Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Data
2.2. Neuroradiological Data
2.3. Statistical Analysis
2.4. NGS Targeted Sequencing and Sanger Validation
2.5. RNA Sequencing
2.6. Literature Review
3. Results
3.1. Patients’ Clinical-Radiological Findings
3.2. Differential Gene Expression
3.3. Structural Effects of Mutations
4. Discussion
5. Conclusions
- -
- The importance of comprehensive neuropsychological phenotyping to enhance correlations between phenotypic data, advanced imaging techniques, and genetic findings and to better guide families during re-habilitation.
- -
- The necessity of studying neurodevelopmental disorders (NDDs) using functional and metabolic approaches in order to deeply characterize patients.
- -
- Deep phenotyping of patients clustered by precise genetic rather than functional diagnosis (i.e., KMT5B-related disorder as opposed to ASD) leads to more reliable and trustable data.
- -
- In the absence of clear macroscopic brain alterations—primarily, but not exclusively—it is essential to assess metabolic brain changes to identify the possible primary areas affected by the disease.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stessman, H.A.F.; Xiong, B.; Coe, B.P.; Wang, T.; Hoekzema, K.; Fenckova, M.; Kvarnung, M.; Gerdts, J.; Trinh, S.; Cosemans, N.; et al. Targeted Sequencing Identifies 91 Neurodevelopmental-Disorder Risk Genes with Autism and Developmental-Disability Biases. Nat. Genet. 2017, 49, 515–526. [Google Scholar] [CrossRef]
- Eliyahu, A.; Barel, O.; Greenbaum, L.; Zaks Hoffer, G.; Goldberg, Y.; Raas-Rothschild, A.; Singer, A.; Bar-Joseph, I.; Kunik, V.; Javasky, E.; et al. Refining the Phenotypic Spectrum of KMT5B-Associated Developmental Delay. Front. Pediatr. 2022, 10, 844845. [Google Scholar] [CrossRef]
- Faundes, V.; Newman, W.G.; Bernardini, L.; Canham, N.; Clayton-Smith, J.; Dallapiccola, B.; Davies, S.J.; Demos, M.K.; Goldman, A.; Gill, H.; et al. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am. J. Hum. Genet. 2018, 102, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Odak, L.; Vulin, K.; Meašić, A.M.; Šamadan, L.; Batoš, A.T. Neurodevelopmental Disorder Caused by an Inherited Novel KMT5B Variant: Case Report. Croat. Med. J. 2023, 64, 334–338. [Google Scholar] [CrossRef]
- Sheppard, S.E.; Bryant, L.; Wickramasekara, R.N.; Vaccaro, C.; Robertson, B.; Hallgren, J.; Hulen, J.; Watson, C.J.; Faundes, V.; Duffourd, Y.; et al. Mechanism of KMT5B Haploinsufficiency in Neurodevelopment in Humans and Mice. Sci. Adv. 2023, 9, eade1463. [Google Scholar] [CrossRef]
- Tong, J.; Chen, X.; Wang, X.; Men, S.; Liu, Y.; Sun, X.; Yan, D.; Wang, L. Novel KMT5B Variant Associated with Neurodevelopmental Disorder in a Chinese Family: A Case Report. Heliyon 2024, 10, e28686. [Google Scholar] [CrossRef]
- Trinh, J.; Kandaswamy, K.K.; Werber, M.; Weiss, M.E.R.; Oprea, G.; Kishore, S.; Lohmann, K.; Rolfs, A. Novel Pathogenic Variants and Multiple Molecular Diagnoses in Neurodevelopmental Disorders. J. Neurodev. Disord. 2019, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Han, L.; Tan, S.; Jia, X.; Wu, H.; Quan, Y.; Zhang, Q.; Yu, B.; Hu, Z.; Xia, K.; et al. Loss-of-Function of KMT5B Leads to Neurodevelopmental Disorder and Impairs Neuronal Development and Neurogenesis. J. Genet. Genom. 2022, 49, 881–890. [Google Scholar] [CrossRef]
- Timberlake, A.T.; McGee, S.; Allington, G.; Kiziltug, E.; Wolfe, E.M.; Stiegler, A.L.; Boggon, T.J.; Sanyoura, M.; Morrow, M.; Wenger, T.L.; et al. De Novo Variants Implicate Chromatin Modification, Transcriptional Regulation, and Retinoic Acid Signaling in Syndromic Craniosynostosis. Am. J. Hum. Genet. 2023, 110, 846–862. [Google Scholar] [CrossRef]
- Wu, H.; Siarheyeva, A.; Zeng, H.; Lam, R.; Dong, A.; Wu, X.H.; Li, Y.; Schapira, M.; Vedadi, M.; Min, J. Crystal Structures of the Human Histone H4K20 Methyltransferases SUV420H1 and SUV420H2. FEBS Lett. 2013, 587, 3859–3868. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, K.D.; Mitchell, T.R.H.; Upadhyay, A.K.; Jakob, C.G.; Jhala, M.A.; Comess, K.M.; Lasko, L.M.; Li, C.; Tuzon, C.T.; Dai, Y.; et al. The SUV4-20 Inhibitor A-196 Verifies a Role for Epigenetics in Genomic Integrity. Nat. Chem. Biol. 2017, 13, 317–324. [Google Scholar] [CrossRef]
- Araghi-Niknam, M.; Fatemi, S.H. Levels of Bcl-2 and P53 Are Altered in Superior Frontal and Cerebellar Cortices of Autistic Subjects. Cell Mol. Neurobiol. 2003, 23, 945–952. [Google Scholar] [CrossRef]
- Wang, Z.J.; Rein, B.; Zhong, P.; Williams, J.; Cao, Q.; Yang, F.; Zhang, F.; Ma, K.; Yan, Z. Autism Risk Gene KMT5B Deficiency in Prefrontal Cortex Induces Synaptic Dysfunction and Social Deficits via Alterations of DNA Repair and Gene Transcription. Neuropsychopharmacology 2021, 46, 1617–1626. [Google Scholar] [CrossRef]
- Ota, K.T.; Liu, R.-J.; Voleti, B.; Maldonado-Aviles, J.G.; Duric, V.; Iwata, M.; Dutheil, S.; Duman, C.; Boikess, S.; Lewis, D.A.; et al. REDD1 Is Essential for Stress-Induced Synaptic Loss and Depressive Behavior. Nat. Med. 2014, 20, 531–535. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Politis, M.; Piccini, P. Positron Emission Tomography Imaging in Neurological Disorders. J. Neurol. 2012, 259, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Cistaro, A.; Cuccurullo, V.; Quartuccio, N.; Pagani, M.; Valentini, M.C.; Mansi, L. Role of PET and SPECT in the Study of Amyotrophic Lateral Sclerosis. BioMed Res. Int. 2014, 2014, 237437. [Google Scholar] [CrossRef] [PubMed]
- Cistaro, A.; Caobelli, F.; Quartuccio, N.; Fania, P.; Pagani, M. Uncommon 18F-FDG-PET/CT Findings in Patients Affected by Limbic Encephalitis: Hyper-Hypometabolic Pattern with Double Antibody Positivity and Migrating Foci of Hypermetabolism. Clin. Imaging 2015, 39, 329–333. [Google Scholar] [CrossRef]
- Chugani, H.T. Positron Emission Tomography in Pediatric Neurodegenerative Disorders. Pediatr. Neurol. 2019, 100, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.Y.; Kao, Y.H.; Toh, H.B.; Sivaratnam, D.; Lichtenstein, M.; Velakoulis, D.; Walterfang, M. Brain Hypometabolic Changes in 14 Adolescent–Adult Patients with Niemann–Pick Disease Type C Assessed by 18F-Fluorodeoxyglucose Positron Emission Tomography. J. Neurol. 2021, 268, 3878–3885. [Google Scholar] [CrossRef]
- Lee, W.T.; Weng, W.C.; Peng, S.F.; Tzen, K.Y. Neuroimaging Findings in Children with Paediatric Neurotransmitter Diseases. J. Inherit. Metab. Dis. 2009, 32, 361–370. [Google Scholar] [CrossRef]
- Sundaram, S.K.; Chugani, H.T.; Chugani, D.C. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 325–330. [Google Scholar] [CrossRef]
- DiFilippo, A.; Jonaitis, E.; Makuch, R.; Gambetti, B.; Fleming, V.; Ennis, G.; Barnhart, T.; Engle, J.; Bendlin, B.; Johnson, S.; et al. Measurement of Synaptic Density in Down Syndrome Using PET Imaging: A Pilot Study. Sci. Rep. 2024, 14, 4676. [Google Scholar] [CrossRef] [PubMed]
- Cistaro, A.; Quartuccio, N.; Piccardo, A.; Fania, P.; Spunton, M.; Liava, A.; Danesino, C.; Albani, G.; Guala, A. 18f-Fdg Pet Identifies Altered Brain Metabolism in Patients with Cri Du Chat Syndrome. J. Nucl. Med. 2020, 61, 1195–1199. [Google Scholar] [CrossRef]
- Cistaro, A.; Schiera, I.G.; Fania, P.; Tognon, F.; Liava, A.; Danesino, C.; Albani, G.; Guala, A.; Vogrig, A.; Quartuccio, N. 18F-FDG PET Brain Findings in Disease-Discordant Monozygotic Mosaic Twins with Cri Du Chat (5p-) Syndrome. Neurocase 2021, 27, 319–322. [Google Scholar] [CrossRef]
- Martini, A.L.; Quartuccio, N.; Schiera, I.G.; Berti, V.; Burroni, L.; Cistaro, A. Applications of PET and SPECT in Patients with Autism Spectrum Disorder. Curr. Med. Imaging 2023, 20, e15734056232408. [Google Scholar] [CrossRef]
- Kowalewska, B.; Drozdz, W.; Kowalewski, L. Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT) in Autism Research: Literature Review. Ir. J. Psychol. Med. 2022, 39, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Intelligence Scale for Children. In PsycTESTS Dataset, 4th ed.; Psychological Corporation: Antonio, TX, USA, 2012; Volume 60, pp. 1609–1625. [Google Scholar]
- Gauthier, L.; Dehaut, F.; Joanette, Y. The Bells Test: A Quantitative and Qualitative Test for Visual Neglect. Int. J. Clin. Neuropsychol. 1989, 11, 49–54. [Google Scholar]
- Biancardi, A.; Stoppa, E. Il Test Delle Campanelle Modificato: Una Proposta per Lo Studio Dell’attenzione in Etá Evolutiva. [The Bells Test Revised: A Proposal for the Study of Attention in Childhood.]. Psichiatr. Infanz. Adolesc. 1997, 64, 73–84. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY. In PsycTESTS Dataset, 2nd ed.; Psychological Corporation: Antonio, TX, USA, 2012; Volume 8. [Google Scholar]
- Gugliotta, M.; Bisiacchi, P.; Cendron, M.; Tressoldi, P.; Vio, C. BVN 12–18 Batteria Di Valutazione Neuropsicologica per L’adolescenza; Edizioni Erickson: Trento, Italy, 2009; ISBN 978-88-6137-444-7. [Google Scholar]
- Benso, F.; Ardu, E.; Santoro, G.M. MEA: Measures for Executive Attention. Manuale; Hogrefe: Göttingen, Germany, 2019. [Google Scholar]
- Fancello, G.S.; Vio, C.; Cianchetti, C. TOL. Torre Di Londra. Test Di Valutazione Delle Funzioni Esecutive (Pianificazione e Problem Solving). Con CD-ROM; Edizioni Erickson: Trento, Italy, 2006; ISBN 887946941X. [Google Scholar]
- Spencer, T.D.; Kruse, L. Beery-Buktenica Developmental Test of Visual-Motor Integration. In Encyclopedia of Autism Spectrum Disorders; Volkmar, F.R., Ed.; Springer: New York, NY, USA, 2013; pp. 400–404. ISBN 978-1-4419-1698-3. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Child Behavior Checklist for Ages 6–18. In PsycTESTS Dataset; Psychological Corporation: Antonio, TX, USA, 2023. [Google Scholar]
- Rutter, M.; Bailey, A.; Lord, C.; Cianchetti, C.; Fancello, G.S. SCQ: Social Communication Questionnaire: Manuale; Giunti, O.S.: Florence, Italy, 2007; ISBN 9788809403000. [Google Scholar]
- Conners, C.K.; Pitkanen, J.; Rzepa , S.R. Conners (Conners 3; Conners 2008). In Encyclopedia of Clinical Neuropsychology, 3rd ed.; Kreutzer Jeffrey, S., DeLuca, J.C.B., Eds.; Springer New York: New York, NY, USA, 2011; pp. 675–678. ISBN 978-0-387-79948-3. [Google Scholar]
- Varrone, A.; Asenbaum, S.; Vander Borght, T.; Booij, J.; Nobili, F.; Någren, K.; Darcourt, J.; Kapucu, Ö.L.; Tatsch, K.; Bartenstein, P.; et al. EANM Procedure Guidelines for PET Brain Imaging Using [18F]FDG, Version 2. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 2103–2110. [Google Scholar]
- Cistaro, A.; Valentini, M.C.; Chiò, A.; Nobili, F.; Calvo, A.; Moglia, C.; Montuschi, A.; Morbelli, S.; Salmaso, D.; Fania, P.; et al. Brain Hypermetabolism in Amyotrophic Lateral Sclerosis: A FDG PET Study in ALS of Spinal and Bulbar Onset. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 251–259. [Google Scholar] [CrossRef]
- Mellone, S.; Puricelli, C.; Vurchio, D.; Ronzani, S.; Favini, S.; Maruzzi, A.; Peruzzi, C.; Papa, A.; Spano, A.; Sirchia, F.; et al. The Usefulness of a Targeted Next Generation Sequencing Gene Panel in Providing Molecular Diagnosis to Patients With a Broad Spectrum of Neurodevelopmental Disorders. Front. Genet. 2022, 13, 875182. [Google Scholar] [CrossRef]
- Zucca, S.; Nicora, G.; De Paoli, F.; Carta, M.G.; Bellazzi, R.; Magni, P.; Rizzo, E.; Limongelli, I. An AI-Based Approach Driven by Genotypes and Phenotypes to Uplift the Diagnostic Yield of Genetic Diseases. Hum. Genet. 2025, 144, 159–171. [Google Scholar] [CrossRef]
- Manickam, K.; McClain, M.R.; Demmer, L.A.; Biswas, S.; Kearney, H.M.; Malinowski, J.; Massingham, L.J.; Miller, D.; Yu, T.W.; Hisama, F.M. Exome and Genome Sequencing for Pediatric Patients with Congenital Anomalies or Intellectual Disability: An Evidence-Based Clinical Guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 2029–2037. [Google Scholar] [CrossRef]
- Shiota, Y.; Nishiyama, T.; Yokoyama, S.; Yoshimura, Y.; Hasegawa, C.; Tanaka, S.; Iwasaki, S.; Kikuchi, M. Association of Genetic Variants with Autism Spectrum Disorder in Japanese Children Revealed by Targeted Sequencing. Front. Genet. 2024, 15, 1352480. [Google Scholar] [CrossRef] [PubMed]
- Schweingruber, C.; Rufener, S.C.; Zünd, D.; Yamashita, A.; Mühlemann, O. Nonsense-Mediated MRNA Decay—Mechanisms of Substrate MRNA Recognition and Degradation in Mammalian Cells. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2013, 1829, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhang, R.; Shao, W.; Lei, C.; Ma, M.; Zhang, Y.; Wen, Z.; Li, W. Structural Basis of Nucleosomal H4K20 Recognition and Methylation by SUV420H1 Methyltransferase. Cell Discov. 2023, 9, 120. [Google Scholar] [CrossRef]
- Chinenov, Y.; Sacta, M.A.; Cruz, A.R.; Rogatsky, I. GRIP1-Associated SET-Domain Methyltransferase in Glucocorticoid Receptor Target Gene Expression. Proc. Natl. Acad. Sci. USA 2008, 105, 20185–20190. [Google Scholar] [CrossRef]
- Schotta, G.; Lachner, M.; Sarma, K.; Ebert, A.; Sengupta, R.; Reuter, G.; Reinberg, D.; Jenuwein, T. A Silencing Pathway to Induce H3-K9 and H4-K20 Trimethylation at Constitutive Heterochromatin. Genes. Dev. 2004, 18, 1251–1262. [Google Scholar] [CrossRef]
- Salemi, M.; Schillaci, F.A.; Lanza, G.; Marchese, G.; Salluzzo, M.G.; Cordella, A.; Caniglia, S.; Bruccheri, M.G.; Truda, A.; Greco, D.; et al. Transcriptome Study in Sicilian Patients with Autism Spectrum Disorder. Biomedicines 2024, 12, 1402. [Google Scholar] [CrossRef]
- Luo, T.; Chen, S.; Ruan, Y.; Chen, H.; Chen, Y.; Li, Y.; Zhou, W. Downregulation of DDIT4 Ameliorates Abnormal Behaviors in Autism by Inhibiting Ferroptosis via the PI3K/Akt Pathway. Biochem. Biophys. Res. Commun. 2023, 641, 168–176. [Google Scholar] [CrossRef]
- Agar, G.; Brown, C.; Sutherland, D.; Coulborn, S.; Oliver, C.; Richards, C. Sleep Disorders in Rare Genetic Syndromes: A Meta-Analysis of Prevalence and Profile. Mol. Autism 2021, 12, 18. [Google Scholar] [CrossRef]
- Tamplain, P.; Miller, H.L.; Peavy, D.; Cermak, S.; Williams, J.; Licari, M. The Impact for DCD—USA Study: The Current State of Developmental Coordination Disorder (DCD) in the United States of America. Res. Dev. Disabil. 2024, 145, 104658. [Google Scholar] [CrossRef]
- Rubin, R.D.; Watson, P.D.; Duff, M.C.; Cohen, N.J. The Role of the Hippocampus in Flexible Cognition and Social Behavior. Front. Hum. Neurosci. 2014, 8, 742. [Google Scholar] [CrossRef]
- Thach, W.T.; Goodkin, H.P.; Keating, J.G. The Cerebellum and the Adaptive Coordination of Movement. Annu. Rev. Neurosci. 1992, 15, 403–442. [Google Scholar] [CrossRef]
- Manglunia, A.S.; Puranik, A.D. FDG PET/CT Findings in a Clinically Diagnosed Case of Childhood Autism. Indian J. Nucl. Med. 2016, 31, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Anil Kumar, B.N.; Malhotra, S.; Bhattacharya, A.; Grover, S.; Batra, Y.K. Regional Cerebral Glucose Metabolism and Its Association with Phenotype and Cognitive Functioning in Patients with Autism. Indian. J Psychol. Med. 2017, 39, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Van Overwalle, F.; Manto, M.; Cattaneo, Z.; Clausi, S.; Ferrari, C.; Gabrieli, J.D.E.; Guell, X.; Heleven, E.; Lupo, M.; Ma, Q.; et al. Consensus Paper: Cerebellum and Social Cognition. Cerebellum 2020, 19, 833–868. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Aldinger, K.A.; Ashwood, P.; Bauman, M.L.; Blaha, C.D.; Blatt, G.J.; Chauhan, A.; Chauhan, V.; Dager, S.R.; Dickson, P.E.; et al. Consensus Paper: Pathological Role of the Cerebellum in Autism. Cerebellum 2012, 11, 777–807. [Google Scholar] [CrossRef]
- Pagani, M.; Chiò, A.; Valentini, M.C.; Öberg, J.; Nobili, F.; Calvo, A.; Moglia, C.; Bertuzzo, D.; Morbelli, S.; De Carli, F.; et al. Functional Pattern of Brain FDG-PET in Amyotrophic Lateral Sclerosis. Neurology 2014, 83, 1067–1074. [Google Scholar] [CrossRef] [PubMed]



| Patient | Aggregated Data | Percentage | Our Patients | 
|---|---|---|---|
| Sex | 23 females, 35 males, 6 NA. Total patients 64. | 40% female, 58% male | 2 females | 
| Age (years) at last evaluation | From 5.5 weeks to 50 years of age | 5.5 weeks—50 years (median age around 11 years) | 13 years old | 
| Variant type | 24 missense variants, 19 frameshift variants, 3 inframe deletions, 2 partial gene deletion, 12 nonsense, 4 splice site | 38% missense, 29.5% frameshift, 4.5% inframe deletions, 3% partial gene deletion, 19% nonsense, 6% splice site | Both nonsense variants | 
| Inheritance | 45 de novo inherited, 6 inherited variants, 1 plausible germinal mosaicism, 12 NA | 86.5% de novo | Both de novo | 
| Macrocephaly | 30 macrocephalic patients, 23 normocephalic patients, 11 NA patients | 57% | Both macrocephalic | 
| Prominent dysmorphisms and characteristics | 45 dysmorphic patients (only either tall or short stature not evaluated), 13 Negative, 6 NA patients | 78% | One dysmorphic patient | 
| Global developmental delay | 55 GDD, 4 NA/NAP, 5 with speech delay | 92% | Both showed GDD | 
| ID/learning difficulties | 39 ID/learning difficulties, 3 Negative, 22 NA/NAP | 93% | Both shows learning difficulties but no ID (tested) | 
| ADHD | 6 ADHD, 49 Negative, 9 NA | 11% | Both show ADHD traits | 
| ASD | 32 ASD, 17 Negative, 15 NA | 65% | Both ASD | 
| Psychosis | 2 psychotic patients, 53 Negative, 9 NA/NAP | 4% | None | 
| Regression | 3 patients showed regression, 54 Negative, 7 NA | 5% | None | 
| Behavioral/Psychiatric disorders other than psychosis | 12 patients showed behavioral/psychiatric disorders, 42 Negative, 10 NA | 22% | No clinically significant disorder | 
| Epilepsy/Seizures | 12 Epileptic patients, 40 Negative, 12 NA | 23% | None | 
| Sleeping problems | 7 patients showed sleeping problems, 50 Negative, 7 NA | 12% | Both | 
| Hypotonia | 29 hypotonic patients, 21 Negative, 14 NA | 58% | None | 
| Movement disorders | 6 patients showed a movement disorder (4 motor incoordination/DCD), 59 no, 7 NA | 11% (67% motor incoordination/DCD) | Both has DCD | 
| MRI abnormalities | 16 patients showed nonspecific findings on MRI, 24 Negative, 24 NA | 40% aspecific findings | None | 
| PET/CT brain abnormalities | NA | NA | Both showed abnormalities | 
| Eye abnormalities | 13 patients showed eye abnormalities, 38 Negative, 13 NA | 22% | None | 
| Congenital anomalies (other than brain anomalies) | 13 patients showed congenital anomalies, 48 Negative, 3 NA | 21% | None | 
| Others | 44 patients showed other clinical problems, 18 Negative, 2 NA | 71% | Both showed other clinical signs/symptoms | 
| Ascertained Area | Patient 1 | Patient 2 | 
|---|---|---|
| Global Cognitive Functioning (WISC IV) | FSIQ 104 (VCI 108, PRI 102, WMI 100, PSI 100) | FSIQ 96 (VCI 100, PRI 119, WMI 76 *, PSI 82 *) | 
| Attention | ||
| Visual Attention (NEPSY-II) | Zs 0.74 | Zs 0 | 
| Auditory Attention (NEPSY-II) | Zs 0.75 | Zs 0.38 | 
| TCM | p.le > 10 p.le | p.le < 10° | 
| Executive Functions | ||
| Inhibition (Inhibition B NEPSY-II) | SS 11 | SS 9 | 
| Verbal WM (Forward Verbal Digit Span, Backward Verbal Digit Spa BVN 12–18, Alpha Span MEA) | Zs -0.29 Zs 0.43 p.le < 1° | Zs -1.33 Zs -0.66 p.le < 1° | 
| Visuospatial WM (Corsi Block-Tapping Test BVN 12–18) | Zs -0.44 | Zs -0.43 | 
| Shifting (Inhibition C NEPSY-II) | SS 8 | SS 3 | 
| Planning (TOL) | Ts 94, Ts > 99, Ts 86 (total moves, initiation time, and total time in seconds) | Ts > 98, Ts 77 (total moves and rule violations) | 
| Memory | ||
| Verbal STM (Immediate List Memory NEPSY-II) | SS 12 | SS 5 | 
| Verbal LTM (Delayed List Memory NEPSY-II) | SS 13 | SS 6 * | 
| Visuospatial STM (Immediate Memory for Design NEPSY-II) | SS 6 * | SS 5 | 
| Visuospatial LTM (Delayed Memory for Design NEPSY-II) | SS 12 | SS 5 | 
| Social Perception | ||
| ToM (NEPSY-II) | SS 12 | SS 5 | 
| Emotion Recognition (NEPSY-II) | SS 12 | SS 7 * | 
| Sensorimotor Functions | ||
| Imitating Hand Positions (NEPSY-II) | SS 8 | SS 1 | 
| Manual Motor Sequences (NEPSY-II) | SS 8 | SS 7 * | 
| VMI | SS 84 | SS 84 | 
| Language | ||
| Speech Discrimination (BVN 12–18) | Zs 2,16 | Zs 2,06 | 
| Lexical Denomination (BVN 12–18) | Zs -1.68 * | Zs -0.78 | 
| Sentence Generation (BVN 12–18) | Zs -2.81 | Zs -3.38 | 
| Emotional and Behavioral Functioning | ||
| Internalizing Problems (CBCL 6–18) | p.le > 98 | p.le > 98 | 
| Externalizing Problems (CBCL 6–18) | p.le 84 | p.le 89 * | 
| Repetitive Actions or Specific Routines (SCQ-V) | RS 24 cut-off > 15 | RS 18 cut-off > 15 | 
| Impaired Communication Skills (SCQ-V) | RS 24 cut-off > 15 | RS 18 cut-off > 15 | 
| ADHD Index Conners 3 | Ts 77 | Ts 70 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politano, D.; Borgatti, R.; Borgonovi, G.; Cistaro, A.; Danesino, C.; Fania, P.; Garghetti, G.; Guala, A.; Orlando, I.; Schiera, I.G.; et al. Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review. Genes 2025, 16, 1174. https://doi.org/10.3390/genes16101174
Politano D, Borgatti R, Borgonovi G, Cistaro A, Danesino C, Fania P, Garghetti G, Guala A, Orlando I, Schiera IG, et al. Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review. Genes. 2025; 16(10):1174. https://doi.org/10.3390/genes16101174
Chicago/Turabian StylePolitano, Davide, Renato Borgatti, Giulia Borgonovi, Angelina Cistaro, Cesare Danesino, Piercarlo Fania, Gaia Garghetti, Andrea Guala, Isabella Orlando, Irene Giovanna Schiera, and et al. 2025. "Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review" Genes 16, no. 10: 1174. https://doi.org/10.3390/genes16101174
APA StylePolitano, D., Borgatti, R., Borgonovi, G., Cistaro, A., Danesino, C., Fania, P., Garghetti, G., Guala, A., Orlando, I., Schiera, I. G., Scotti, C., Sirchia, F., Romaniello, R., Visani, G., Vurchio, D., Mellone, S., & Giordano, M. (2025). Bridging Genotype to Phenotype in KMT5B-Related Syndrome: Evidence from RNA-Seq, 18FDG-PET, Clinical Deep Phenotyping in Two New Cases, and a Literature Review. Genes, 16(10), 1174. https://doi.org/10.3390/genes16101174
 
        




 
       