The First Report of a Non-Canonical Telomeric Motif in Neuroptera: (TTGGG)n in Chromosomes of Nineta flava (Scopoli, 1763), Chrysopidae
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pisano, S.; Galati, A.; Cacchione, S. Telomeric nucleosomes: Forgotten players at chromosome ends. Cell. Mol. Life Sci. 2008, 65, 3553–3563. [Google Scholar] [CrossRef]
- O’Sullivan, R.J.; Karlseder, J. Telomeres: Protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 2010, 11, 171–181. [Google Scholar] [CrossRef]
- Galati, A.; Micheli, E.; Cacchione, S. Chromatin structure in telomere dynamics. Front. Oncol. 2013, 3, 46. [Google Scholar] [CrossRef]
- Lazzerini-Denchi, E.; Sfeir, A. Stop pulling my strings—What telomeres taught us about the DNA damage response. Nat. Rev. Mol. Cell Biol. 2016, 17, 364–378. [Google Scholar] [CrossRef]
- Zakian, V.A. Telomeres: Beginning to understand the end. Science 1995, 270, 1601–1607. [Google Scholar] [CrossRef]
- Vicari, M.R.; Bruschi, D.P.; Cabral-de-Mello, D.C.; Nogaroto, V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet. Mol. Biol. 2022, 45, e20220071. [Google Scholar] [CrossRef] [PubMed]
- Frydrychová, R.; Grossmann, P.; Trubač, P.; Vítková, M.; Marec, F. Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 2004, 47, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Vítková, M.; Král, J.; Traut, W.; Zrzavý, J.; Marec, F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res. 2005, 13, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Kuznetsova, V.G. What genes and chromosomes say about the origin and evolution of insects and other arthropods? Russ. J. Genet. 2010, 46, 1115–1121. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Grozeva, S.; Gokhman, V. Telomere structure in insects: A review. J. Zool. Syst. Evol. Res. 2020, 58, 127–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Xiong, X.; Appel, A.G.; Zhang, C.; Wang, X. Profiles of telomeric repeats in Insecta reveal diverse forms of telomeric motifs in Hymenopterans. Life Sci. Alliance 2022, 5, e202101163. [Google Scholar] [CrossRef]
- Gokhman, V.E.; Kuznetsova, V.G. Presence of the canonical TTAGG insect telomeric repeat in the Tenthredinidae (Symphyta) suggests its ancestral nature in the order Hymenoptera. Genetica 2018, 146, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Grozeva, S.; Anokhin, B.A.; Simov, N.; Kuznetsova, V.G. New evidence for the presence of the telomeric motif (TTAGG)n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha). Comp. Cytogenet. 2019, 13, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Prušáková, D.; Peska, V.; Pekár, S.; Bubeník, M.; Čížek, L.; Bezděk, A.; Čapková Frydrychová, R. Telomeric DNA sequences in beetle taxa vary with species richness. Sci. Rep. 2021, 11, 13319. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A. Diversity and evolution of telomere and subtelomere DNA sequences in insects. bioRxiv 2022. [Google Scholar] [CrossRef]
- Fajkus, P.; Adámik, M.; Nelson, A.D.L.; Kilar, A.M.; Franek, M.; Bubeník, M.; Frydrychová, R.Č.; Votavová, A.; Sýkorová, E.; Fajkus, J.; et al. Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis. Nucleic Acids Res. 2023, 51, 420–433. [Google Scholar] [CrossRef]
- Lyčka, M.; Bubeník, M.; Závodník, M.; Peska, V.; Fajkus, P.; Demko, M.; Fajkus, J.; Fojtová, M. TeloBase: A community-curated database of telomere sequences across the tree of life. Nucleic Acids Res. 2024, 52, D311–D321. [Google Scholar] [CrossRef]
- Stoianova, D.; Grozeva, S.; Golub, N.V.; Anokhin, B.A.; Kuznetsova, V.G. The first FISH confirmed non-canonical telomeric motif in Heteroptera: Cimex lectularius Linnaeus, 1758 and C. hemipterus (Fabricius, 1803) (Hemiptera, Cimicidae) have a 10 bp motif (TTAGGGATGG)n. Genes 2024, 15, 1026. [Google Scholar] [CrossRef]
- Bugrov, A.; Karamysheva, T.; Buleu, O. New insights into the chromosomes of stoneflies: I. Karyotype, C-banding and localization of ribosomal and telomeric DNA markers in Skwala compacta (McLachlan, 1872) (Polyneoptera, Plecoptera, Perlodidae) from Siberia. Comp. Cytogenet. 2024, 18, 15–26. [Google Scholar] [CrossRef]
- Golub, N.; Anokhin, B.; Kuznetsova, V. Non-canonical telomeric motif TTAGGGGTGG in the true bug species Geocoris dispar Waga, 1839 (Heteroptera, Geocoridae). Comp. Cytogenet. 2025, 19, 117–123. [Google Scholar] [CrossRef]
- Oswald, J.D.; Machado, R.J.P. Biodiversity of the Neuropterida (Insecta: Neuroptera: Megaloptera, and Raphidioptera). In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Oxford, UK, 2018; Volume 2, pp. 627–671. [Google Scholar]
- Okazaki, S.; Tsuchida, K.; Maekawa, H.; Ishikawa, H.; Fujiwara, H. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol. 1993, 13, 1424–1432. [Google Scholar]
- Kuznetsova, V.G.; Khabiev, G.N.; Anokhin, B.A. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae): First data on telomere structure and rDNA location. Comp. Cytogenet. 2016, 10, 647–656. [Google Scholar] [CrossRef]
- Cabral-de-Mello, D.C.; Gasparotto, A.E.; Rico-Porras, J.M.; Ferretti, A.B.S.; Mora-Ruiz, P.; Alves-Gomes, R.T.; Lourejan, V.; Scudeler, E.L.; Lorite, P.; Bardella, V.B. First insights into the satellitomes and new evidence for the absence of canonical insect telomere in the Neuroptera order. Genome 2025, 68, 1–12. [Google Scholar] [CrossRef]
- Lukhtanov, V.A.; Pazhenkova, E.A. Diversity and evolution of telomeric motifs and telomere DNA organization in insects. Biol. J. Linn. Soc. 2023, 140, 536–555. [Google Scholar] [CrossRef]
- Lukhtanov, V.A. Telomere DNA in the insect order Dermaptera and the first evidence for the non-canonical telomeric motif TTCGG in Arthropoda. Comp. Cytogenet. 2025, 19, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, V.; Golub, N.; Anokhin, B.; Stoianova, D.; Lukhtanov, V. Diversity of telomeric sequences in true bugs (Heteroptera): New data on the infraorders Pentatomomorpha and Cimicomorpha. Cytogenet. Genome Res. 2025, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Okazaki, S.; Anzai, T.; Fujiwara, H. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in lepidopteran insects. Mol. Biol. Evol. 2001, 18, 848–857. [Google Scholar] [CrossRef]
- Watson, J.M.; Trieb, J.; Troestl, M.; Renfrew, K.; Mandáková, T.; Fulneček, J.; Shippen, D.E.; Říha, K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021, 219, iyab126. [Google Scholar] [CrossRef]
- Brooks, S.J.; Barnard, P.C. The green lacewings of the world: A generic review (Neuroptera: Chrysopidae). Bull. Br. Mus. Nat. Hist. Entomol. 1990, 59, 117–286. [Google Scholar]
- Pappas, M.L.; Broufas, G.D.; Tsarsitalidou, O.K.; Koveos, D.S. Development and reproduction of the lacewings Dichochrysa flavifrons and Dichochrysa zelleri (Neuroptera: Chrysopidae) fed on two prey species. Ann. Entomol. Soc. Am. 2011, 104, 726–732. [Google Scholar] [CrossRef]
- Sablon, L.; Haubruge, E.; Verhegeen, F.J. Consumption of immature stages of Colorado potato beetle by Chrysoperla carnea (Neuroptera: Chrysopidae) larvae in the laboratory. Am. J. Potato Res. 2013, 90, 51–57. [Google Scholar] [CrossRef]
- Alghamdi, A.; Al-Otaibi, S.; Sayed, S.M. Field evaluation of indigenous predacious insent, Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae), fitness in controlling aphids and whiteflies in two vegetable crops. Egypt. J. Biol. Pest Control 2018, 28, 20. [Google Scholar] [CrossRef]
- Silva, C. Prey Preference of Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae) For Three Common Pest Species of Greenhouse Crops. Master’s Thesis, Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Brooks, S.J. An overview of the current status of Chrysopidae (Neuroptera) systematics. Dtsch. Entomol. Z. 1997, 44, 267–275. [Google Scholar] [CrossRef]
- Winterton, S.L.; De Freitas, S. Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae). Aust. J. Entomol. 2006, 45, 235–243. [Google Scholar] [CrossRef]
- Dai, L.; Winterton, S.L.; Garzón-Orduña, I.J.; Liang, F.Y.; Liu, X.Y. Mitochondrial phylogenomic analysis resolves the subfamily placement of enigmatic green lacewing genus Nothancyla (Neuroptera: Chrysopidae). Austral. Entomol. 2017, 56, 322–331. [Google Scholar] [CrossRef]
- Haruyama, N.; Mochizuki, A.; Duelli, P.; Naka, H.; Nomura, M. Green lacewing phylogeny, based on three nuclear genes (Chrysopidae, Neuroptera). Syst. Entomol. 2008, 33, 275–288. [Google Scholar] [CrossRef]
- Duelli, P.; Henry, C.S.; Mochizuki, A. The endemic Atlantochrysa atlantica (McLachlan) (Neuroptera: Chrysopidae) on Atlantic Islands: African or American origin? J. Nat. Hist. 2014, 48, 2595–2608. [Google Scholar] [CrossRef]
- Jiang, Y.; Garzón-Orduña, I.J.; Winterton, S.L.; Yang, F.; Liu, X. Phylogenetic relationships among tribes of the green lacewing subfamily Chrysopidae recovered based on mitochondrial phylogenomics. Sci. Rep. 2017, 7, 7218. [Google Scholar]
- Tian, S.; Jiang, Y.; Lai, Y.; Wang, S.; Liu, X.; Wang, Y. New mitogenomes of the green lacewing tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and phylogenetic implications of Chrysopidae. Insects 2023, 14, 878. [Google Scholar] [CrossRef]
- Winterton, S.L.; Gillung, J.P.; Garzón-Orduña, I.J.; Badano, D.; Breitkreuz, L.C.; Duelli, P.; Engel, M.S.; Liu, X.; Machado, R.J.; Mansell, M.; et al. Evolution of green lacewings (Neuroptera: Chrysopidae): An anchored phylogenomics approach. Syst. Entomol. 2019, 44, 514–526. [Google Scholar] [CrossRef]
- Garzón-Orduña, I.J.; Winterton, S.L.; Jiang, Y.; Breitkreuz, L.C.V.; Duelli, P.; Engel, M.S.; Penny, N.D.; Tauber, C.A.; Mochizuki, A.; Liu, X. Evolution of green lacewings (Neuroptera: Chrysopidae): A molecular supermatrix approach. Syst. Entomol. 2019, 44, 499–513. [Google Scholar] [CrossRef]
- Breitkreuz, L.C.V.; Garzón-Orduña, I.J.; Winterton, S.L.; Engel, M.S. Phylogeny of Chrysopidae (Neuroptera), with emphasis on morphological trait evolution. Zool. J. Linn. Soc. 2022, 194, 1374–1395. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989, 337, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Stoianova, D.; Grozeva, S.; Todorova, N.; Rangelov, M.; Lukhtanov, V.A.; Kuznetsova, V.G. New Insights into the Telomere Structure in Hemiptera (Insecta) Inferred from Chromosome-Level and Scaffold-Level Genome Assemblies. Diversity 2025, 17, 552. [Google Scholar] [CrossRef]
GenBank Accession | 5′ | 3′ | Chromosome Pseudomolecules Size (bp) |
---|---|---|---|
OY986040.1 | 1–8005 | 150,122,476–150,126,493 | 150,126,493 |
OY986041.1 | no short repeat array | 142,391,635–142,396,179 | 142,396,181 |
OY986042.1 | 1–3300 | no short repeat array | 119,373,907 |
OY986043.1 | no short repeat array | 100,876,893–100,877,120 | 100,877,120 |
OY986044.1 | 1–7554 | 88,716,705–88,717,929 | 88,717,929 |
OY986045.1 | no short repeat array | no short repeat array | 73,119,431 |
OY986046.1 | no short repeat array | no short repeat array | 41,815,626 |
GenBank Accession | 5′ | 3′ | Chromosome Pseudomolecules Size (bp) |
---|---|---|---|
OZ251087.1 | no short repeat array | 123,553,250–123,555,627 | 123,555,627 |
OZ251088.1 | no short repeat array | 115,084,180–115,086,667 | 115,086,667 |
OZ251089.1 | 1–2316 | no short repeat array | 93,318,919 |
OZ251090.1 | no short repeat array | no short repeat array | 61,893,665 |
OZ251091.1 | no short repeat array | 54,814,880–54,818,687 | 54,818,687 |
OZ251092.1 | no short repeat array | no short repeat array | 53,992,875 |
OZ251093.1 | no short repeat array | no short repeat array | 8,187,640 |
OZ251094.1 | no short repeat array | no short repeat array | 24,839,040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoianova, D.; Grozeva, S. The First Report of a Non-Canonical Telomeric Motif in Neuroptera: (TTGGG)n in Chromosomes of Nineta flava (Scopoli, 1763), Chrysopidae. Genes 2025, 16, 1201. https://doi.org/10.3390/genes16101201
Stoianova D, Grozeva S. The First Report of a Non-Canonical Telomeric Motif in Neuroptera: (TTGGG)n in Chromosomes of Nineta flava (Scopoli, 1763), Chrysopidae. Genes. 2025; 16(10):1201. https://doi.org/10.3390/genes16101201
Chicago/Turabian StyleStoianova, Desislava, and Snejana Grozeva. 2025. "The First Report of a Non-Canonical Telomeric Motif in Neuroptera: (TTGGG)n in Chromosomes of Nineta flava (Scopoli, 1763), Chrysopidae" Genes 16, no. 10: 1201. https://doi.org/10.3390/genes16101201
APA StyleStoianova, D., & Grozeva, S. (2025). The First Report of a Non-Canonical Telomeric Motif in Neuroptera: (TTGGG)n in Chromosomes of Nineta flava (Scopoli, 1763), Chrysopidae. Genes, 16(10), 1201. https://doi.org/10.3390/genes16101201