Candidate Genes of Gastrointestinal Nematode Resistance Traits in Sheep: A Systematic Review of GWASs and Gene Prioritization Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Review Search Strategy
2.2. Literature Inclusion and Selection Process
2.3. Reannotation of Mutation Sites and Extraction of Candidate Genes
2.4. Gene Prioritization Analysis
2.5. Gene Functional Enrichment Analysis
3. Results
3.1. Systematic Review
3.2. Variant Annotation and Candidate Gene Extraction
3.3. Gene Prioritization Analysis Results
3.4. Functional Enrichment Analysis and Gene Network Analysis
4. Discussion
4.1. Main Findings and Significance of the Systematic Review
4.2. Mechanistic Interpretation of Core Resistance Genes and Pathways
4.3. Research Prospects and Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, S.C.; Stear, M.J. Modeling of host genetics and resistance to infectious diseases: Understanding and controlling nematode infections. Vet. Parasitol. 2003, 115, 147–166. [Google Scholar] [CrossRef]
- Charlier, J.; van der Voort, M.; Kenyon, F.; Skuce, P.; Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014, 30, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit. Vectors 2013, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Hayward, A.D. Genetic parameters for resistance to gastrointestinal nematodes in sheep: A meta-analysis. Int. J. Parasitol. 2022, 52, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Coltman, D.W.; Wilson, K.; Pilkington, J.G.; Stear, M.J.; Pemberton, J.M. A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 2001, 122, 571–582. [Google Scholar] [CrossRef]
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef]
- Kotze, A.C.; Prichard, R.K. Anthelmintic resistance in Haemonchus contortus: History, mechanisms and diagnosis. Adv. Parasitol. 2016, 93, 397–428. [Google Scholar]
- Jackson, F.; Coop, R.L. The development of anthelmintic resistance in sheep nematodes. Parasitology 2000, 120 (Suppl. S1), S95–S107. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.; Hoste, H. Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Rumin. Res. 2008, 77, 159–173. [Google Scholar] [CrossRef]
- Bishop, S.C.; Morris, C.A. Genetics of disease resistance in sheep and goats. Small Rumin. Res. 2007, 70, 48–59. [Google Scholar] [CrossRef]
- Brown, D.J.; Fogarty, N.M. Genetic relationships between internal parasite resistance and production traits in Merino sheep. Anim. Prod. Sci. 2017, 57, 209–215. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- McRae, K.M.; Stear, M.J.; Good, B.; Keane, O.M. The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 2015, 37, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Stear, M.J.; Doligalska, M.; Donskow-Schmelter, K. Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology 2007, 134, 139–151. [Google Scholar] [CrossRef]
- McManus, C.; do Prado Paim, T.; de Melo, C.B.; Brasil, B.S.; Paiva, S.R. Selection methods for resistance to and tolerance of helminths in livestock. Parasite 2014, 21, 56. [Google Scholar] [CrossRef]
- Baker, R.L.; Mwamachi, D.M.; Audho, J.O.; Thorpe, W.; Barger, I.A. Resistance of Galla and Small East African goats in the sub-humid tropics to gastrointestinal nematode infections and the peri-parturient rise in faecal egg counts. Vet. Parasitol. 1999, 79, 53–64. [Google Scholar] [CrossRef]
- Zvinorova, P.I.; Halimani, T.E.; Muchadeyi, F.C.; Matika, O.; Riggio, V.; Dzama, K. Breeding for resistance to gastrointestinal nematodes—The potential in low-input/output small ruminant production systems. Vet. Parasitol. 2016, 225, 19–28. [Google Scholar] [CrossRef]
- Woolaston, R.R.; Baker, R.L. Prospects of breeding small ruminants for resistance to internal parasites. Int. J. Parasitol. 1996, 26, 845–855. [Google Scholar] [CrossRef]
- Stear, M.J.; Strain, S.; Bishop, S.C. Mechanisms underlying resistance to nematode infection. Int. J. Parasitol. 1999, 29, 51–56. [Google Scholar] [CrossRef]
- Goddard, M.E.; Hayes, B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef]
- Andersson, L.; Georges, M. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 2004, 5, 202–212. [Google Scholar] [CrossRef]
- Bush, W.S.; Moore, J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012, 8, e1002822. [Google Scholar] [CrossRef]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95–108. [Google Scholar] [CrossRef]
- Marshall, K.; Maddox, J.F.; Lee, S.H.; Zhang, Y.; Kahn, L.; Graser, H.U.; Gondro, C.; Walkden-Brown, S.W.; van der Werf, J.H. Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Anim. Genet. 2009, 40, 262–272. [Google Scholar] [CrossRef]
- Riggio, V.; Matika, O.; Pong-Wong, R.; Stear, M.J.; Bishop, S.C. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity 2013, 110, 420–429. [Google Scholar] [CrossRef]
- Persichilli, C.; Biffani, S.; Senczuk, G.; Di Civita, M.; Bitew, M.K.; Bosco, A.; Rinaldi, L.; Grande, S.; Cringoli, G.; Pilla, F. A case-control genome-wide association study of estimated breeding values for resistance to gastrointestinal nematodes in two local dairy sheep breeds. Animal 2025, 19, 101403. [Google Scholar] [CrossRef] [PubMed]
- Vera, B.; Navajas, E.A.; Carracelas, B.; Ciappesoni, G. Accuracy of genomic predictions for resistance to gastrointestinal parasites in Australian Merino sheep in Uruguay. Genes. 2025, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Ahbara, A.M.; Rouatbi, M.; Rjeibi, M.R.; Ben Salem, I.; Rekik, M.; Haile, A.; Rischkowsky, B.; Mwacharo, J.M. Genome-wide insights on gastrointestinal nematode resistance in autochthonous Tunisian sheep. Sci. Rep. 2021, 11, 9250. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Fu, W.; Wang, R.; Nanaei, H.A.; Wang, J.; Hu, D.; Jiang, Y. RGD v2.0: A major update of the ruminant functional and evolutionary genomics database. Nucleic Acids Res. 2022, 50, D1091–D1099. [Google Scholar] [CrossRef]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023, 51, W207–W212. [Google Scholar] [CrossRef] [PubMed]
- Arzik, Y.; Kizilaslan, M.; White, S.N.; Piel, L.M.W.; Çınar, M.U. Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep. Genes 2022, 13, 2177. [Google Scholar] [CrossRef] [PubMed]
- Niciura, S.C.M.; Benavides, M.V.; Okino, C.H.; Ibelli, A.M.G.; Minho, A.P.; Esteves, S.N.; Chagas, A.C.S. Genome-Wide Association Study for Haemonchus contortus Resistance in Morada Nova Sheep. Pathogens 2022, 11, 939. [Google Scholar] [CrossRef]
- Thorne, J.W.; Redden, R.; Bowdridge, S.A.; Becker, G.M.; Stegemiller, M.R.; Murdoch, B.M. Genome-Wide Analysis of Sheep Artificially or Naturally Infected with Gastrointestinal Nematodes. Genes 2023, 14, 1342. [Google Scholar] [CrossRef]
- Becker, G.M.; Burke, J.M.; Lewis, R.M.; Miller, J.E.; Morgan, J.L.M.; Rosen, B.D.; Van Tassell, C.P.; Notter, D.R.; Murdoch, B.M. Variants Within Genes EDIL3 and ADGRB3 are Associated with Divergent Fecal Egg Counts in Katahdin Sheep at Weaning. Front. Genet. 2022, 13, 817319. [Google Scholar] [CrossRef]
- Berton, M.P.; da Silva, R.P.; Banchero, G.; Mourão, G.B.; Ferraz, J.B.S.; Schenkel, F.S.; Baldi, F. Genomic integration to identify molecular biomarkers associated with indicator traits of gastrointestinal nematode resistance in sheep. J. Anim. Breed. Genet. 2022, 139, 502–516. [Google Scholar] [CrossRef]
- Carracelas, B.; Navajas, E.A.; Vera, B.; Ciappesoni, G. Genome-Wide Association Study of Parasite Resistance to Gastrointestinal Nematodes in Corriedale Sheep. Genes 2022, 13, 1548. [Google Scholar] [CrossRef]
- Estrada-Reyes, Z.M.; Ogunade, I.M.; Pech-Cervantes, A.A.; Terrill, T.H. Copy number variant-based genome wide association study reveals immune-related genes associated with parasite resistance in a heritage sheep breed from the United States. Parasite Immunol. 2022, 44, e12943. [Google Scholar] [CrossRef]
- Vera, B.; Navajas, E.A.; Peraza, P.; Carracelas, B.; Van Lier, E.; Ciappesoni, G. Genomic Regions Associated with Resistance to Gastrointestinal Parasites in Australian Merino Sheep. Genes 2024, 15, 846. [Google Scholar] [CrossRef]
- Al Kalaldeh, M.; Gibson, J.P.; Lee, S.H.; Gondro, C.; van der Werf, J.H. Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genet. Sel. Evol. 2019, 51, 37. [Google Scholar] [CrossRef]
- Niciura, S.C.M.; Cardoso, T.F.; Ibelli, A.M.G.; Okino, C.H.; Andrade, B.G.; Benavides, M.V.; Chagas, A.C.S.; Esteves, S.N.; Minho, A.P.; Regitano, L.C.A.; et al. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit. Vectors 2024, 17, 102. [Google Scholar] [CrossRef]
- Pickering, N.K.; Auvray, B.; Dodds, K.G.; McEwan, J.C. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genom. 2015, 16, 958. [Google Scholar] [CrossRef] [PubMed]
- Stafuzza, N.B.; de Freitas, A.C.; Mioto, M.B.; de Oliveira Silva, R.M.; de Oliveira Fragomeni, B.; Pedrosa, V.B.; da Costa, R.L.D.; de Paz, C.C.P. Weighted Single-Step Genome-Wide Association Study and Functional Enrichment Analyses for Gastrointestinal Nematode Resistance Traits in Santa Ines Sheep. Vet. Parasitol. 2023, 323, 110047. [Google Scholar] [CrossRef] [PubMed]
- Atlija, M.; Arranz, J.J.; Martinez-Valladares, M.; Gutierrez-Gil, B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet. Sel. Evol. 2016, 48, 4. [Google Scholar] [CrossRef] [PubMed]
- Al Kalaldeh, M.; Gibson, J.P.; Duijvesteijn, N.; Daetwyler, H.D.; MacLeod, I.; Moghaddar, N.; Lee, S.H.; van der Werf, J.H.J. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genet. Sel. Evol. 2019, 51, 32. [Google Scholar] [CrossRef]
- Costa, K.A.; Araujo, A.C.; Fonseca, P.A.S.; Silva, H.T.; Menegatto, L.S.; de Freitas, L.A.; Cardoso, C.M.; Carvalho Filho, I.; Otto, P.I.; Costa, R.L.D.D.; et al. Genetic parameters and haplotype-based genome-wide association study of indicator traits for gastrointestinal parasite resistance in Santa Ines sheep. Vet. Parasitol. 2025, 337, 110498. [Google Scholar] [CrossRef]
- Pacheco, A.; Banos, G.; Lambe, N.; McLaren, A.; McNeilly, T.N.; Conington, J. Genome-wide association studies of parasite resistance, productivity and immunology traits in Scottish Blackface sheep. Animal 2024, 18, 101069. [Google Scholar] [CrossRef]
- Benavides, M.V.; Sonstegard, T.S.; Kemp, S.; Mugambi, J.M.; Gibson, J.P.; Baker, R.L.; Hanotte, O.; Marshall, K.; Van Tassell, C. Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population. PLoS ONE 2015, 10, e0122797. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Reyes, Z.M.; Rae, O.; Postley, C.; Jiménez Medrano, M.B.; Leal Gutiérrez, J.D.; Mateescu, R.G. Association study reveals Th17, Treg, and Th2 loci related to resistance to Haemonchus contortus in Florida Native sheep. J. Anim. Sci. 2019, 97, 4428–4444. [Google Scholar] [CrossRef]
- Berton, M.P.; de Oliveira Silva, R.M.; Peripolli, E.; Stafuzza, N.B.; Martin, J.F.; Álvarez, M.S.; Gavinã, B.V.; Toro, M.A.; Banchero, G.; Oliveira, P.S.; et al. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J. Anim. Sci. Biotechnol. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.L.; Mugambi, J.M.; Audho, J.O.; Carles, A.B.; Thorpe, W. Genotype by environment interactions for productivity and resistance to gastro-intestinal nematode parasites in Red Maasai and Dorper sheep. Anim. Sci. 2004, 79, 343–353. [Google Scholar] [CrossRef]
- Woolaston, R.R.; Windon, R.G. Selection of sheep for response to Trichostrongylus colubriformis larvae: Genetic parameters. Anim. Sci. 2001, 73, 41–48. [Google Scholar] [CrossRef]
- Piatti, L.; Batzilla, A.; Nakaki, F.; Fleckenstein, H.; Korbmacher, F.; Long, R.K.M.; Schraivogel, D.; Hawkins, J.A.; Romero-Uruñuela, T.; López-Gutiérrez, B.; et al. Plasmodium falciparum egress disrupts endothelial junctions and activates JAK-STAT signaling in a microvascular 3D blood-brain barrier model. Nat. Commun. 2025, 16, 7262. [Google Scholar] [CrossRef]
- de Castro, L.L.; Gomes da Rosa, B.; Peixoto-Rodrigues, M.C.; Revoredo Vicentino, A.R.; Fraga-Junior, V.d.S.; Cascabulho, C.M.; Diniz, L.P.; Benjamim, C.F.; Bracko, O.; Scharfstein, J.; et al. Toxoplasma gondii impairs CX3CL1/fractalkine shedding from mouse cortical neurons, leading to microglia activation. Microbiol. Spectr. 2025, e0107425. [Google Scholar] [CrossRef]
- Araujo, R.N.; Padilha, T.; Zarlenga, D.; Sonstegard, T.; Connor, E.E.; Van Tassel, C.; Lima, W.S.; Nascimento, E.; Gasbarre, L.C. Use of a candidate gene array to delineate gene expression patterns in cattle selected for resistance or susceptibility to intestinal nematodes. Vet. Parasitol. 2019, 162, 106–115. [Google Scholar] [CrossRef]
- Adams, N.R.; Briegel, J.R.; Ward, K.A. The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep. J. Anim. Sci. 2002, 80, 2325–2333. [Google Scholar] [CrossRef]
- Becker, G.M.; Thorne, J.W.; Burke, J.M.; Lewis, R.M.; Notter, D.R.; Morgan, J.L.M.; Schauer, C.S.; Stewart, W.C.; Redden, R.R.; Murdoch, B.M. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet. Sel. Evol. 2024, 56, 56. [Google Scholar] [CrossRef]
- Fonseca, P.A.S.; Suárez-Vega, A.; Arranz, J.J.; Gutiérrez-Gil, B. Integration of selective sweeps across the sheep genome: Understanding the relationship between production and adaptation traits. Genet. Sel. Evol. 2024, 56, 40. [Google Scholar] [CrossRef]
- Qiao, G.; Chen, M.; Bucsek, M.J.; Repasky, E.A.; Hylander, B.L. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front. Immunol. 2018, 9, 164. [Google Scholar] [CrossRef]
- Arensdorf, A.M.; Marada, S.; Ogden, S.K. Smoothened Regulation: A Tale of Two Signals. Trends Pharmacol. Sci. 2016, 37, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Kolev, H.M.; Kaestner, K.H. Mammalian Intestinal Development and Differentiation-The State of the Art. Cell. Mol. Gastroenterol. Hepatol. 2023, 16, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Huang, J.; Ayansola, H.; Masatoshi, H.; Zhang, B. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Front. Immunol. 2021, 11, 623691. [Google Scholar] [CrossRef] [PubMed]
- Daetwyler, H.D.; Hickey, J.M.; Henshall, J.M.; Dominik, S.; Gredler, B.; van der Werf, J.H.; Hayes, B.J. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Anim. Prod. Sci. 2010, 50, 1004–1010. [Google Scholar] [CrossRef]
- Beraldi, D.; Craig, B.H.; Bishop, S.C.; Hopkins, J.; Pemberton, J.M. Phenotypic analysis of host-parasite interactions in lambs infected with Teladorsagia circumcincta. Int. J. Parasitol. 2008, 38, 1567–1577. [Google Scholar] [CrossRef]
- Sallé, G.; Doyle, S.R.; Cortet, J.; Cabaret, J.; Berriman, M.; Holroyd, N.; Cotton, J.A. The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nat. Commun. 2019, 10, 4811. [Google Scholar] [CrossRef]
Evaluation Indicators | 0 Points | 1 Points | 2 Points | 3 Points |
---|---|---|---|---|
Population Structure Control | No population stratification | Either PCA or genomic control applied | Principal component analysis + genomic control | - |
Sample Size Adequacy | <200 animals | 200–500 animals | >500 animals | - |
Phenotype Definition and Measurement | Poorly defined or non-standardized phenotypes | Standardized phenotyping protocols | - | - |
Genotyping Platform and Coverage | <20 K SNPs | 20–50 K SNPs | 50 K SNPs or whole-genome sequencing | - |
Quality Control Procedures | Minimal or unclear QC procedures | Basic QC applied | Comprehensive QC with MAF, HWE, call rate, sample filtering | - |
Multiple Testing Correction | No multiple testing correction | Bonferroni or FDR correction applied | - | - |
Replication and Validation | In single breeds | In multiple breeds | - | - |
Reference Genome | Version information unclear | Cannot be used for lift over conversion | Can be used for lift over conversion | - |
Data Reproducibility | Limited availability | Difficult to re-annotate locus information or only genomic regions available | Partial locus and candidate genes extractable | Detailed and extractable locus and candidate gene information |
Source Study | Sample Size | Country | Breed |
---|---|---|---|
Arzik, Y. et al., 2022 [35] | 475 | Turkey | Akkaraman |
Niciura, S.C.M. et al., 2022 [36] | 44 | Brazil | Morada Nova |
Thorne, J.W. et al., 2023 [37] | 329 | United States | Rambouillet, Dorper, White Dorper |
Becker, G.M. et al., 2022 [38] | 583 | United States | Katahdin |
Berton, M.P. et al., 2022 [39] | 576 | Brazil | Santa Inês |
Carracelas, B. et al., 2022 [40] | 375 | Uruguay | Corriedale |
Estrada-Reyes, Z.M. et al., 2022 [41] | 261 | United States | Florida Native |
Ahbara, A.M. et al., 2021 [28] | 92 | Tunisia | Tunisian indigenous sheep |
Vera, B. et al., 2024 [42] | 1697 | Uruguay | Australian Merino |
Al Kalaldeh, M. et al., 2019 [43] | 7539 | Australia | Merino, Poll Dorset, Suffolk, White Suffolk, White Dorper, Border Leicester, and crossed |
Yaman, Y. et al., 2024 [44] | 48 | Brazil | Morada Nova sheep |
Pickering, N.K. et al., 2015 [45] | 8705 | New Zealand | Romney, Coopworth, Perendale, Texel, CompRCP, CompRCPT, CompCRP |
Stafuzza, N.B. et al., 2023 [46] | 589 | Brazil | Santa Ines |
Atlija, M. et al., 2016 [47] | 518 | Spain | Spanish Churra |
Al Kalaldeh, M. et al., 2019 [48] | 1881 | Australia | Merino, Poll Dorset, Border Leicester, White Suffolk, and other |
Persichilli, C. et al., 2025 [26] | 120 | Italy | Comisana, Massese |
Costa, K.A. et al., 2025 [49] | 638 | Brazil | Santa Ines |
Pacheco, A. et al., 2024 [50] | 1766 | United Kingdom (Scotland) | Scottish Blackface |
Benavides, M.V. et al., 2015 [51] | 371 | Kenya | Red Maasai × Dorper double backcross group |
Estrada-Reyes, Z.M. et al., 2019 [52] | 100 | United States | Florida Native |
Riggio, V. et al., 2013 [25] | 752 | United Kingdom | Scottish Blackface |
Berton, M.P. et al., 2017 [53] | 574 | Brazil | Santa Inês |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, G.; Xu, D.; Ma, Y.; Wang, X.; Wang, Y.; Hou, L.; Hu, J.; Wang, J.; Chao, T. Candidate Genes of Gastrointestinal Nematode Resistance Traits in Sheep: A Systematic Review of GWASs and Gene Prioritization Analysis. Genes 2025, 16, 1151. https://doi.org/10.3390/genes16101151
Zhang Z, Liu G, Xu D, Ma Y, Wang X, Wang Y, Hou L, Hu J, Wang J, Chao T. Candidate Genes of Gastrointestinal Nematode Resistance Traits in Sheep: A Systematic Review of GWASs and Gene Prioritization Analysis. Genes. 2025; 16(10):1151. https://doi.org/10.3390/genes16101151
Chicago/Turabian StyleZhang, Zhirou, Gang Liu, Deji Xu, Yueqi Ma, Xianlong Wang, Yong Wang, Lei Hou, Jiaqing Hu, Jianmin Wang, and Tianle Chao. 2025. "Candidate Genes of Gastrointestinal Nematode Resistance Traits in Sheep: A Systematic Review of GWASs and Gene Prioritization Analysis" Genes 16, no. 10: 1151. https://doi.org/10.3390/genes16101151
APA StyleZhang, Z., Liu, G., Xu, D., Ma, Y., Wang, X., Wang, Y., Hou, L., Hu, J., Wang, J., & Chao, T. (2025). Candidate Genes of Gastrointestinal Nematode Resistance Traits in Sheep: A Systematic Review of GWASs and Gene Prioritization Analysis. Genes, 16(10), 1151. https://doi.org/10.3390/genes16101151