. [Google Scholar] [CrossRef]
- Wykes, S.M.; Visscher, D.W.; A Krawetz, S. Krawetz Haploid transcripts persist in mature human spermatozoa. Mol. Hum. Reprod. 1997, 3, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res. 2016, 363, 279–287. [Google Scholar] [CrossRef]
- Luño, V.; López-Úbeda, R.; García-Vázquez, F.A.; Gil, L.; Matás, C. Boar sperm tyrosine phosphorylation patterns in the presence of oviductal epithelial cells: In vitro, ex vivo, and in vivo models. Reproduction 2013, 146, 315–324. [Google Scholar] [CrossRef]
- Cornwall, G.A. Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. Adv. Exp. Med. Biol. 2014, 759, 159–180. [Google Scholar] [PubMed]
- Li, X.; Wang, L.; Li, Y.; Zhao, N.; Zhen, L.; Fu, J.; Yang, Q. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro. Anim. Reprod. Sci. 2016, 172, 39–51. [Google Scholar] [CrossRef]
- Yu, H.; Diao, H.; Wang, C.; Lin, Y.; Yu, F.; Lu, H.; Xu, W.; Li, Z.; Shi, H.; Zhao, S.; et al. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm). Mol. Cell. Proteom. MCP 2015, 14, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Brohi, R.D.; Huo, L.-J. Huo Posttranslational Modifications in Spermatozoa and Effects on Male Fertility and Sperm Viability. Omics A J. Integr. Biol. 2017, 21, 245–256. [Google Scholar] [CrossRef]
- Sutovsky, P.; McCauley, T.C.; Sutovsky, M.; Day, B.N. Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 2003, 68, 1793–1800. [Google Scholar] [CrossRef]
- Aalberts, M.; Sostaric, E.; Wubbolts, R.; Wauben, M.W.; Nolte, E.N.; Gadella, B.M.; Stout, T.A.; Stoorvogel, W. Spermatozoa recruit prostasomes in response to capacitation induction. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 2326–2335. [Google Scholar] [CrossRef]
- Sánchez, R.; Deppe, M.; Schulz, M.; Bravo, P.; Villegas, J.; Morales, P.; Risopatrón, J. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia 2015, 43, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Yang, Y.Y.; Su, J.; Zhao, G.P.; Li, X.N.; Wang, D.Q.; Bayinjrigala; Cao, G.F.; Wang, C.Y. Proteomic analysis of differential proteins in sheep sperm before and after capacitation. J. Anim. Husb. Vet. Med. 2023, 55, 10–16. [Google Scholar]
- Cheng, B.; Zhang, S.S. Research progress on neuropsychiatric symptoms of Parkinson’s disease. Chin. J. Clin. Neurosci. 2020, 28, 712–716. [Google Scholar]
- Xu, G.L.; Zhou, L.Q. Research advances on male (male) reproductive damage induced by phthalates. Chin. J. Androl. 2024, 30, 66–71. [Google Scholar]
- Mao, Z.F.; Zhan, B.Y. Relationship between hypothalamic-pituitary-gonadal axis and male aging. Foreign Med. Sci. (Sect. Urol.) 1993, 5, 196–199. [Google Scholar]
- Wang, D.C.; Yu, S.S.; Liu, W.F.; Chen, G.J. Aggregation state of α-Synuclein protein and its role in Parkinson’s disease formation. Chin. J. Biochem. Mol. Biol. 2006, 8, 615–620. [Google Scholar]
- Tang, Z.X.; Jiang, Y.H. Research progress of antinuclear antibodies in assisted reproductive technology. Electron. J. Pract. Gynecol. Endocrinol. 2022, 9, 47–51. [Google Scholar]
- Wang, L.F. Analysis of fatty liver prevalence and related factors in farmers of Gaobu Town, Shaoxing City. Mod. Pract. Med. 2011, 23, 1117–1119. [Google Scholar]
- Zhang, L.; Li, G.F.; Su, L.L.; Du, L.; Zhou, D.; Cheng, X.; Lin, Z.; Qu, S. Correlation between total testosterone levels and insulin resistance in patients with acanthosis nigricans and non-acanthosis nigricans. J. South. Med. Univ. 2021, 41, 1780–1786. [Google Scholar]
- Ji, Y.X. PINK/Parkin-Mediated Selective Autophagy Mechanism in Mitochondria of NASH Hepatocytes and Intervention Effect of Zhigan Formula. Master’s Thesis, Guangxi University of Chinese Medicine, Nanning, China, 28 March 2019. [Google Scholar]
- Huang, Q.; Liu, H.J.; Xu, P. Research progress on neurotransmitters and OSAS-related cognitive impairment. J. Zunyi Med. Univ. 2020, 43, 254–258. [Google Scholar]
- Qi, Q.Q.; Zhang, Y. Changes in hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonadal axis hormones in patients with depression comorbid with obstructive sleep apnea. China J. Pharm. Econ. 2025, 20, 33–38. [Google Scholar]
- Cheng, C.F.; Wang, B.; Zhao, T. Relationship between sex hormone levels and semen quality in patients with varicocele. J. Henan Med. Coll. 2023, 35, 152–155. [Google Scholar]
- Zhou, Y. Clinical analysis of 68 cases of Alzheimer’s disease. Biotechnol. World 2014, 2, 68. [Google Scholar]
- Fan, T.Y. Relationship between Alzheimer’s disease and epigenetics. China New Telecommun. 2019, 21, 241–243. [Google Scholar]
- Cao, M.Y.; Zhao, Z.M.; Yan, X.; He, G.M.; Cao, J.F.; Cui, N. Retrospective analysis of factors related to fertilization failure in conventional in vitro fertilization. J. Hebei Med. Univ. 2019, 40, 309–314. [Google Scholar]
- Ma, Y.D.; Wang, Y.C.; Yue, L.M. Research progress on endometrial glycogen metabolism in embryo implantation. Acta Physiol. Sin. 2022, 74, 255–264. [Google Scholar]




































| Sample Pairs Comparing by the Former Over the Latter | The Number of Proteins Co-Identified in Both Sets of Samples | Regulated Type (Up- or Down-Regulation) | Up-Regulated Proteins (FC > 1.2 and p Value < 0.05), and Down-Regulated Proteins (FC < 0.83 and p Value < 0.05) |
|---|---|---|---|
| B.vs. A | 2989 | up-regulated | 66 |
| down-regulated | 35 | ||
| C.vs. A | 2827 | up-regulated | 81 |
| down-regulated | 292 | ||
| B.vs. C | 2771 | up-regulated | 116 |
| down-regulated | 28 |
| KEGG_ID | KEGG_Term | p Value | AdjustedPv | Size | ES | NES |
|---|---|---|---|---|---|---|
| MAP00190 | OXIDATIVE PHOSPHORYLATION | 0.0 | 0.019532768 | 97 | −0.45213947 | −2.0541892 |
| MAP05012 | PARKINSON’S DISEASE | 0.0 | 0.0141317975 | 95 | −0.45930517 | −2.0012848 |
| MAP04932 | NON-ALCOHOLIC FATTY LIVER DISEASE _NAFLD_ | 0.0 | 0.045213815 | 70 | −0.4325565 | −1.8434372 |
| MAP05010 | ALZHEIMER’S DISEASE | 0.0 | 0.07570649 | 98 | −0.4006493 | −1.7487847 |
| MAP04723 | retrograde endocannabinoid signaling | 0.007633588 | 0.0965757 | 52 | −0.42583093 | −1.6883155 |
| IPR_ID | IPR_Term | p Value | AdjustedPv | Size | ES | NES |
|---|---|---|---|---|---|---|
| IPR000719 | PROTEIN KINASE DOMAIN | 0.0 | 0.046585634 | 46 | −0.49194428 | −1.8805562 |
| IPR025933 | BETA-DEFENSIN | 0.006802721 | 0.02746326 | 17 | −0.63333166 | −1.8570249 |
| IPR001353 | PROTEASOME, SUBUNIT ALPHA_BETA | 0.0033670033 | 0.019854257 | 17 | −0.6215955 | −1.8289802 |
| IPR001623 | DNAJ DOMAIN | 0.01650165 | 0.0661915 | 16 | −0.5654077 | −1.6392351 |
| Subcell_ID | p Value | AdjustedPv | Size | ES | NES |
|---|---|---|---|---|---|
| MITOCHONDRION PROTEIN | 0.0 | 0.11314847 | 309 | −0.2983893 | −1.4824772 |
| EXTRACELL PROTEIN | 0.0 | 0.0 | 266 | 0.6574827 | 2.0779767 |
| endoplasmic reticulum productin | 0.024819028 | 0.1322063 | 120 | 0.4547453 | 1.3880157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Niu, Z.; Yan, J.; Chen, Y.; Xue, Z.; Xu, J.; Ma, Y.; Shi, H. Analysis of Semen Proteomic Differences Among Three Genotypes of FecB Rams in Duolang Sheep. Genes 2025, 16, 1226. https://doi.org/10.3390/genes16101226
Zhang Y, Niu Z, Yan J, Chen Y, Xue Z, Xu J, Ma Y, Shi H. Analysis of Semen Proteomic Differences Among Three Genotypes of FecB Rams in Duolang Sheep. Genes. 2025; 16(10):1226. https://doi.org/10.3390/genes16101226
Chicago/Turabian StyleZhang, Yanlong, Zhigang Niu, Jiabao Yan, Yang Chen, Zhengfen Xue, Jie Xu, Yifan Ma, and Hongcai Shi. 2025. "Analysis of Semen Proteomic Differences Among Three Genotypes of FecB Rams in Duolang Sheep" Genes 16, no. 10: 1226. https://doi.org/10.3390/genes16101226
APA StyleZhang, Y., Niu, Z., Yan, J., Chen, Y., Xue, Z., Xu, J., Ma, Y., & Shi, H. (2025). Analysis of Semen Proteomic Differences Among Three Genotypes of FecB Rams in Duolang Sheep. Genes, 16(10), 1226. https://doi.org/10.3390/genes16101226

