Newborn MTHFR rs1801133 Variant and Extremely Low Birth Weight: A Case–Control Study and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Features and Outcomes
2.3. Genotyping
2.4. Ethical Statement
2.5. Meta-Analysis of the MTHFR rs1801133 Variant and Risk of Low Birth Weight
2.5.1. Search Strategy
2.5.2. Inclusion and Exclusion Criteria
2.5.3. Data Extraction
2.5.4. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of the Study Group and Associations with ELBW and ELGA
3.2. Frequencies of MTHFR and PON1 Variants in the Study Groups
3.3. Associations of MTHFR and PON1 Genotypes with ELBW and ELGA
3.4. Associations of MTHFR and PON1 Genotypes with Neonatal Comorbidities and Mortality
3.5. Meta-Analysis of the Effect of MTHFR Genotype on Low Birth Weight
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPD | Bronchopulmonary dysplasia |
BW | Birth weight |
CS | Cesarean section |
ELBW | Extremely low birth weight |
ELGA | Extremely low gestational age |
FGA | Fetal growth restriction |
GA | Gestational age |
Gln192Arg | Glutamine 192 Arginine (PON1 p.Gln192Arg) |
Hcy | Homocysteine |
Hcy-TLC | Homocysteine-thiolactone |
HWE | Hardy–Weinberg equilibrium |
IUGR | Intrauterine growth restriction |
IVH | Intraventricular hemorrhage |
Leu55Met | Leucine 55 Methionine (PON1 p.Leu55Met) |
MAF | Minor allele frequency |
MTHFR | Methylenetetrahydrofolate reductase |
NEC | Necrotizing enterocolitis |
PDA | Patent ductus arteriosus |
PON1 | Paraoxonase 1 |
PPROM | Preterm prelabor rupture of membranes |
pROP | Proliferative retinopathy of prematurity |
PVL | Periventricular leukomalacia |
qPCR | Quantitative polymerase chain reaction |
RDS | Respiratory distress syndrome |
ROP | Retinopathy of prematurity |
ROS | Reactive oxygen species |
SGA | Small for gestational age |
SVN | Small vulnerable newborn |
References
- Ashorn, P.; Ashorn, U.; Muthiani, Y.; Aboubaker, S.; Askari, S.; Bahl, R.; Black, R.E.; Dalmiya, N.; Duggan, C.P.; Hofmeyr, G.J.; et al. Small vulnerable newborns-big potential for impact. Lancet 2023, 401, 1692–1706. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, J.; Sun, Y.; Li, N.; Li, X.; Song, X.; Zhang, P.; Li, J.; Huang, K. A clinical analysis of very and extremely low birth weight preterm infants. Am. J. Transl. Res. 2021, 13, 9395–9403. [Google Scholar]
- Nosherwan, A.; Cheung, P.-Y.; Schmölzer, G.M. Management of Extremely Low Birth Weight Infants in Delivery Room. Clin. Perinatol. 2017, 44, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Buchole, M.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Selected determinants of body mass in premature infants. Ginekol. Pol. 2010, 81, 37–40. [Google Scholar]
- Ji, X.; Wu, C.; Chen, M.; Wu, L.; Li, T.; Miao, Z.; Lv, Y.; Ding, H. Analysis of risk factors related to extremely and very preterm birth: A retrospective study. BMC Pregnancy Childbirth 2022, 22, 818. [Google Scholar] [CrossRef]
- Clausson, B.; Lichtenstein, P.; Cnattingius, S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG 2000, 107, 375–381. [Google Scholar] [CrossRef]
- Kistka, Z.A.F.; DeFranco, E.A.; Ligthart, L.; Willemsen, G.; Plunkett, J.; Muglia, L.J.; Boomsma, D.I. Heritability of parturition timing: An extended twin design analysis. Am. J. Obstet. Gynecol. 2008, 199, 43.e41–43.e45. [Google Scholar] [CrossRef]
- Magnus, P. Further evidence for a significant effect of fetal genes on variation in birth weight. Clin. Genet. 1984, 26, 289–296. [Google Scholar] [CrossRef]
- Horikoshi, M.; Beaumont, R.N.; Day, F.R.; Warrington, N.M.; Kooijman, M.N.; Fernandez-Tajes, J.; Feenstra, B.; van Zuydam, N.R.; Gaulton, K.J.; Grarup, N.; et al. Genome-wide associations for birth weight and correlations with adult disease. Nature 2016, 538, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, P.; Geng, X.; Liu, Z.; Cui, L.; Gao, Z.; Jiang, B.; Yang, L. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: A meta-analysis. Arch. Gynecol. Obs. 2017, 295, 1105–1118. [Google Scholar] [CrossRef]
- Vafapour, M.; Talebi, H.; Danaei, M.; Yeganegi, M.; Azizi, S.; Dastgheib, S.A.; Bahrami, R.; Pourkazemi, M.; Jayervand, F.; Shahbazi, A.; et al. Global and population-specific association of MTHFR polymorphisms with preterm birth risk: A consolidated analysis of 44 studies. BMC Pregnancy Childbirth 2025, 25, 230. [Google Scholar] [CrossRef]
- Araszkiewicz, A.F.; Jańczak, K.; Wójcik, P.; Białecki, B.; Kubiak, S.; Szczechowski, M.; Januszkiewicz-Lewandowska, D. MTHFR Gene Polymorphisms: A Single Gene with Wide-Ranging Clinical Implications—A Review. Genes 2025, 16, 441. [Google Scholar] [CrossRef]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef]
- Chango, A.; Boisson, F.; Barbé, F.; Quilliot, D.; Droesch, S.; Pfister, M.; Fillon-Emery, N.; Lambert, D.; Frémont, S.; Rosenblatt, D.S.; et al. The effect of 677C → T and 1298A → C mutations on plasma homocysteine and 5,10-methylenetetrahydrofolate reductase activity in healthy subjects. Br. J. Nutr. 2000, 83, 593–596. [Google Scholar] [CrossRef]
- Crider, K.S.; Zhu, J.-H.; Hao, L.; Yang, Q.-H.; Yang, T.P.; Gindler, J.; Maneval, D.R.; Quinlivan, E.P.; Li, Z.; Bailey, L.B.; et al. MTHFR 677C→T genotype is associated with folate and homocysteine concentrations in a large, population-based, double-blind trial of folic acid supplementation. Am. J. Clin. Nutr. 2011, 93, 1365–1372. [Google Scholar] [CrossRef]
- Plumptre, L.; Tammen, S.A.; Sohn, K.-J.; Masih, S.P.; Visentin, C.E.; Aufreiter, S.; Malysheva, O.; Schroder, T.H.; Ly, A.; Berger, B.; et al. Maternal and Cord Blood Folate Concentrations Are Inversely Associated with Fetal DNA Hydroxymethylation, but Not DNA Methylation, in a Cohort of Pregnant Canadian Women. J. Nutr. 2020, 150, 202–211. [Google Scholar] [CrossRef]
- Bekdash, R.A. Methyl Donors, Epigenetic Alterations, and Brain Health: Understanding the Connection. Int. J. Mol. Sci. 2023, 24, 2346. [Google Scholar] [CrossRef] [PubMed]
- Paduch-Jakubczyk, W.; Dubińska, M. The Role of Folic Acid and Its Derivatives in Reproductive Health. Actual Gynecol. Obstet./Aktuaální Gynekol. A Porod. 2024, 16, 65–69. [Google Scholar]
- Tate, C.; Shuman, A.; Nice, S.; Salehi, P. The Critical Role of Folate in Prenatal Health and a Proposed Shift from Folic Acid to 5-Methyltetrahydrofolate Supplementation. Georget. Med. Rev. 2024, 8. [Google Scholar] [CrossRef]
- Jakubowski, H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol. Rev. 2019, 99, 555–604. [Google Scholar] [CrossRef] [PubMed]
- Perła-Kaján, J.; Jakubowski, H. Paraoxonase 1 and homocysteine metabolism. Amino Acids 2012, 43, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Mackness, B.; Mackness, M.I.; Arrol, S.; Turkie, W.; Durrington, P.N. Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br. J. Pharmacol. 1997, 122, 265–268. [Google Scholar] [CrossRef]
- Jakubowski, H.; Ambrosius, W.T.; Pratt, J.H. Genetic determinants of homocysteine thiolactonase activity in humans: Implications for atherosclerosis. FEBS Lett. 2001, 491, 35–39. [Google Scholar] [CrossRef]
- Leviev, I.; James, R.W. Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arter. Thromb. Vasc. Biol. 2000, 20, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Brophy, V.H.; Jampsa, R.L.; Clendenning, J.B.; McKinstry, L.A.; Jarvik, G.P.; Furlong, C.E. Effects of 5′ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am. J. Hum. Genet. 2001, 68, 1428–1436. [Google Scholar] [CrossRef]
- Fenton, T.R.; Elmrayed, S.; Alshaikh, B.N. Fenton Third-Generation Growth Charts of Preterm Infants Without Abnormal Fetal Growth: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2025, 29, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Stampalija, T.; Baschat, A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Hecher, K.; Kingdom, J.; Poon, L.C.; Salomon, L.J.; et al. ISUOG Practice Guidelines: Diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obs. Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef]
- Kosik, K.; Szpecht, D.; Al-Saad, S.R.; Karbowski, L.M.; Kurzawińska, G.; Szymankiewicz, M.; Drews, K.; Wolski, H.; Seremak-Mrozikiewicz, A. Single nucleotide vitamin D receptor polymorphisms (FokI, BsmI, ApaI, and TaqI) in the pathogenesis of prematurity complications. Sci. Rep. 2020, 10, 21098. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2025. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 August 2025).
- Luchini, C.; Stubbs, B.; Solmi, M.; Veronese, N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J. Meta-Anal. 2017, 5, 80–84. [Google Scholar] [CrossRef]
- Luchini, C.; Veronese, N.; Nottegar, A.; Shin, J.I.; Gentile, G.; Granziol, U.; Soysal, P.; Alexinschi, O.; Smith, L.; Solmi, M. Assessing the quality of studies in meta-research: Review/guidelines on the most important quality assessment tools. Pharm. Stat. 2021, 20, 185–195. [Google Scholar] [CrossRef]
- Martorell-Marugan, J.; Toro-Dominguez, D.; Alarcon-Riquelme, M.E.; Carmona-Saez, P. MetaGenyo: A web tool for meta-analysis of genetic association studies. BMC Bioinform. 2017, 18, 563. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Healy, K. Data Visualization: A Practical Introduction; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Infante-Rivard, C.; Rivard, G.E.; Yotov, W.V.; Génin, E.; Guiguet, M.; Weinberg, C.; Gauthier, R.; Feoli-Fonseca, J.C. Absence of association of thrombophilia polymorphisms with intrauterine growth restriction. N. Engl. J. Med. 2002, 347, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.F.; Hu, Y.H.; Yang, F.; Wu, B.Y.; Chen, L.; Fang, Z.A.; Wang, L.H. Mother’s and child’s methylenetetrahydrofolate reductase C677T polymorphism is associated with preterm delivery and low birth weight. Beijing Da Xue Xue Bao Yi Xue Ban 2004, 36, 248–253. [Google Scholar]
- Glanville, T.; Yates, Z.; Ovadia, L.; Walker, J.J.; Lucock, M.; Simpson, N.A. Fetal folate C677T methylenetetrahydrofolate reductase gene polymorphism and low birth weight. J. Obs. Gynaecol. 2006, 26, 11–14. [Google Scholar] [CrossRef]
- Akcılar, R.; Yalınbaş, E.E.; Mutlu, F. MTHFR 677 C > T Gene Polymorphism is Associated with Large for Gestational Age Infants. Fetal Pediatr. Pathol. 2024, 43, 234–245. [Google Scholar] [CrossRef]
- Moreira, A.; Benvenuto, D.; Fox-Good, C.; Alayli, Y.; Evans, M.; Jonsson, B.; Hakansson, S.; Harper, N.; Kim, J.; Norman, M.; et al. Development and Validation of a Mortality Prediction Model in Extremely Low Gestational Age Neonates. Neonatology 2022, 119, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Varshney, P.G.; Sinharay, M.; Gupta, A.; Pandey, M. Extremely low birth weight (ELBW) neonates for emergency surgery—A challenge for the Anesthesiologist: A case series. J. Neonatal Surg. 2024, 13, 14. [Google Scholar] [CrossRef]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The role of immune cells and mediators in preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- DeFranco, E.; Ehrlich, S.; Muglia, L. Influence of interpregnancy interval on birth timing. BJOG 2014, 121, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Lelic, M.; Bogdanovic, G.; Ramic, S.; Brkicevic, E. Influence of Maternal Anemia During Pregnancy on Placenta and Newborns. Med. Arh. 2014, 68, 184. [Google Scholar] [CrossRef]
- Higgins, B.V.; Baer, R.J.; Steurer, M.A.; Karvonen, K.L.; Oltman, S.P.; Jelliffe-Pawlowski, L.L.; Rogers, E.E. Resuscitation, survival and morbidity of extremely preterm infants in California 2011–2019. J. Perinatol. 2024, 44, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Adane, A.A.; Shepherd, C.C.J.; Farrant, B.M.; White, S.W.; Bailey, H.D. Patterns of recurrent preterm birth in Western Australia: A 36-year state-wide population-based study. Aust. N. Z. J. Obs. Gynaecol. 2022, 62, 494–499. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, J.; Wu, D.; Shang, Q.; Wu, L.; Han, X.; Liang, B.; Xu, L.; Tang, J. Association of Genetic Polymorphisms in Methylenetetrahydrofolate Reductase Gene, Plasminogen Activator Inhibitor-1 Gene with Preterm Birth and Spastic Cerebral Palsy. Chin. J. Appl. Clin. Pediatr. 2010, 25, 1580–1582. [Google Scholar]
- Mei, M.; Xi, H.; Ren, H.; Guo, H.; Wang, Y.; Li, J. The relationship between MTHFR gene, PAI gene polymorphism and preterm birth. Prog. Mod. Biomed. 2015, 15, 6435–6438. [Google Scholar] [CrossRef]
- Sukla, K.K.; Tiwari, P.K.; Kumar, A.; Raman, R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: Association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS ONE 2013, 8, e71587. [Google Scholar] [CrossRef]
- Kordas, K.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Tellez-Rojo, M.M.; Hérnandez-Avila, M.; Hu, H.; Wright, R.O. Methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and G1793A genotypes, and the relationship between maternal folate intake, tibia lead and infant size at birth. Br. J. Nutr. 2009, 102, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Warnke, I.; Bendik, I.; Troesch, B.; Schoop, R.; Chenal, E.; Koletzko, B. Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate. Nutrients 2023, 15, 1495. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacós, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef]
- Chakraborty, P.; Goswami, S.K.; Rajani, S.; Sharma, S.; Kabir, S.N.; Chakravarty, B.; Jana, K. Recurrent Pregnancy Loss in Polycystic Ovary Syndrome: Role of Hyperhomocysteinemia and Insulin Resistance. PLoS ONE 2013, 8, e64446. [Google Scholar] [CrossRef]
- Aguilar-Lacasaña, S.; López-Flores, I.; González-Alzaga, B.; Giménez-Asensio, M.J.; Carmona, F.D.; Hernández, A.F.; López Gallego, M.F.; Romero-Molina, D.; Lacasaña, M. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth. Nutrients 2021, 13, 831. [Google Scholar] [CrossRef]
- Suszyńska-Zajczyk, J.; Witucki, Ł.; Perła-Kaján, J.; Jakubowski, H. Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function. Front. Cell Dev. Biol. 2024, 12, 1322844. [Google Scholar] [CrossRef]
- Dagle, J.M.; Ryckman, K.K.; Spracklen, C.N.; Momany, A.M.; Cotten, C.M.; Levy, J.; Page, G.P.; Bell, E.F.; Carlo, W.A.; Shankaran, S.; et al. Genetic variants associated with patent ductus arteriosus in extremely preterm infants. J. Perinatol. 2019, 39, 401–408. [Google Scholar] [CrossRef]
- Li, M.; Tang, Y.; Zhao, E.-Y.; Chen, C.-H.; Dong, L.-L. Relationship between MTHFR gene polymorphism and susceptibility to bronchial asthma and glucocorticoid efficacy in children. Zhongguo Dang Dai Er Ke Za Zhi 2021, 23, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Czamara, D.; Dieckmann, L.; Lahti-Pulkkinen, M.; Cruceanu, C.; Henrich, W.; Plagemann, A.; Räikkönen, K.; Braun, T.; Binder, E.B.; Lahti, J.; et al. Sex differences in DNA methylation across gestation: A large scale, cross-cohort, multi-tissue analysis. Cell. Mol. Life Sci. 2024, 81, 177. [Google Scholar] [CrossRef] [PubMed]
- Bakulski, K.M.; Dou, J.F.; Feinberg, J.I.; Brieger, K.K.; Croen, L.A.; Hertz-Picciotto, I.; Newschaffer, C.J.; Schmidt, R.J.; Fallin, M.D. Prenatal Multivitamin Use and MTHFR Genotype Are Associated with Newborn Cord Blood DNA Methylation. Int. J. Environ. Res. Public Health 2020, 17, 9190. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Garcia, H.; Vilchis-Gil, J.; Castro-Cerritos, K.V.; Rivera-Susunaga, L.E.; Klünder-Klünder, M.; Granados-Riveron, J.T.; Gómez-López, J.; López-Torres, A.; Sánchez-Urbina, R. Association between maternal diet, smoking, and the placenta MTHFR 677C/T genotype and global placental DNA methylation. Placenta 2024, 146, 17–24. [Google Scholar] [CrossRef]
- Van Otterdijk, S.D.; Klett, H.; Boerries, M.; Michels, K.B. The impact of pre-pregnancy folic acid intake on placental DNA methylation in a fortified cohort. FASEB J. 2023, 37, e22698. [Google Scholar] [CrossRef]
- Nomura, Y.; Lambertini, L.; Rialdi, A.; Lee, M.; Mystal, E.Y.; Grabie, M.; Manaster, I.; Huynh, N.; Finik, J.; Davey, M.; et al. Global Methylation in the Placenta and Umbilical Cord Blood From Pregnancies with Maternal Gestational Diabetes, Preeclampsia, and Obesity. Reprod. Sci. 2014, 21, 131–137. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wu, Y.; Lin, C.; Yang, S.; Yang, Y.; Chen, D.; Yu, B. Methylation alterations of imprinted genes in different placental diseases. Clin. Epigenetics 2024, 16, 132. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Gaunt, T.R.; Hinks, L.J.; Davey Smith, G.; Timpson, N.; Day, I.N.M.; Ebrahim, S. The association of the PON1 Q192R polymorphism with complications and outcomes of pregnancy: Findings from the British Women’s Heart and Health cohort study. Paediatr. Perinat. Epid 2006, 20, 244–250. [Google Scholar] [CrossRef]
- Chen, D.; Hu, Y.; Chen, C.; Yang, F.; Fang, Z.; Wang, L.; Li, J. Polymorphisms of the paraoxonase gene and risk of preterm delivery. Epidemiology 2004, 15, 466–470. [Google Scholar] [CrossRef]
- Soydinc, H.E.; Sak, M.E.; Evliyaoglu, O.; Evsen, M.S.; Turgut, A.; Özler, A.; Yıldız, İ.; Gul, T. Prolidase, Matrix Metalloproteinases 1 and 13 Activity, Oxidative-Antioxidative Status as a Marker of Preterm Premature Rupture of Membranes and Chorioamnionitis in Maternal Vaginal Washing Fluids. Int. J. Med. Sci. 2013, 10, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, V.O.; Pereira, R.A.; Amantéa, S.L.; Rhoden, C.R.; Colvero, M.O. Neonatal diseases and oxidative stress in premature infants: An integrative review. J. Pediatr. 2022, 98, 455–462. [Google Scholar] [CrossRef]
- Strauss, E.; Januszkiewicz-Lewandowska, D.; Sobaniec, A.; Gotz-Więckowska, A. SELENOP rs3877899 Variant Affects the Risk of Developing Advanced Stages of Retinopathy of Prematurity (ROP). Int. J. Mol. Sci. 2023, 24, 7570. [Google Scholar] [CrossRef] [PubMed]
- Durska, A.; Szpecht, D.; Gotz-Więckowska, A.; Strauss, E. Association of ACE and AGTR1 variants with retinopathy of prematurity: A case-control study and meta-analysis. J. Appl. Genet. 2024. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Infants n = 377 | Infants with ELBW; n = 149 | Infants with ELGA; n = 152 | |
---|---|---|---|---|
Gestational age [weeks] | Mean (SD) | 27.8 (2.1) | 26.3 (1.9) **** | 25.7 (1.1) **** |
Range | 22.0–31.9 | 22–30.0 | 22–27.0 | |
<28 weeks, n (%) | 152 (40.3) | 111 (74.5) **** | 152 (100.0) | |
Birth weight [g] | Mean (SD) | 1101.6 (321.5) | 801.9 (123.8) **** | 896.1 (217.9) **** |
Range | 432–2340 | 432–995 | 432–1780 | |
<1000 g, n (%) | 149 (39.5) | 149 (100.0) | 111 (73.0) **** | |
SGA (<10th), n (%) | 99 (26.3) | 54 (36.2) *** | 17 (11.2) **** | |
FGR/IUGR, n (%) | 25 (6.6) | 22 (14.8) **** | 5 (3.6) | |
Male sex, n (%) | 206 (54.6) | 74 (49.7) | 81 (53.0) | |
Risk factors at birth | ||||
PPROM, n (%) | 107 (28.4) | 40 (26.8) | 50 (32.9) | |
PPROM > 3 d, n (%) | 74 (19.6) | 23 (15.1) | 31 (20.4) | |
Delivery by cesarean section, n (%) | 204 (54.1) | 74 (49.7) | 68 (44.7) ** | |
Apgar 1, Median (Q1, Q3) | 5 (2, 7) | 3 (2, 6) **** | 4 (2, 6) **** | |
Apgar 5, Median (Q1, Q3) | 7 (6, 8) | 7 (5.5, 7) **** | 7 (6, 7) **** | |
Parameters related to respiratory failure | ||||
Surfactant treatment, n (%) | 181 (48.0) | 94 (63.1) **** | 91 (59.9) **** | |
Resuscitation, n (%) | 317 (84.1) | 141 (94.6) **** | 141 (92.8) *** | |
Mech. vent., n (%) | 258 (68.4) | 133 (89.3) **** | 139 (91.4) **** | |
Mech. vent. period [d], Median (Q1, Q3) | 13 (2, 33) | 33 (17, 25) **** | 35.5 (18, 53) **** | |
O2 supply period [d], Median (Q1, Q3) | 28 (1, 58) | 59 (30, 75) **** | 58.5 (27.5, 74) **** | |
Blood transfusions, Median (Q1, Q3) | 3 (1, 6) | 6 (3, 8) **** | 5.5 (3, 8) **** | |
Complications of prematurity, n (%) | ||||
NEC | 79 (21.0) | 53 (35.6) **** | 52 (34.2) **** | |
BPD | 149 (39.5) | 113 (75.8) **** | 112 (73.7) **** | |
IVH | 218 (57.8) | 112 (75.2) **** | 116 (76.3) **** | |
RDS | 251 (66.5) | 115 (77.2) *** | 113 (74.1) ** | |
PVL | 28 (7.4) | 18 (12.1) ** | 17 (11.2) * | |
ROP | 239 (63.3) | 129 (86.6) **** | 136 (89.5) **** | |
PDA | 104 (27.6) | 55 (36.9) ** | 49 (32.2) | |
Death | 8 (2.1) | 7 (4.7) ** | 7 (4.6) ** |
Genotype and Allele Frequencies | Population n = 404 | Mothers (Cohort A) n = 164 | Infants (Cohort A) n = 164 | All Infants n = 377 |
---|---|---|---|---|
MTHFR rs1801133C>T (Ala222Val) | ||||
CC | 178 (44.1) | 80 (48.8) | 86 (52.4) | 193 (51.2) |
CT | 185 (45.8) | 69 (42.1) | 62 (37.8) | 147 (39.0) |
TT | 41 (10.1) | 15 (9.1) | 16 (9.8) | 37 (9.8) |
MAF; PHWE | 0.330; 0.081 | 0.302; 0.982 | 0.287; 0.627 | 0.293; 0.903 |
PON1 rs854560A>T (Leu55Met) | ||||
AA | 159 (39.4) | 74 (45.1) | 67 (40.9) | 146 (39.0) |
AT | 194 (48.0) | 77 (47.0) | 76 (46.3) | 173 (46.3) |
TT | 51 (12.6) | 13 (7.9) | 21 (12.8) | 55 (14.7) |
MAF; PHWE | 0.366; 0.490 | 0.314; 0.250 | 0.360; 0.997 | 0.378; 0.748 |
PON1 rs662A>G (Gln192Arg) | ||||
AA | 199 (49.3) | 85 (51.8) | 77 (47.0) | 191 (50.9) |
AG | 178 (44.1) | 71 (43.3) | 78 (47.6) | 160 (42.7) |
GG | 27 (6.7) | 8 (4.9) | 10 (6.1) | 24 (6.4) |
MAF; PHWE | 0.287; 0.125 | 0.265; 0.156 | 0.297; 0.237 | 0.277; 0.212 |
Statistical analysis | ||||
Variant | Genetic model | Comparison | OR (95% CI); p-value | |
rs1801133 | Dominant (CT + TT) | All infants vs. Population | 0.75 (0.57–0.995); 0.046 | |
rs854560 | Recessive (TT) | All infants vs. Mothers | 2.00 (1.06–3.78); 0.029 |
Genotype and Allele Frequencies | Study Cohort A (2009–2014) | Study Cohort B (2015–2020) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mothers; n = 164 | Infants; n = 164 | Infants; n = 213 | ||||||||||
ELBW | ELGA | ELBW | ELGA | ELBW | ELGA | |||||||
No; n = 110 | Yes; n = 54 | No; n = 96 | Yes; n = 68 | No; n = 110 | Yes; n = 54 | No; n = 97 | Yes; n = 67 | No; n = 118 | Yes; n = 95 | No; n = 128 | Yes; n = 85 | |
MTHFR rs1801133C>T (Ala222Val) | ||||||||||||
CC | 53 (48.2) | 27 (50.0) | 45 (46.9) | 35 (51.5) | 61 (55.5) | 25 (46.3) | 54 (55.7) | 32 (47.8) | 67 (56.8) | 40 (42.1) | 68 (53.1) | 39 (45.9) |
CT | 47 (42.7) | 22 (40.7) | 42 (43.8) | 28 (41.2) | 41 (37.3) | 21 (38.9) | 33 (34.0) | 29 (43.3) | 39 (33.1) | 46 (48.4) | 46 (35.9) | 39 (45.9) |
TT | 10 (9.1) | 5 (9.3) | 9 (9.4) | 5 (7.4) | 8 (7.3) | 8 (14.8) | 10 (10.3) | 6 (9.0) | 12 (10.2) | 9 (9.5) | 14 (10.9) | 7 (8.2) |
MAF | 0.305 | 0.296 | 0.313 | 0.279 | 0.259 | 0.343 | 0.273 | 0.306 | 0.267 | 0.337 | 0.289 | 0.312 |
PHWE | 0.927 | 0.866 | 0.859 | 0.852 | 0.760 | 0.315 | 0.158 | 0.876 | 0.091 | 0.414 | 0.155 | 0.523 |
PON1 rs854560A>T (Leu55Met) | ||||||||||||
AA | 49 (44.5) | 25 (46.3) | 41 (42.7) | 33 (48.5) | 45 (40.5) | 22 (41.5) | 39 (40.6) | 28 (41.2) | 42 (36.5) | 37 (38.9) | 48 (38.1) | 31 (36.9) |
AT | 53 (48.2) | 24 (44.4) | 47 (49) | 30 (44.1) | 49 (44.1) | 27 (50.9) | 46 (47.9) | 30 (44.1) | 55 (47.8) | 42 (44.2) | 57 (45.2) | 40 (47.6) |
TT | 8 (7.3) | 5 (9.3) | 8 (8.3) | 5 (7.4) | 17 (15.3) | 4 (7.5) | 11 (11.5) | 10 (14.7) | 18 (15.7) | 16 (16.8) | 21 (16.7) | 13 (15.5) |
MAF | 0.314 | 0.315 | 0.328 | 0.294 | 0.374 | 0.330 | 0.354 | 0.368 | 0.396 | 0.389 | 0.393 | 0.393 |
PHWE | 0.212 | 0.824 | 0.280 | 0.606 | 0.547 | 0.269 | 0.642 | 0.673 | 0.999 | 0.493 | 0.562 | 0.987 |
PON1 rs662A>G (Gln192Arg) | ||||||||||||
AA | 57 (51.8) | 28 (51.9) | 47 (49) | 38 (55.9) | 55 (49.1) | 22 (41.5) | 45 (46.4) | 32 (47.0) | 63 (54.8) | 51 (53.7) | 69 (55.2) | 45 (52.9) |
AG | 50 (45.5) | 21 (38.9) | 45 (46.9) | 26 (38.2) | 50 (44.6) | 28 (52.8) | 48 (49.5) | 30 (44.1) | 43 (37.4) | 39 (41.4) | 45 (36.0) | 37 (43.5) |
GG | 3 (2.7) | 5 (9.3) | 4 (4.2) | 4 (5.9) | 7 (6.3) | 3 (5.7) | 4 (4.1) | 6 (8.8) | 9 (7.8) | 5 (5.3) | 11 (8.8) | 2 (3.5) |
MAF | 0.255 | 0.287 | 0.276 | 0.250 | 0.286 | 0.321 | 0.289 | 0.309 | 0.265 | 0.258 | 0.268 | 0.253 |
PHWE | 0.038 | 0.714 | 0.090 | 0.872 | 0.321 | 0.122 | 0.044 | 0.783 | 0.091 | 0.478 | 0.357 | 0.076 |
Statistical analysis | ||||||||||||
Studied variant | Allele model or Genotype | Comparison: Yes vs. No | OR (95% CI); p-value | |||||||||
rs1801133 | CT + TT vs. CC (Dominant) | ELBW: Infants Cohort A + B | 1.65 (1.09–2.51); 0.017 | |||||||||
rs1801133 | TT vs. CC | ELBW: Infants Cohort A | 2.40 (0.82–7.2); 0.107 | |||||||||
rs1801133 | CT + TT vs. CC (Dominant) | ELBW: Infants Cohort B | 1.81 (1.05–3.12), 0.033 | |||||||||
rs1801133 | CT vs. CC | ELBW: Infants Cohort B | 2.00 (1.05–3.50), 0.021 | |||||||||
rs1801133 | CT vs. CC | ELGA: Infants Cohort A | 1.50 (0.76–2.90); 0.244 | |||||||||
rs1801133 | CT vs. CC | ELGA: Infants Cohort B | 1.50 (0.83–2.60); 0.187 |
Genotype and Allele Frequencies | RDS | IVH | PDA | NEC | BPD | ROP | pROP | Death | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No n = 126 | Yes n = 251 | No n = 159 | Yes n = 218 | No n = 273 | Yes n = 104 | No n = 298 | Yes n = 79 | No n = 228 | Yes n = 149 | No n = 137 | Yes n = 239 | No n = 257 | Yes n = 120 | No n = 369 | Yes n = 8 | |
MTHFR rs1801133C>T (Ala222Val) | ||||||||||||||||
CC | 50.8 | 51.4 | 52.2 | 50.5 | 51.1 | 50.0 | 51.7 | 49.4 | 55.3 | 45.0 | 54.0 | 50.6 | 54.5 | 45.8 | 51.8 | 25.0 |
CT | 41.3 | 37.8 | 38.4 | 39.4 | 40.2 | 34.6 | 39.3 | 38.0 | 33.8 | 47.0 | 36.5 | 38.5 | 35.0 | 44.2 | 38.5 | 62.5 |
TT | 7.9 | 10.8 | 9.4 | 10.1 | 7.6 | 15.4 | 9.1 | 12.7 | 11.4 | 8.1 | 9.5 | 10.9 | 10.5 | 10.0 | 9.8 | 12.5 |
MAF | 0.286 | 0.297 | 0.286 | 0.298 | 0.277 | 0.327 | 0.287 | 0.316 | 0.279 | 0.315 | 0.278 | 0.302 | 0.280 | 0.321 | 0.290 | 0.438 |
PON1 rs854560A>T (Leu55Met) | ||||||||||||||||
AA | 45.5 | 35.9 | 39.1 | 39.0 | 35.9 | 47.1 | 40.0 | 35.4 | 40.4 | 36.9 | 37.8 | 39.7 | 38.3 | 41.8 | 38.8 | 50.0 |
AT | 44.7 | 47.0 | 48.1 | 45.0 | 48.5 | 40.4 | 47.1 | 43.0 | 47.1 | 45.0 | 47.4 | 45.6 | 47.5 | 41.8 | 46.2 | 50.0 |
TT | 9.8 | 17.1 | 12.8 | 16.1 | 15.6 | 12.5 | 12.9 | 21.5 | 12.4 | 18.1 | 14.8 | 14.6 | 14.2 | 16.5 | 15.0 | 0.0 |
MAF | 0.321 | 0.406 | 0.369 | 0.385 | 0.398 | 0.327 | 0.364 | 0.430 | 0.360 | 0.406 | 0.385 | 0.374 | 0.380 | 0.373 | 0.381 | 0.250 |
PON1 rs662A>G (Gln192Arg) | ||||||||||||||||
AA | 53.2 | 49.8 | 54.8 | 48.2 | 50.1 | 36.8 | 50.7 | 51.9 | 47.8 | 55.7 | 50.7 | 51.0 | 52.7 | 44.3 | 51.5 | 25.0 |
AG | 41.1 | 43.4 | 39.5 | 45.0 | 42.0 | 55.6 | 42.9 | 41.8 | 44.7 | 39.6 | 44.1 | 41.8 | 41.2 | 48.1 | 42.0 | 75.0 |
GG | 5.6 | 6.8 | 5.7 | 6.9 | 7.0 | 7.5 | 6.4 | 6.3 | 7.5 | 4.7 | 5.1 | 7.1 | 6.1 | 7.6 | 6.5 | 0.0 |
MAF | 0.262 | 0.285 | 0.255 | 0.294 | 0.280 | 0.354 | 0.279 | 0.272 | 0.299 | 0.245 | 0.272 | 0.280 | 0.267 | 0.316 | 0.275 | 0.375 |
Statistical analysis | ||||||||||||||||
Studied variant | Genetic model/Genotype | Comparison Yes vs. No | OR (95% CI); p-value | |||||||||||||
rs1801133 | Recessive | PDA | 2.19 (1.10–4.40); 0.028 | |||||||||||||
rs1801133 | CT vs. CC | BPD | 1.67 (1.05–2.72); 0.017 | |||||||||||||
rs1801133 | Dominant | Death | 3.22 (0.64–16.2); 0.156 | |||||||||||||
rs662 | AG vs. AA | PDA | 1.80 (0.99–3.30); 0.053 | |||||||||||||
rs662 | Dominant | Death | 3.19 (0.65–16.4); 0.151 |
First Author and Year | Country (Ethnicity) | Study Includes Preterm | Outcome | Method | Cases/ Controls | Cases | Controls | WG MAFs | Controls PHWE | Q Score (NOS) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | CC | CT | TT | |||||||||
Infante-Rivard 2002 [38] | Canada (Mixed) | mixed | SGA | PCR | 467/461 | 255 | 172 | 40 | 231 | 185 | 45 | 0.284 | 0.375 | 8 |
Chen 2004 [39] | China (Asian) | yes | LBW | PCR | 242/248 | 32 | 102 | 108 | 44 | 134 | 70 | 0.604 | 0.145 | 6 |
Glanville 2006 [40] | UK (Caucasian) | no | SGA | PCR-RFLP | 243/132 | 126 | 88 | 29 | 56 | 59 | 17 | 0.319 | 0.813 | 6 |
Akcılar 2024 [41] | Turkey (Caucasian) | no | SGA | PCR-RFLP | 55/55 | 36 | 11 | 8 | 31 | 19 | 5 | 0.255 | 0.414 | 6 |
This study 2025 | Poland (Caucasian) | yes | ELBW | TaqMan | 149/228 | 65 | 67 | 17 | 128 | 80 | 20 | 0.293 | 0.151 | 8 |
Total | 1156/1124 | 514 | 440 | 202 | 490 | 477 | 157 | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skulimowski, B.; Durska, A.; Sobaniec, A.; Gotz-Więckowska, A.; Strauss, E. Newborn MTHFR rs1801133 Variant and Extremely Low Birth Weight: A Case–Control Study and Meta-Analysis. Genes 2025, 16, 1192. https://doi.org/10.3390/genes16101192
Skulimowski B, Durska A, Sobaniec A, Gotz-Więckowska A, Strauss E. Newborn MTHFR rs1801133 Variant and Extremely Low Birth Weight: A Case–Control Study and Meta-Analysis. Genes. 2025; 16(10):1192. https://doi.org/10.3390/genes16101192
Chicago/Turabian StyleSkulimowski, Bartosz, Anna Durska, Alicja Sobaniec, Anna Gotz-Więckowska, and Ewa Strauss. 2025. "Newborn MTHFR rs1801133 Variant and Extremely Low Birth Weight: A Case–Control Study and Meta-Analysis" Genes 16, no. 10: 1192. https://doi.org/10.3390/genes16101192
APA StyleSkulimowski, B., Durska, A., Sobaniec, A., Gotz-Więckowska, A., & Strauss, E. (2025). Newborn MTHFR rs1801133 Variant and Extremely Low Birth Weight: A Case–Control Study and Meta-Analysis. Genes, 16(10), 1192. https://doi.org/10.3390/genes16101192