Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotyping Sites and Experimental Design
2.3. Phenotypic Data Collection and Analysis
2.4. Genotypic Data and Genetic Linkage Map Construction
2.5. QTL Mapping for Phenology, Yield, and Phosphorus Efficiency Traits
2.6. Identification of Candidate Genes
3. Results
3.1. Phenotypic Evaluation of the RILs for Crop Phenology, Yield and P Efficiency Traits in Varying Soil-P Conditions
3.2. QTL Analysis Under Contrasting Soil Phosphorus Conditions
3.2.1. Days to Flowering
3.2.2. Days to Maturity
3.2.3. Biomass Yield
3.2.4. Grain Yield
3.2.5. Grain P-Efficiency Traits
4. Discussion
4.1. Response of RILs for Phenology, Yield, and P-Efficiency Traits Under Varying Soil-P Conditions
4.2. QTLs for Phenology, Yield, and P-Efficiency Traits in Cowpea RIL Populations
4.2.1. QTLs for Days to Flowering and Candidate Genes
4.2.2. QTLs for Days to Maturity and Candidate Genes
4.2.3. QTLs for Biomass Yield and Candidate Genes
4.2.4. Grain-Yield Genomic Loci and Candidate Genes
4.2.5. QTLs for Grain PUE and PUpE Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Baributsa, D.; Dabiré, C.; Sawadogo, K.; Lowenberg-Deboer, J. Increasing Women’s Participation in Cowpea Storage Activities: The Case of Burkina Faso. J. Agric. Ext. Rural. Dev. 2013, 5, 232–239. [Google Scholar] [CrossRef]
- Mehra, P.; Pandey, B.K.; Giri, J. Genome-Wide DNA Polymorphisms in Low Phosphate Tolerant and Sensitive Rice Genotypes. Sci. Rep. 2015, 5, 13090. [Google Scholar] [CrossRef]
- Huynh, B.L.; Ehlers, J.D.; Ndeve, A.; Wanamaker, S.; Lucas, M.R.; Close, T.J.; Roberts, P.A. Genetic Mapping and Legume Synteny of Aphid Resistance in African Cowpea (Vigna unguiculata L. Walp.) Grown in California. Mol. Breed. 2015, 35, 36. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 5 October 2018).
- Santos, J.A.; Nunes, L.A.P.L.; Melo, W.J.d.; Figueiredo, M.B.d.V.; Singh, R.P.; Bezerra, A.A.C.; Araújo, A.S.F.d. Growth, Nodulation and Nitrogen Fixation of Cowpea in Soils Amended with Composted Tannery Sludge. Rev. Bras. Cienc. Solo 2011, 35, 1865–1871. [Google Scholar] [CrossRef]
- Hussain, R.M. The Effect of Phosphorus in Nitrogen Fixation in Legumes. Agric. Res. Technol. 2017, 5, 001–003. [Google Scholar] [CrossRef]
- Sanginga, N.; Lyasse, O.; Singh, B.B. Phosphorus Use Efficiency and Nitrogen Balance of Cowpea Breeding Lines in a Low P Soil of the Derived Savanna Zone in West Africa. Plant Soil. 2000, 220, 119–128. [Google Scholar] [CrossRef]
- Kyei-Boahen, S.; Savala, C.E.N.; Chikoye, D.; Abaidoo, R. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments. Front. Plant Sci. 2017, 8, 646. [Google Scholar] [CrossRef] [PubMed]
- Bishopp, A.; Lynch, J.P. The Hidden Half of Crop Yields. Nat. Plants 2015, 1, 15117. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Brown, K.M. New Roots for Agriculture: Exploiting the Root Phenome. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1598–1604. [Google Scholar] [CrossRef]
- Mahamane, S. Evaluation of Cowpea (Vigna unguicula L. Walp) Genotypes for Adaptation to Low Phosphorus Conditions and to Rock Phosphate Application; Texas A&M University: College Station, TX, USA, 2008. [Google Scholar]
- Adusei, G.; Gaiser, T.; Boukar, O.; Fatokun, C. Growth and Yield Responses of Cowpea Genotypes to Soluble and Rock P Fertilizers on Acid, Highly Weathered Soil from Humid Tropical West Africa. Int. J. Biol. Chem. Sci. 2016, 10, 1493–1507. [Google Scholar] [CrossRef]
- Kugblenu, O.Y.; Kumaga, F.K.; Ofori, K.; Adu-Gyamfi, J.J. Evaluation of Cowpea Genotypes for Phosphorus Use Efficiency. J. Agric. Crop Res. 2014, 2, 202–210. [Google Scholar]
- Wang, K.; Cui, K.; Liu, G.; Xie, W.; Yu, H.; Pan, J.; Huang, J.; Nie, L.; Shah, F.; Peng, S. Identification of Quantitative Trait Loci for Phosphorus Use Efficiency Traits in Rice Using a High Density SNP Map. BMC Genet. 2014, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Monasterio, J.I.; Manske, G.; van Ginkel, M. Nitrogen and Phosphorus Use Efficiency. In Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation; Reynolds, M., Pask, A., Mullan, D., Eds.; CIMMYT: Mexico City, Mexico, 2012; pp. 200–207. [Google Scholar]
- Lynch, J.P. Steep, Cheap and Deep: An Ideotype to Optimize Water and N Acquisition by Maize Root Systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Vinod, K.K.; Heuer, S. Approaches towards Nitrogen-and Phosphorus-Efficient Rice. AoB Plants 2012, 028, pls028. [Google Scholar] [CrossRef]
- Postma, J.A.; Lynch, J.P. Complementarity in Root Architecture for Nutrient Uptake in Ancient Maize/Bean and Maize/Bean/Squash Polycultures. Ann. Bot. 2012, 110, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P.; Wojciechowski, T. Opportunities and Challenges in the Subsoil: Pathways to Deeper Rooted Crops. J. Exp. Bot. 2015, 66, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.B.; Mohammad, I.F.; Pangirayi, T.B.; Vernon, G.; Dzidzienyo, D.K.; Umar, M.L.; Umar, S. Farmers’ Knowledge, Perception, and Use of Phosphorus Fertilization for Cowpea Production in Northern Guinea Savannah of Nigeria. Heliyon 2020, 6, e05207. [Google Scholar] [CrossRef]
- Ramaekers, L.; Remans, R.; Rao, I.M.; Blair, M.W.; Vanderleyden, J. Strategies for im-proving phosphorus acquisition efficiency of crop plants. Field Crops Research. 2010, 117, 169–176. [Google Scholar] [CrossRef]
- Rose, T.J.; Wissuwa, M. Rethinking Internal Phosphorus Utilization Efficiency. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2012; Volume 116, pp. 185–217. ISBN 978-0-12-394277-7. [Google Scholar]
- Niu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of Root Architecture Development to Low Phosphorus Availability: A Review. Ann. Bot. 2013, 112, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, E.; Renkens, M.; Pypers, P.; Smolders, E.; Vanlauwe, B.; Merckx, R. Root Hairs Explain P Uptake Efficiency of Soybean Genotypes Grown in a P-Deficient Ferralsol. Plant Soil. 2013, 369, 269–282. [Google Scholar] [CrossRef]
- Goufo, P.; Moutinho-Pereira, J.M.; Jorge, T.F.; Correia, C.M.; Oliveira, M.R.; Rosa, E.A.S.; António, C.; Trindade, H. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Front. Plant Sci. 2017, 8, 586. [Google Scholar] [CrossRef]
- Saidou, A.K.; Singh, B.B.; Abaidoo, R.C.; Iwuafor, E.N.O.; Sanginga, N. Response of Cowpea Lines to Low Phosphorus Tolerance and Response to External Application of P. Afr. J. Microbiol. Res. 2012, 6, 5479–5485. [Google Scholar] [CrossRef]
- Ravelombola, W.; Qin, J.; Shi, A.; Lu, W.; Weng, Y.; Xiong, H.; Yang, W.; Bhattarai, G.; Mahamane, S.; Payne, W.A.; et al. Association Mapping Revealed SNP Markers for Adaptation to Low Phosphorus Conditions and Rock Phosphate Response in USDA Cowpea (Vigna unguiculata (L.) Walp.) Germplasm. Euphytica 2017, 213, 183. [Google Scholar] [CrossRef]
- Saidou, A.K.; Abaidoo, R.C.; Singh, B.B.; Iwuafor, E.N.O.; Sanginga, N. Variability of Cowpea Breeding Lines to Low Phosphorus Tolerance and Response to External Application of Phosphorus. In Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities; Bationo, A., Waswa, B., Kihara, J., Kimetu, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 413–422. ISBN 978-1-4020-5759-5/978-1-4020-5760-1. [Google Scholar]
- Hammond, J.; Broadley, M.; White, P.; King, G.; Bowen, H.; Hayden, R.; Meacham, M.; Mead, A.; Overs, T.; Spracklen, W.; et al. Shoot Yield Drives Phosphorus Use Efficiency in Brassica Oleracea and Correlates with Root Architecture Traits. J. Exp. Bot. 2009, 60, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Gyan-Ansah, S.; Adu-Dapaah, H.; Kumaga, F.; Gracen, V.; Nartey, F.K.K. Evaluation of Cowpea (Vigna unguiculata L. Walp.) Genotypes for Phosphorus Use Efficiency. Acta Hortic. 2016, 1127, 373–380. [Google Scholar] [CrossRef]
- Oladiran, O.; Olajire, F.; Abaidoo, R.C.; Nnenna, I. Phosphorus Response Efficiency in Cowpea Genotypes. J. Agric. Sci. 2012, 4, 81–90. [Google Scholar] [CrossRef]
- Wissuwa, M.; Yano, M.; Ae, N. Mapping of QTLs for Phosphorus-Deficiency Tolerance in Rice (Oryza sativa L.). Theor. Appl. Genet. 1998, 97, 777–783. [Google Scholar] [CrossRef]
- Wissuwa, M.; Ae, N. Genotypic Variation for Tolerance to Phosphorus Deficiency in Rice and the Potential for Its Exploitation in Rice Improvement. Plant Breed. 2001, 120, 43–48. [Google Scholar] [CrossRef]
- Rothe, C.J. Breeding for Tolerance of Cowpea to Low Phosphorus Soil Conditions Through Physiological and Genetic Studies; Texas A&M University: College Station, TX, USA, 2014. [Google Scholar]
- Mohammed, S.B.; Dzidzienyo, D.K.; Yahaya, A.; Umar, M.L.; Ishiyaku, M.F.; Tongoona, P.B.; Gracen, V. High Soil Phosphorus Application Significantly Increased Grain Yield, Phosphorus Content but Not Zinc Content of Cowpea Grains. Agronomy 2021, 11, 802. [Google Scholar] [CrossRef]
- Huynh, B.-L.; Ehlers, J.D.; Close, T.J.; Cis, N.; Drabo, I.; Boukar, O.; Lucas, M.R.; Wanamaker, S.; Pottorff, M.; Roberts, P.A. Enabling Tools for Modern Breeding of Cowpea for Biotic Stress Resistance. In Translational Genomics for Crop Breeding, Volume I: Biotic Stress; Varshney, R.K., Tuberosa, R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 183–199. [Google Scholar]
- Lucas, M.R.; Ehlers, J.D.; Huynh, B.L.; Diop, N.N.; Roberts, P.A.; Close, T.J. Markers for Breeding Heat-Tolerant Cowpea. Mol. Breed. 2013, 31, 529–536. [Google Scholar] [CrossRef]
- Muchero, W.; Diop, N.N.; Bhat, P.R.; Fenton, R.D.; Wanamaker, S.; Pottorff, M.; Hearne, S.; Cisse, N.; Fatokun, C.; Ehlers, J.D.; et al. A Consensus Genetic Map of Cowpea [Vigna unguiculata (L) Walp.] and Synteny Based on EST-Derived SNPs. Proc. Natl. Acad. Sci. USA 2009, 106, 18159–18164. [Google Scholar] [CrossRef]
- Lucas, M.R.; Diop, N.-N.; Wanamaker, S.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. Cowpea–Soybean Synteny Clarified through an Improved Genetic Map. Plant Genome J. 2011, 4, 218. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Mirebrahim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.C.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O.; et al. Genome Resources for Climate-Resilient Cowpea, an Essential Crop for Food Security. Plant J. 2017, 89, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for Drought Stress-Induced Premature Senescence and Maturity in Cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef]
- IITA Cowpea Production Training Manual. Available online: http://biblio.iita.org/documents/U82ManIitaCowpeaNothomNodev.pdf-f653ec93496c29890c5cf8f86c7d0884.pdf (accessed on 26 March 2016).
- Dugje, I.Y.; Omoigui, L.O.; Ekeleme, F.; Kamara, A.Y.; Ajeigbe, H. Farmers’ Guide to Cowpea Production in West Africa; IITA: Ibadan, Nigeria, 2009; p. 20. [Google Scholar]
- Mohammed, S.B.; Burridge, J.D.; Ishiyaku, M.F.; Boukar, O.; Lynch, J.P. Phenotyping Cowpea for Seedling Root Architecture Reveals Root Phenes Important for Breeding Phosphorus Efficient Varieties. Crop Sci. 2021, 62, 326–345. [Google Scholar] [CrossRef]
- Kitson, R.E.; Mellon, M.G. Colorimetric Determination of Phosphorus as Molybdivanadophosphoric Acid. Ind. Eng. Chem. Anal. Ed. 1944, 16, 379–383. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A Software to Analyze Data from Multi-Environment Plant Breeding Trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Steinbrenner, A.D.; Munoz-Amatriain, M.; Chaparro, A.F.; Aguilar-Venegas, J.M.; Lo, S.; Okuda, S.; Glauser, G.; Dongiovanni, J.; Shi, D.; Hall, M.; et al. A Receptor-like Protein Mediates Plant Immune Responses to Herbivore-Associated Molecular Patterns. Proc. Natl. Acad. Sci. USA 2020, 117, 31510–31518. [Google Scholar] [CrossRef]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.; et al. The Genome of Cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/Qtl: QTL Mapping in Experimental Crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Herniter, I.A.; Muñoz-Amatriaín, M.; Lo, S.; Guo, Y.N.; Close, T.J. Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (Vigna unguiculata [L.] Walp). G3 Genes Genomes Genet. 2018, 8, 3347–3355. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, G.; Clevenger, J.; Kale, S.M.; Wang, H.; Pandey, M.K.; Choudhary, D.; Yuan, M.; Wang, X.; Culbreath, A.K.; Holbrook, C.C.; et al. A Recombination Bin-Map Identified a Major QTL for Resistance to Tomato Spotted Wilt Virus in Peanut (Arachis hypogaea). Sci. Rep. 2019, 9, 18246. [Google Scholar] [CrossRef] [PubMed]
- Angira, B.; Zhang, Y.; Scheuring, C.F.; Zhang, Y.; Masor, L.; Coleman, J.R.; Liu, Y.H.; Singh, B.B.; Zhang, H.B.; Hays, D.B.; et al. Quantitative Trait Loci Influencing Days to Flowering and Plant Height in Cowpea, Vigna unguiculata (L.) Walp. Mol. Genet. Genom. 2020, 295, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Mwita Gimase, J.; Muriithi Thagana, W.; Omondi, C.O.; Cheserek, J.J.; Gichimu, B.M.; Gichuru, E.K. Quantitative Trait Loci (QTL) Mapping of Resistance to Coffee Berry Disease (Colletotrichum Kahawae Waller & Bridge) in Coffea arabica L. Variety Rume Sudan. Afr. J. Agric. Res. 2020, 16, 1184–1194. [Google Scholar] [CrossRef]
- Rezaei, M.K.; Deokar, A.A.; Arganosa, G.; Roorkiwal, M.; Pandey, S.K.; Warkentin, T.D.; Varshney, R.K.; Tar′an, B. Mapping Quantitative Trait Loci for Carotenoid Concentration in Three F2 Populations of Chickpea. Plant Genome 2019, 12, 190067. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, J.; Williams, R.W. Mapping the Genetic Architecture of Complex Traits in Experimental Populations. Bioinformatics 2007, 23, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Awata, L.A.O.; Beyene, Y.; Gowda, M.; Suresh, L.M.; Jumbo, M.B.; Tongoona, P.; Danquah, E.; Ifie, B.E.; Marchelo-Dragga, P.W.; Olsen, M.; et al. Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations. Genes 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, D.; Zhu, D.; Li, H.; Li, X.; Teng, W.; Li, W. QTL Analysis of Soybean Seed Weight across Multi-Genetic Backgrounds and Environments. Theor. Appl. Genet. 2012, 125, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Hamwieh, A.; Imtiaz, M.; Malhotra, R.S. Multi-Environment QTL Analyses for Drought-Related Traits in a Recombinant Inbred Population of Chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2013, 126, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Herniter, I.; Cisse, N.; Guo, Y.-N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL Controlling Domestication-Related Traits in Cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2018, 8, 6261. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Muñoz-Amatriaín, M.; Shu, S.; Lo, S.; Wu, X.; Carlson, J.W.; Davidson, P.; Goodstein, D.M.; Phillips, J.; Janis, N.M.; et al. A View of the Pan-Genome of Domesticated Cowpea (Vigna unguiculata [L.] Walp.). Plant Genome 2024, 17, e20319. [Google Scholar] [CrossRef] [PubMed]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, Genomics and Breeding. Plant Breed. 2018, 138, 415–424. [Google Scholar] [CrossRef]
- Rothe, C.J. Breeding and Genetic Analysis of Tolerance to the Phosphorus Poor Soils of Sub-Saharan West Africa in Vigna Unguiculata. Available online: https://scsdistance.tamu.edu/ (accessed on 29 July 2018).
- Diaz, L.M.; Ricaurte, J.; Cajiao, C.; Galeano, C.H.; Rao, I.; Beebe, S.; Raatz, B. Phenotypic Evaluation and QTL Analysis of Yield and Symbiotic Nitrogen Fixation in a Common Bean Population Grown with Two Levels of Phosphorus Supply. Mol. Breed. 2017, 37, 76. [Google Scholar] [CrossRef]
- Andargie, M.; Pasquet, R.S.; Muluvi, G.M.; Timko, M.P. Quantitative Trait Loci Analysis of Flowering Time Related Traits Identified in Recombinant Inbred Lines of Cowpea (Vigna unguiculata). Genome 2013, 56, 289–294. [Google Scholar] [CrossRef]
- Kumar, J.; Abbo, S. Genetics of Flowering Time in Chickpea and Its Bearing on Productivity in Semiarid Environments. Adv. Agron. 2001, 72, 107–138. [Google Scholar] [CrossRef]
- González, A.M.; Yuste-Lisbona, F.J.; Saburido, S.; Bretones, S.; de Ron, A.M.; Lozano, R.; Santalla, M. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean as Deduced from a Comparative Genetic Mapping. Front. Plant Sci. 2016, 7, 222775. [Google Scholar] [CrossRef] [PubMed]
- Agbicodo, E.M.; Fatokun, C.A.; Muranaka, S.; Visser, R.G.F.; Linden Van Der, C.G. Breeding Drought Tolerant Cowpea: Constraints, Accomplishments, and Future Prospects. Euphytica 2009, 167, 353–370. [Google Scholar] [CrossRef]
- Hall, A.E. Phenotyping Cowpeas for Adaptation to Drought. Front. Physiol. 2012, 3, 155. [Google Scholar] [CrossRef]
- Andargie, M.; Pasquet, R.S.; Gowda, B.S.; Muluvi, G.M.; Timko, M.P. Molecular Mapping of QTLs for Domestication-Related Traits in Cowpea (V. unguiculata (L.) Walp.). Euphytica 2014, 200, 401–412. [Google Scholar] [CrossRef]
- Ubi, B.E.; Mignouna, H.; Thottappilly, G. Construction of a Genetic Linkage Map and QTL Analysis Using a Recombinant Inbred Population Derived from an Intersubspecific Cross of Cowpea (Vigna unguiculata (L.) Walp.). Breed. Sci. 2000, 50, 161–172. [Google Scholar] [CrossRef]
- Xu, P.; Hu, T.; Yang, Y.; Wu, X.; Wang, B.; Liu, Y.; Qin, D.; Ehlers, J.; Close, T.; Lu, Z.; et al. Mapping Genes Governing Flower and Seedcoat Color in Asparagus Bean (Vigna unguiculata ssp. sesquipedalis) Based on Single Nucleotide Polymorphism and Simple Sequence Repeat Markers. HortScience 2011, 46, 1102–1104. [Google Scholar]
- Kongjaimun, A.; Kaga, A.; Tomooka, N.; Somta, P.; Vaughan, D.A.; Srinives, P. The Genetics of Domestication of Yardlong Bean, Vigna unguiculata (L.) Walp. ssp. unguiculata Cv.-Gr. sesquipedalis. Ann. Bot. 2012, 109, 1185–1200. [Google Scholar] [CrossRef]
- Xu, P.; Wu, X.; Wang, B.; Hu, T.; Lu, Z.; Liu, Y.; Qin, D.; Wang, S.; Li, G. QTL Mapping and Epistatic Interaction Analysis in Asparagus Bean for Several Characterized and Novel Horticulturally Important Traits. BMC Genet. 2013, 14, 4. [Google Scholar] [CrossRef]
- Olatoye, M.O.; Hu, Z.; Aikpokpodion, P.O. Epistasis Detection and Modeling for Genomic Selection in Cowpea (Vigna unguiculata L. Walp.). Front. Genet. 2019, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Huynh, B.-L.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatria, M.; Lonardi, S.; Santos, J.R.P.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cisse, N.; et al. A Multi-Parent Advanced Generation Inter-Cross (MAGIC) Population for Genetic Analysis and Improvement of Cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 98, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.; Shi, A.; Huynh, B.L. Loci Discovery, Network-Guided Approach, and Genomic Prediction for Drought Tolerance Index in a Multi-Parent Advanced Generation Intercross (MAGIC) Cowpea Population. Hortic. Res. 2021, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Amatriaín, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.N.; Huynh, B.L.; Roberts, P.A.; et al. The UCR Minicore: A Resource for Cowpea Research and Breeding. Legume Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
- Paudel, D.; Dareus, R.; Rosenwald, J.; Muñoz-Amatriaín, M.; Rios, E.F. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (Vigna unguiculata [L.] Walp.). Front. Genet. 2021, 12, 667038. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Zhao, H.; Gan, S.; Li, G. Arabidopsis ELF4-like Proteins EFL1 and EFL3 Influence Flowering Time. Gene 2019, 700, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Price, B.W.; Haider, W.; Seufferheld, G.; Nelson, R.; Hanzawa, Y. Functional and Evolutionary Characterization of the CONSTANS Gene Family in Short-Day Photoperiodic Flowering in Soybean. PLoS ONE 2014, 9, e85754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Feng, M.; Zhang, J.; Song, Z. Involvement of CONSTANS-like Proteins in Plant Flowering and Abiotic Stress Response. Int. J. Mol. Sci. 2023, 24, 16585. [Google Scholar] [CrossRef] [PubMed]
- Ledger, S.; Strayer, C.; Ashton, F.; Kay, S.A.; Putterill, J. Analysis of the Function of Two Circadian-Regulated CONSTANS-LIKE Genes. Plant J. 2001, 26, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.F.; Wang, Z.Y. Overexpression of COL9, a CONSTANS-LIKE Gene, Delays Flowering by Reducing Expression of CO and FT in Arabidopsis thaliana. Plant J. 2005, 43, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Ohmiya, A.; Oda-Yamamizo, C.; Kishimoto, S. Overexpression of CONSTANS-like 16 Enhances Chlorophyll Accumulation in Petunia Corollas. Plant Sci. 2019, 280, 90–96. [Google Scholar] [CrossRef]
- Wang, B.; Jin, S.H.; Hu, H.Q.; Sun, Y.G.; Wang, Y.W.; Han, P.; Hou, B.K. UGT87A2, an Arabidopsis Glycosyltransferase, Regulates Flowering Time via FLOWERING LOCUS C. New Phytol. 2012, 194, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Halford, N.G.; Hey, S.; Jhurreea, D.; Laurie, S.; McKibbin, R.S.; Paul, M.; Zhang, Y. Metabolic Signalling and Carbon Partitioning: Role of Snf1-related (SnRK1) Protein Kinase. J. Exp. Bot. 2003, 54, 467–475. [Google Scholar] [CrossRef]
- Macknight, R.; Bancroft, I.; Page, T.; Lister, C.; Schmidt, R.; Love, K.; Westphal, L.; Murphy, G.; Sherson, S.; Cobbett, C.; et al. FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell 1997, 89, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.J.; Candia, A.N.; Sellaro, R. Light Perception and Signalling by Phytochrome A. J. Exp. Bot. 2014, 65, 2835–2845. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Wang, H.; Deng, X.W. Phytochrome Signaling Mechanisms. Arab. Book/Am. Soc. Plant Biol. 2011, 9, e0148. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zhang, J.; Yang, C.; Dong, L.; Ye, H.; Valliyodan, B.; Nguyen, H.T.; Song, L. The Late Embryogenesis Abundant Proteins in Soybean: Identification, Expression Analysis, and the Roles of GmLEA4_19 in Drought Stress. Int. J. Mol. Sci. 2023, 24, 14834. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Yanai, Y.; Chen, L.; Kato, Y.; Hiratsuka, J.; Miwa, T.; Sung, Z.R.; Takahashi, S. EMBRYONIC FLOWER2, a Novel Polycomb Group Protein Homolog, Mediates Shoot Development and Flowering in Arabidopsis. Plant Cell 2001, 13, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xuan, L.; Jiang, Y.; Yu, H. Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in Flowering Time and Plant Architecture. Small Struct. 2021, 2, 2000125. [Google Scholar] [CrossRef]
- Gan, E.S.; Xu, Y.; Wong, J.Y.; Geraldine Goh, J.; Sun, B.; Wee, W.Y.; Huang, J.; Ito, T. Jumonji Demethylases Moderate Precocious Flowering at Elevated Temperature via Regulation of FLC in Arabidopsis. Nat. Commun. 2014, 5, 5098. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Xu, G.; Chi, Y.; Liu, H.; Xue, Q.; Zhao, T.; Gai, J.; Yu, D. A Soybean MADS-Box Protein Modulates Floral Organ Numbers, Petal Identity and Sterility. BMC Plant Biol. 2014, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, H.; Du, H.; Wang, S.; Yang, W.; Chi, Y.; Wang, J.; Huang, F.; Yu, D. Soybean MADS-Box Gene GmAGL1 Promotes Flowering via the Photoperiod Pathway. BMC Genom. 2018, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Asfaw, A.; Blair, M.W.; Struik, P.C. Multienvironment Quantitative Trait Loci Analysis for Photosynthate Acquisition, Accumulation, and Remobilization Traits in Common Bean Under Drought Stress. G3 Genes Genomes Genet. 2012, 2, 579–595. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Genic SNP Markers and Legume Synteny Reveal Candidate Genes Underlying QTL for Macrophomina Phaseolina Resistance and Maturity in Cowpea [Vigna unguiculata (L) Walp.]. BMC Genom. 2011, 12, 8. [Google Scholar] [CrossRef]
- Hassidim, M.; Harir, Y.; Yakir, E.; Kron, I.; Green, R.M. Over-Expression of CONSTANS-LIKE 5 Can Induce Flowering in Short-Day Grown Arabidopsis. Planta 2009, 230, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zheng, X.M.; Chen, D.; Zhang, Y.; Ma, W.; Zhang, H.; Sun, L.; Yang, Z.; Zhao, C.; Zhan, X.; et al. OsCOL16, Encoding a CONSTANS-like Protein, Represses Flowering by up-Regulating Ghd7 Expression in Rice. Plant Sci. 2017, 260, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Kania, T.; Russenberger, D.; Peng, S.; Apel, K.; Melzer, S. FPF1 Promotes Flowering in Arabidopsis. Plant Cell 1997, 9, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Shore, P.; Sharrocks, A.D. The MADS-Box Family of Transcription Factors. Eur. J. Biochem. 1995, 229, 1–13. [Google Scholar] [CrossRef]
- Borner, R.; Kampmann, G.; Chandler, J.; Gleißner, R.; Wisman, E.; Apel, K.; Melzer, S. A MADS Domain Gene Involved in the Transition to Flowering in Arabidopsis. Plant J. 2000, 24, 591–599. [Google Scholar] [CrossRef]
- Muchero, W.; Roberts, P.A.; Diop, N.N.; Drabo, I.; Cisse, N.; Close, T.J.; Muranaka, S.; Boukar, O.; Ehlers, J.D.; Lacape, J.-M. Genetic Architecture of Delayed Senescence, Biomass, and Grain Yield under Drought Stress in Cowpea. PLoS ONE 2013, 8, e70041. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Abubakar, M. Improving the Production and Utilization of Cowpea as Food and Fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- Samireddypalle, A.; Boukar, O.; Grings, E.; Fatokun, C.A.; Kodukula, P.; Devulapalli, R.; Okike, I.; Blümmel, M. Cowpea and Groundnut Haulms Fodder Trading and Its Lessons for Multidimensional Cowpea Improvement for Mixed Crop Livestock Systems in West Africa. Front. Plant Sci. 2017, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Mahamane, S.; Payne, W.A.; Loeppert, R.H.; Miller, J.C.; Reed, D.W. Screening of Cowpea for Phosphorus Use Efficiency from Rock Phosphate. In Proceedings of the World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006. [Google Scholar]
- de Freitas Lima, M.; Eloy, N.B.; de Siqueira, J.A.B.; Inzé, D.; Hemerly, A.S.; Ferreira, P.C.G. Molecular Mechanisms of Biomass Increase in Plants. Biotechnol. Res. Innov. 2017, 1, 14–25. [Google Scholar] [CrossRef]
- Demura, T.; Ye, Z.H. Regulation of Plant Biomass Production. Curr. Opin. Plant Biol. 2010, 13, 298–303. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, C.; Hu, H.; Li, Y.; Sun, D.; Wang, Y.; Peng, L. Genetic Modification of Plant Cell Walls to Enhance Biomass Yield and Biofuel Production in Bioenergy Crops. Biotechnol. Adv. 2016, 34, 997–1017. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.B.; Blaschek, L.; Frandsen, K.E.H.; Noack, L.C.; Persson, S. Cellulose Synthesis in Land Plants. Mol. Plant 2023, 16, 206–231. [Google Scholar] [CrossRef]
- Yan, A.; Wu, M.; Yan, L.; Hu, R.; Ali, I.; Gan, Y. AtEXP2 Is Involved in Seed Germination and Abiotic Stress Response in Arabidopsis. PLoS ONE 2014, 9, e85208. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, S.T.; He, N.Y.; Wang, Q.L.; Zhao, Y.; Gao, W.; Guo, F.Q. Nuclear-Encoded Synthesis of the D1 Subunit of Photosystem II Increases Photosynthetic Efficiency and Crop Yield. Nat. Plants 2020, 6, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Miedes, E.; Suslov, D.; Vandenbussche, F.; Kenobi, K.; Ivakov, A.; Van Der Straeten, D.; Lorences, E.P.; Mellerowicz, E.J.; Verbelen, J.P.; Vissenberg, K. Xyloglucan Endotransglucosylase/Hydrolase (XTH) Overexpression Affects Growth and Cell Wall Mechanics in Etiolated Arabidopsis Hypocotyls. J. Exp. Bot. 2013, 64, 2481–2497. [Google Scholar] [CrossRef] [PubMed]
- Li, S.B.; Xie, Z.Z.; Hu, C.G.; Zhang, J.Z. A Review of Auxin Response Factors (ARFs) in Plants. Front. Plant Sci. 2016, 7, 175431. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, T.J.; Hagen, G. Auxin Response Factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Plant Development and Crop Yield: The Role of Gibberellins. Plants 2022, 11, 2650. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wang, C.; Yang, X.; Wang, L.; Ye, J.; Xu, F.; Liao, Y.; Zhang, W. Role of BZIP Transcription Factors in the Regulation of Plant Secondary Metabolism. Planta 2023, 258, 13. [Google Scholar] [CrossRef]
- Blair, M.W.; Sandoval, T.A.; Caldas, G.V.; Beebe, S.E.; Páez, M.I. Quantitative Trait Locus Analysis of Seed Phosphorus and Seed Phytate Content in a Recombinant Inbred Line Population of Common Bean. Crop Sci. 2009, 49, 237. [Google Scholar] [CrossRef]
- Takagi, H.; Hempton, A.K.; Imaizumi, T. Photoperiodic Flowering in Arabidopsis: Multilayered Regulatory Mechanisms of CONSTANS and the Florigen FLOWERING LOCUS T. Plant Commun. 2023, 4, 100552. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.D.; Singh, N.; Ahuja, P.S.; Reddy, T.V. Abscisic Acid Response Element Binding Factor 1 Is Required for Establishment of Arabidopsis Seedlings during Winter. Mol. Biol. Rep. 2011, 38, 5147–5159. [Google Scholar] [CrossRef] [PubMed]
- Berka, M.; Kopecká, R.; Berková, V.; Brzobohatý, B.; Černý, M. Regulation of Heat Shock Proteins 70 and Their Role in Plant Immunity. J. Exp. Bot. 2022, 73, 1894–1909. [Google Scholar] [CrossRef]
- Rook, F.; Corke, F.; Baier, M.; Holman, R.; May, A.G.; Bevan, M.W. Impaired Sucrose Induction1 Encodes a Conserved Plant-Specific Protein That Couples Carbohydrate Availability to Gene Expression and Plant Growth. Plant J. 2006, 46, 1045–1058. [Google Scholar] [CrossRef]
- Leiser, W.L.; Rattunde, H.F.W.; Piepho, H.P.; Weltzien, E.; Diallo, A.; Toure, A.; Haussmann, B.I.G. Phosphorous Efficiency and Tolerance Traits for Selection of Sorghum for Performance in Phosphorous-Limited Environments. Crop Sci. 2015, 55, 1152–1162. [Google Scholar] [CrossRef]
- Cichy, K.A.; Caldas, G.V.; Snapp, S.S.; Blair, M.W. QTL Analysis of Seed Iron, Zinc, and Phosphorus Levels in an Andean Bean Population. Crop Sci. 2009, 49, 1742–1750. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Chu, S.; Li, H.; Chi, Y.; Triebwasser-Freese, D.; Lv, H.; Yu, D. Integrating QTL Mapping and Transcriptomics Identifies Candidate Genes Underlying QTLs Associated with Soybean Tolerance to Low-Phosphorus Stress. Plant Mol. Biol. 2017, 93, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Song, Y.; Zhao, L.; Chen, P.; Bu, C.; Liu, P.; Zhang, D. The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int. J. Mol. Sci. 2022, 23, 2353. [Google Scholar] [CrossRef]
- Baek, D.; Chun, H.J.; Yun, D.J.; Kim, M.C. Cross-Talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants. Mol. Cells 2017, 40, 697–705. [Google Scholar] [CrossRef]
- Rouached, H.; Arpat, A.B.; Poirier, Y. Regulation of Phosphate Starvation Responses in Plants: Signaling Players and Cross-Talks. Mol. Plant 2010, 3, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Nacry, P.; Canivenc, G.; Muller, B.; Azmi, A.; Van Onckelen, H.; Rossignol, M.; Doumas, P. A Role for Auxin Redistribution in the Responses of the Root System Architecture to Phosphate Starvation in Arabidopsis. Plant Physiol. 2005, 138, 2061–2074. [Google Scholar] [CrossRef] [PubMed]
- Marino, G.; Funk, C. Matrix Metalloproteinases in Plants: A Brief Overview. Physiol. Plant 2012, 145, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Broman, K.W.; Sen, S. A Guide to QTL Mapping with R/Qtl; Springer: New York, NY, USA, 2009; Volume 1. [Google Scholar]
RIL | Env | Trait | Soil P | QTl Name | Chr | Pos | Peak SNP | PT | LOD | L_SNP | R_SNP | PVE (%) | Effect | QTL Region |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TV × IT | ZR.2017HP | Days to flowering | HP | ZR17CFtH8 | 8 | 31.8 | 2_53317 | 3.1 | 6.1 | 2_54699 | 2_01290 | 19.6 | 1.5 | 25.38–38.50 |
ZR.2018HP | HP | ZR18CFtH8 | 8 | 41.1 | 2_01281 | 3.2 | 8.0 | 2_41633 | 2_01113 | 24.9 | 0.9 | 26.13–44.54 | ||
MJ.2018HP | HP | MJ18CFtH1 | 1 | 56.3 | 2_24198 | 2.9 | 5.4 | 2_22354 | 2_07285 | 19.5 | −2.4 | 51.48–58.60 | ||
MJ.2018HP | HP | MJ18CFtH2 * | 2 | 64.0 | 2_27943 | 2.7 | 46.2 | 2_27495 | 2_06055 | 31.7 | 10.0 | 63.5–64.5 | ||
2017LP.ZR | LP | ZR17CFtL1 | 1 | 65.1 | 2_27671 | 3.3 | 3.5 | 2_41492 | 2_54893 | 11.5 | −1.2 | 55.22–66.96 | ||
2017LP.ZR | LP | ZR17CFtL8 | 8 | 31.8 | 2_51985 | 3.2 | 4.6 | 2_45772 | 2_00209 | 15.9 | 1.4 | 25.75–36.25 | ||
2017LP.ZR | LP | ZR17CFtL2 * | 2 | 68.0 | 1_1135 | 3.1 | 3.7 | 2_10955 | 2_46236 | 7.9 | 1.1 | 67.5–68.5 | ||
2017LP.ZR | LP | ZR17CFtL3 * | 3 | 52.0 | 2_28763 | 3.1 | 3.6 | 2_27392 | 2_50074 | 8.0 | 1.1 | 52.5–53.5 | ||
YA × 58 | MK.2018HP | HP | MK18CFtH9 | 9 | 44.4 | 2_54431 | 3.1 | 3.3 | 2_21235 | 2_04825 | 16.6 | 1.4 | 31.50–47.91 | |
2017LP.ZR | LP | ZR17CFtL7 | 7 | 25.1 | 2_55072 | 3.1 | 3.4 | 2_51615 | 2_16942 | 17.3 | 1.4 | 14.67–67.66 | ||
TV × IT | ZR.2018HP | Days to maturity | HP | ZR18CMtH3 | 3 | 72.3 | 1_0718 | 3.1 | 3.4 | 2_38710 | 2_17221 | 10.7 | −0.7 | 62.91–78.74 |
ZR.2018HP | HP | ZR18CMtH8 | 8 | 41.1 | 2_01281 | 3.1 | 7.0 | 2_46238 | 2_01113 | 21.4 | 1.0 | 36.63–44.54 | ||
TV × IT | ZR.2017HP | HP | ZR17CMtH2 * | 2 | 11.0 | 2_21892 | 2.8 | 2.9 | 2_10218 | 2_05606 | 4.3 | 0.6 | 10.5–12.5 | |
ZR.2017HP | HP | ZR17CMtH6.1 * | 6 | 27.0 | 2_02446 | 2.8 | 9.7 | 2_00179 | 1_1042 | 16.8 | −1.1 | 26.5–29.5 | ||
ZR.2017HP | HP | Z17CMtH6.2 * | 6 | 43.0 | 2_07337 | 2.8 | 4.9 | 1_0148 | 1_1020 | 7.5 | 0.8 | 42.5–43.5 | ||
2018LP.MK | LP | MK18CMtL1 * | 1 | 59.0 | 2_17448 | 3.0 | 3.3 | 2_01133 | 2_04568 | 10.4 | 0.4 | 58.5–59.5 | ||
2018LP.MK | LP | MK18CMtL9 * | 9 | 47.0 | 2_09944 | 3.0 | 3.1 | 1_1101 | 1_0892 | 9.8 | 0.4 | 46.5–47.5 | ||
YA × 58 | 2018LP.MJ | LP | MJ18CMtL9 | 9 | 13.7 | 2_14272 | 3.1 | 3.8 | 2_54962 | 2_21235 | 20.0 | 1.7 | 0.50–31.51 | |
2017LP.ZR | LP | ZR17CMtL8 * | 8 | 83.0 | 2_55130 | 3.2 | 3.4 | 2_03348 | 2_55335 | 15.2 | −0.9 | 82.5–84.5 |
RIL | Env | Trait | Soil P | QTL Name | Chr | Pos | Peak SNP | PT | LOD | L_SNP | R_SNP | PVE (%) | Effect | QTL Region (CI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TV × IT | ZR.2018HP | BYLD | HP | ZR18CByH3 | 3 | 43.74 | 2_23724 | 3.1 | 3.5 | 2_55371 | 2_23495 | 12.0 | −10.2 | 40.75–50.50 |
TV × IT | MK.2018HP | BYLD | HP | MK18CByH1 | 1 | 37.99 | 2_49892 | 3.1 | 3.2 | 2_49686 | 2_16339 | 10.7 | −9.0 | 28.97–57.10 |
TV × IT | KW.2018HP | BYLD | HP | KW18CByH7 | 7 | 7.26 | 2_53380 | 2.8 | 3.4 | 2_00227 | 2_47943 | 11.5 | 3.7 | 0.00–38.43 |
TV × IT | ZR.2018HP | BYLD | HP | ZR18CByH9 * | 9 | 91.00 | 2_10684 | 3.0 | 3.7 | 1_0058 | 1_0167 | 10.3 | −9.3 | 90.50–91.50 |
YA_58 | KW.2018HP | BYLD | HP | KW18CByH4 * | 4 | 12.00 | 2_54543 | 3.3 | 3.6 | 2_00188 | 2_50811 | 18.7 | −13.1 | 10.50–12.50 |
TV × IT | MK.2018HP | GYLD | HP | MK18CGyH9 | 9 | 42.14 | 2_18613 | 2.9 | 4.0 | 2_54521 | 2_20569 | 13.2 | 93.5 | 38.77–59.55 |
TV × IT | 2018LP.ZR | GYLD | LP | ZR18CGyL6 | 6 | 15.10 | 2_43166 | 2.9 | 3.7 | 2_48998 | 2_20013 | 13.6 | 17.5 | 13.98–31.08 |
YA_58 | ZR.2018HP | GYLD | HP | ZR18CGyH9 | 9 | 8.51 | 1_0298 | 3.2 | 3.4 | 1_0519 | 2_39178 | 17.0 | 169.8 | 0.00–11.82 |
YA_58 | MK.2018HP | GYLD | HP | MK18CGyH2 | 2 | 18.20 | 2_22304 | 3.2 | 7.2 | 2_54208 | 2_05606 | 32.5 | 257.8 | 12.20–19.68 |
YA_58 | MJ.2018HP | GYLD | HP | MJ18CGyH1 | 1 | 59.78 | 2_38619 | 3.1 | 5.1 | 2_53926 | 2_05354 | 25.8 | 194.0 | 48.73–63.54 |
YA_58 | KW.2018HP | GYLD | HP | KW18CGyH11 | 11 | 71.70 | 2_06469 | 3.1 | 3.3 | 2_50256 | 2_18440 | 17.1 | 128.8 | 56.18–111.72 |
YA_58 | ZR.2018HP | GYLD | HP | ZR18CGyH7 * | 7 | 126.00 | 2_14631 | 3.2 | 3.4 | 2_15327 | 2_37061 | 13.0 | −143.0 | 125.5–127.5 |
YA_58 | MK.2018HP | GYLD | HP | MK18CGyH3 * | 3 | 79.00 | 2_55314 | 3.2 | 3.2 | 2_38936 | 2_19001 | 10.3 | 164.1 | 78.50–80.50 |
YA_58 | KW.2018HP | GYLD | HP | KW18CGyH4 * | 4 | 12.00 | 2_54543 | 3.2 | 3.6 | 2_00188 | 2_50811 | 18.0 | −13.1 | 10.50–12.50 |
YA_58 | KW.2018HP | GYLD | HP | KW18CGyH9 * | 9 | 35.00 | 2_55390 | 3.2 | 3.2 | 2_37887 | 2_01864 | 14.9 | −12.0 | 31.50–35.50 |
TV × IT | 2018LP.ZR | gPUE | LP | ZR18CGpueL6 | 6 | 15.10 | 2_43166 | 2.7 | 3.3 | 2_50706 | 2_20013 | 12.7 | 12.9 | 13.23–31.08 |
YA_58 | ZR.2018HP | gPUE | HP | ZR18CGpueH1 * | 1 | 71.00 | 1_0910 | 3.0 | 3.2 | 2_05224 | 1_1013 | 4.5 | −86.1 | 70.50–72.50 |
YA_58 | ZR.2018HP | gPUE | HP | ZR18CGpueH9.1 * | 9 | 9.00 | 2_16579 | 3.0 | 13.9 | 1_0298 | 2_52427 | 26.9 | −210.5 | 8.50–10.50 |
YA_58 | ZR.2018HP | gPUE | HP | ZR18CGpueH9.2 * | 9 | 16.00 | 2_02382 | 3.0 | 6.9 | 2_54753 | 2_13277 | 10.8 | 135.7 | 15.50–16.50 |
YA_58 | ZR.2018HP | gPUpE | HP | ZR18CGpupH9 | 9 | 8.51 | 2_20029 | 3.2 | 3.6 | 2_51098 | 2_39178 | 17.8 | 0.7 | 0.00–11.82 |
YA_58 | ZR.2018HP | gPUpE | HP | ZR18CGpupH7 * | 7 | 126.00 | 2_14631 | 3.1 | 3.2 | 2_15327 | 2_37061 | 12.7 | −0.6 | 125.50–127.50 |
RIL | Trait | Soil P | QTL Name * | Chr | Pos | Peak SNP | Left Marker | Right Marker | PT | LOD | LOD (A) | LOD (AbyE) | PVE | PVE (A) | PVE (AbyE) | Add | A byE _01 | A byE _02 | A byE _03 | A byE _04 | A byE _05 | QTL Region |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TV × IT | DTF | HP | MECFtH1 | 1 | 56 | 2_24198 | 2_33134 | 2_30425 | 4.7 | 7.3 | 7.2 | 0.1 | 27.3 | 11.4 | 16.0 | 0.4 | −0.1 | −0.4 | 0.8 | −0.3 | NA | 55.5–56.5 |
HP | MECFtH8.1 | 8 | 32 | 2_53317 | 2_06417 | 2_03632 | 4.7 | 7.3 | 3.5 | 3.7 | 10.7 | 5.3 | 5.4 | −0.3 | −0.5 | 0.2 | 0.1 | 0.2 | NA | 31.5–32.5 | ||
HP | MECFtH8.2 | 8 | 41 | 2_01281 | 1_0040 | 2_55442 | 4.7 | 10.6 | 1.3 | 9.3 | 3.0 | 1.9 | 1.0 | −0.2 | 0.2 | 0.0 | −0.2 | 0.0 | NA | 40.5–41.5 | ||
LP | MECFtL1 | 1 | 65 | 2_45137 | 2_13572 | 2_07925 | 4.7 | 5.9 | 4.4 | 1.5 | 9.2 | 5.6 | 3.6 | 0.4 | 0.5 | −0.2 | −0.2 | −0.2 | NA | 63.5–66 | ||
LP | MECFtL3 | 3 | 76 | 2_09795 | 2_01134 | 1_0900 | 4.7 | 5.8 | 3.7 | 2.1 | 5.8 | 4.5 | 1.3 | 0.3 | 0.2 | 0.1 | −0.2 | −0.1 | NA | 75.5–77.5 | ||
LP | MECFtL5 | 5 | 10 | 2_14678 | 2_07583 | 2_16147 | 4.7 | 4.9 | 4.1 | 0.8 | 8.0 | 5.0 | 3.0 | −0.3 | 0.0 | 0.3 | −0.4 | 0.1 | NA | 9.5–11.5 | ||
LP | MECFtL8 | 8 | 32 | 2_51985 | 2_06417 | 2_03632 | 4.7 | 8.2 | 4.4 | 3.8 | 11.7 | 5.5 | 6.2 | −0.4 | −0.6 | 0.1 | 0.4 | 0.1 | NA | 31.5–32.5 | ||
YA_58 | LP | MECFtL7 | 7 | 48 | 1_0525 | 2_11279 | 2_52128 | 5.0 | 5.1 | 0.9 | 4.2 | 13.7 | 3.1 | 10.6 | −0.2 | −0.6 | 0.2 | 0.2 | 0.2 | NA | 47.5–48.5 | |
LP | MECFtL9 | 9 | 10 | 2_19358 | 2_52427 | 2_39178 | 5.0 | 5.2 | 3.0 | 2.2 | 18.4 | 10.6 | 7.8 | −0.3 | −0.3 | 0.3 | −0.2 | 0.2 | NA | 9.5–11.5 | ||
TV × IT | DTM | HP | MECMtH3 | 3 | 72 | 1_0718 | 2_06373 | 1_0345 | 4.8 | 5.9 | 2.5 | 3.5 | 6.6 | 4.3 | 2.4 | 0.2 | −0.1 | 0.0 | 0.2 | −0.1 | NA | 71.5–72.5 |
HP | MECMtH8 | 8 | 41 | 2_01281 | 1_0040 | 2_55442 | 4.8 | 9.9 | 1.4 | 8.5 | 4.5 | 2.5 | 2.0 | −0.1 | 0.1 | −0.2 | −0.0 | 0.1 | NA | 40.5–41.5 | ||
TV × IT | GYLD | HP | MECGyH5 | 5 | 12 | 2_01573 | 2_00298 | 2_00867 | 5.1 | 5.3 | 3.0 | 2.2 | 6.0 | 4.9 | 1.0 | 11.6 | −5.1 | −5.0 | 0.1 | 9.4 | 0.5 | 11.5–12.5 |
HP | MECGyH7 | 7 | 32 | 2_43413 | 2_41970 | 2_27708 | 5.1 | 5.5 | 3.5 | 2.0 | 6.9 | 5.6 | 1.3 | 12.2 | −6.3 | 3.1 | −3.0 | 10.2 | −3.9 | 30.5–34.5 | ||
HP | MECGyH9 | 9 | 42 | 2_18613 | 2_42491 | 2_43344 | 5.1 | 5.4 | 2.0 | 3.4 | 18.9 | 3.3 | 15.6 | −9.4 | 7.1 | 8.4 | 1.7 | −38.7 | 21.67 | 41.5–43.5 | ||
LP | MECGyL6 | 6 | 14 | 2_48998 | 1_0933 | 2_05447 | 5.0 | 40.5 | 0.0 | 40.5 | 12,978.1 | 1.6 | 12,976.5 | 0.2 | 1.1 | −23.6 | −7.8 | 31.6 | −1.3 | 13.5–14.5 | ||
YA_58 | HP | MECGyH1 | 1 | 60 | 2_38619 | 2_06347 | 2_08207 | 5.5 | 8.6 | 5.4 | 3.1 | 12.5 | 8.4 | 4.1 | −33.0 | 22.6 | −16.2 | 19.1 | −37.5 | 12.0 | 59.5–60.5 | |
HP | MECGyH2 | 2 | 18 | 2_22304 | 2_39619 | 2_22305 | 5.5 | 8.3 | 3.9 | 4.4 | 27.2 | 5.9 | 21.3 | −28.0 | 29.4 | 25.3 | −106.4 | 25.1 | 26.6 | 17.5–18.5 | ||
HP | MECGyH7 | 7 | 126 | 2_14631 | 2_15327 | 2_37061 | 5.5 | 6.5 | 5.0 | 1.5 | 10.3 | 7.5 | 2.8 | −31.0 | 24.1 | −5.3 | 2.5 | 11.2 | −32.6 | 125.5–127.5 | ||
HP | MECGyH9 | 9 | 9 | 2_16579 | 1_0298 | 2_52427 | 5.5 | 6.5 | 3.2 | 3.3 | 8.8 | 4.8 | 3.9 | −24.9 | 18.1 | −33.2 | −6.7 | 30.6 | −8.9 | 8.5–9.5 | ||
TV × IT | gPUpE | LP | MECGpupL6.1 | 6 | 13 | 2_27869 | 2_24332 | 2_00562 | 3.4 | 13.2 | 0.1 | 13.0 | 1.9 | 1.1 | 0.9 | 0.1 | −0.1 | 0.1 | NA | NA | NA | 12.5–13.5 |
LP | MECGpupL6.2 | 6 | 15 | 2_43166 | 2_02969 | 2_47458 | 3.4 | 20.8 | 0.1 | 20.7 | 4.2 | 0.5 | 3.8 | −0.1 | 0.2 | −0.2 | NA | NA | NA | 14.5–15.5 | ||
YA_58 | HP | MECGpupH1 | 1 | 71 | 1_0910 | 2_05224 | 1_1013 | 3.8 | 4.3 | 0.1 | 4.2 | 26.0 | 0.4 | 25.6 | −0.0 | 0.2 | −0.2 | NA | NA | NA | 69.5–71.5 | |
HP | MECGpupH9 | 9 | 9 | 2_16579 | 1_0298 | 2_52427 | 3.8 | 4.3 | 3.0 | 1.2 | 25.4 | 19.4 | 6.0 | −0.2 | 0.1 | −0.1 | NA | NA | NA | 8.5–9.5 |
Trait | Locus Name | Chr | Start (BP) | End (BP) | Functional Annotation |
---|---|---|---|---|---|
FT | Vigun08g080300 | Vu08 | 16,688,263 | 16,692,401 | Zinc finger protein CONSTANS-LIKE 1-like (COL1) [Glycine max] |
FT, MT | Vigun08g116900 | Vu08 | 28,431,899 | 28,441,998 | Zinc finger protein CONSTANS-LIKE 9-like (COL9) isoform X4 [Glycine max], B-box |
FT | Vigun08g119900 | Vu08 | 28,749,723 | 28,751,307 | Early flowering 4 (ELF4-like 1) protein |
FT, MT | Vigun08g124000 | Vu08 | 29,414,744 | 29,416,716 | Zinc finger protein CONSTANS-LIKE 16-like (COL16) [Glycine max] |
FT | Vigun08g124100 | Vu08 | 29,426,933 | 29,428,985 | UDP-Glycosyltransferase superfamily protein (UGT87A2) |
FT, MT | Vigun08g127400 | Vu08 | 29,776,355 | 29,778,144 | Zinc finger protein CONSTANS-like isoform X2 (COL isoform X2) [Glycine max] |
FT, MT | Vigun08g128600 | Vu08 | 29,870,661 | 29,873,299 | Putative, Snf1-related kinase interactor 1 |
FT | Vigun01g198701 | Vu01 | 37,535,304 | 37,544,023 | Flowering time control protein FCA-like isoform X1 |
FT | Vigun01g205500 | Vu01 | 38,123,633 | 38,129,571 | Light-sensor Protein kinase/phytochrome A (PHY1) |
FT | Vigun01g227200 | Vu01 | 39,997,914 | 39,998,929 | Early flowering 4 (ELF4-like 1) protein |
FT | Vigun01g246100 | Vu01 | 41,443,163 | 41,444,980 | Kelch repeat F-box protein |
FT | Vigun09g050600 | Vu09 | 4,991,501 | 4,996,844 | Phytochrome E (PHYE) |
FT | Vigun07g025800 | Vu07 | 2,314,524 | 2,315,624 | LATE EMBRYOGENESIS ABUNDANT PROTEIN-25 (LEA 25) |
FT | Vigun07g046300 | Vu07 | 4,690,443 | 4,710,538 | EMBRYONIC FLOWER 2-like isoform X1 |
FT | Vigun07g046350 | Vu07 | 4,717,270 | 4,722,721 | EMBRYONIC FLOWER 2-like isoform X2 |
FT | Vigun07g059700 | Vu07 | 6,715,955 | 6,717,275 | Flowering locus protein T |
FT | Vigun07g090150 | Vu07 | 14,187,820 | 14,188,269 | Flowering locus protein T |
FT | Vigun07g106500 | Vu07 | 19,562,940 | 19,571,525 | Transcription factor jumonji domain protein (JmjC) |
FT | Vigun07g116500 | Vu07 | 21,497,244 | 21,499,430 | Zinc finger protein CONSTANS-LIKE 13-like (COL13) [Glycine max], B-box |
FT | Vigun07g133700 | Vu07 | 24,343,208 | 24,349,373 | Light-sensor Protein kinase//PHY1 |
FT | Vigun01g213600 | Vu01 | 38,754,573 | 38,757,589 | MADS-box transcription factor family protein, (MADS-box) |
FT | Vigun01g248900 | Vu01 | 41,593,170 | 41,597,280 | MADS-box transcription factor family protein K-box, MADS-box |
FT | Vigun07g034000 | Vu07 | 3,252,362 | 3,256,642 | MADS-box transcription factor 6 [Glycine max], K-box, MADS-box |
FT | Vigun07g134900 | Vu07 | 24,504,608 | 24,506,390 | MADS-box transcription factor family protein, MADS-box |
FT | Vigun07g135100 | Vu07 | 24,526,022 | 24,526,501 | MADS-box transcription factor family protein, MADS-box |
FT | Vigun08g072700 | Vu08 | 12,094,658 | 12,099,310 | MADS-box transcription factor family protein, K-box, MADS-box |
FT | Vigun08g096900 | Vu08 | 23,317,821 | 23,326,844 | MADS-box transcription factor family protein, MADS-box |
FT | Vigun08g110400 | Vu08 | 27,428,213 | 27,443,026 | MADS-box transcription factor 6 [Glycine max], K-box, MADS-box |
FT | Vigun09g059700 | Vu09 | 6,079,010 | 6,087,856 | MADS-box transcription factor 6 [Glycine max], K-box, MADS-box |
MT | Vigun03g260900 | Vu03 | 42,765,664 | 42,770,048 | Zinc finger protein CONSTANS-LIKE 5-like (COL5) [Glycine max], B-box |
MT | Vigun03g292500 | Vu03 | 47,756,399 | 47,757,106 | LEA-25 protein, seed maturation protein [Glycine max] |
MT | Vigun09g015300 | Vu09 | 1,120,677 | 1,124,820 | Flowering promoting factor 1 (FPF1) |
MT | Vigun09g015400 | Vu09 | 1,124,447 | 1,124,749 | Flowering promoting factor 1 (FPF1) |
MT | Vigun09g015500 | Vu09 | 1,134,327 | 1,134,939 | Flowering promoting factor 1 (FPF1) |
MT | Vigun09g037200 | Vu09 | 3,271,457 | 3,272,182 | ELF4-like 3 proteins |
MT | Vigun09g050200 | Vu09 | 4,942,907 | 4,944,434 | MADS-box transcription factor family protein (MADS-box) |
Trait | Locus Name | Chr | Start (BP) | End (BP) | Functional Annotation |
BYLD | Vigun03g152800 | Vu03 | 16,131,959 | 16,137,190 | Cellulose synthase A4 |
BYLD | Vigun01g164500 | Vu01 | 34,633,282 | 34,635,438 | Cell wall protein EXP2 |
BYLD | Vigun01g164600 | Vu01 | 34,639,109 | 34,640,295 | Cell wall protein EXP2 |
BYLD | Vigun07g092900 | Vu07 | 14,867,379 | 14,881,197 | Cellulose synthase family protein |
BYLD | Vigun03g150850 | Vu03 | 15,830,990 | 15,831,584 | L/M photosystem II protein D2 [Glycine max] |
BYLD | Vigun07g095200 | Vu07 | 15,537,248 | 15,538,442 | Photosystem II protein D1 [Glycine max], L/M |
BYLD | Vigun07g005700 | Vu07 | 451,603 | 452,013 | Photosystem II reaction center protein K |
BYLD | Vigun07g095600 | Vu07 | 15,549,655 | 15,550,293 | 20 Kd subunit, NAD(P)H-quinone oxidoreductase subunit K |
BYLD | Vigun03g160600 | Vu03 | 17,742,874 | 17,745,514 | Xyloglucan endotransglucosylase/hydrolase 28 |
BYLD | Vigun03g164100 | Vu03 | 18,539,974 | 18,548,662 | Auxin response factor 4 |
BYLD | Vigun01g175400 | Vu01 | 35,668,742 | 35,669,758 | SAUR-like auxin-responsive protein family |
BYLD | Vigun01g160800 | Vu01 | 34,269,522 | 34,269,899 | SAUR-like auxin-responsive protein family |
BYLD | Vigun01g161500 | Vu01 | 34,334,180 | 34,335,025 | SAUR-like auxin-responsive protein family |
BYLD | Vigun01g161700 | Vu01 | 34,345,146 | 34,345,826 | SAUR-like auxin-responsive protein family |
BYLD | Vigun07g058400 | Vu07 | 6,436,308 | 6,438,943 | Auxin response factor 18-like [Glycine max] |
BYLD | Vigun07g086100 | Vu07 | 13,029,458 | 13,032,760 | Heat shock protein 70 |
BYLD | Vigun07g037500 | Vu07 | 3,599,545 | 3,606,469 | Gibberellin-regulated family protein |
BYLD | Vigun07g038800 | Vu07 | 3,759,715 | 3,762,378 | BZIP transcription factor family protein |
GYLD | Vigun09g116600 | Vu09 | 25,552,438 | 25,555,314 | Gibberellin 20 oxidase 2-like [Glycine max] |
GYLD | Vigun09g126200 | Vu09 | 27,978,054 | 27,981,909 | Nodulin MtN21/EamA-like transporter family protein |
GYLD | Vigun01g167600 | Vu01 | 34,938,180 | 34,939,669 | LEA-3,35 kDa seed maturation protein [Glycine max] |
GYLD | Vigun01g173000 | Vu01 | 35,503,295 | 35,505,086 | Flowering locus protein T |
GYLD | Vigun01g173200 | Vu01 | 35,531,233 | 35,532,782 | Abscisic acid-responsive element-binding factor 1 |
GYLD | Vigun11g151800 | Vu11 | 36,193,653 | 36,196,371 | Legumin type B-like [Glycine max], plant |
GYLD | Vigun11g122500 | Vu11 | 32,984,324 | 32,985,206 | Late embryogenesis abundant protein |
GYLD | Vigun09g014700 | Vu09 | 1,095,336 | 1,098,074 | Heat shock factor binding protein |
GYLD | Vigun11g104600 | Vu11 | 30,279,096 | 30,279,716 | DNAJ heat shock N-terminal domain-containing protein |
GYLD | Vigun11g206500 | Vu11 | 40,299,672 | 40,304,889 | Putative, impaired sucrose induction protein |
gPUE | Vigun09g031800 | Vu09 | 2,706,873 | 2,711,267 | Auxin efflux carrier family protein |
gPUE | Vigun09g032600 | Vu09 | 2,787,176 | 2,788,825 | Xyloglucan endotransglucosylase/hydrolase family protein |
gPUE | Vigun09g035000 | Vu09 | 3,077,522 | 3,079,525 | Catalytic domain, metalloendoproteinase 1-like [Glycine max] |
gPUE | Vigun09g035700 | Vu09 | 3,154,228 | 3,156,321 | Cleavage and polyadenylation specificity factor 5 |
gPUE | Vigun09g037400 | Vu09 | 3,299,965 | 3,302,656 | MYB transcription factor |
gPUpE | Vigun09g005500 | Vu09 | 389,058 | 391,978 | 4-lactone oxidase family protein, type 2, D-arabinono-1,4-lactone oxidase |
gPUpE | Vigun09g005601 | Vu09 | 401,462 | 408,749 | 4-lactone oxidase family protein, type 2, D-arabinono-1,4-lactone oxidase |
gPUpE | Vigun09g009200 | Vu09 | 724,257 | 728,095 | Cytochrome c oxidase subunit 2 |
gPUpE | Vigun09g014700 | Vu09 | 1,095,336 | 1,098,074 | Heat shock factor binding protein |
gPUpE | Vigun09g018100 | Vu09 | 1,359,629 | 1,361,514 | Peroxidase superfamily protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, S.B.; Ongom, P.O.; Belko, N.; Umar, M.L.; Muñoz-Amatriaín, M.; Huynh, B.-L.; Togola, A.; Ishiyaku, M.F.; Boukar, O. Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea. Genes 2025, 16, 64. https://doi.org/10.3390/genes16010064
Mohammed SB, Ongom PO, Belko N, Umar ML, Muñoz-Amatriaín M, Huynh B-L, Togola A, Ishiyaku MF, Boukar O. Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea. Genes. 2025; 16(1):64. https://doi.org/10.3390/genes16010064
Chicago/Turabian StyleMohammed, Saba B., Patrick Obia Ongom, Nouhoun Belko, Muhammad L. Umar, María Muñoz-Amatriaín, Bao-Lam Huynh, Abou Togola, Muhammad F. Ishiyaku, and Ousmane Boukar. 2025. "Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea" Genes 16, no. 1: 64. https://doi.org/10.3390/genes16010064
APA StyleMohammed, S. B., Ongom, P. O., Belko, N., Umar, M. L., Muñoz-Amatriaín, M., Huynh, B.-L., Togola, A., Ishiyaku, M. F., & Boukar, O. (2025). Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea. Genes, 16(1), 64. https://doi.org/10.3390/genes16010064