Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Mendes Costa, S. Erythro-et keratodermia variabilis in a mother and a daughter. Acta Derm. Venereol. 1925, 6, 255–261. [Google Scholar]
- Gottron, H.A. Congenital angelegte symmetrische progressive Erythrokeratodermie. Zentralblatt Haut-Geschlechtskrankh. 1922, 4, 493–494. [Google Scholar]
- Landau, M.; Cohen-Bar-Dayan, M.; Hohl, D.; Ophir, J.; Wolf, C.R.; Gat, A.; Mevorah, B. Erythrokeratodermia Variabilis with Erythema Gyratum Repens-like Lesions. Pediatr. Dermatol. 2002, 19, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M. Erythrokeratodermas: A classification in a state of flux? Australas. J. Dermatol. 2005, 46, 127–141; quiz 142. [Google Scholar] [CrossRef]
- Mahajan, V.K.; Khatri, G.; Chauhan, P.S.; Mehta, K.S.; Raina, R.; Gupta, M. Progressive Symmetric Erythrokeratoderma Having Overlapping Features with Erythrokeratoderma Variabilis and Lesional Hypertrichosis: Is Nomenclature “Erythrokeratoderma Variabilis Progressiva” More Appropriate? Indian J. Dermatol. 2015, 60, 410–411. [Google Scholar] [CrossRef]
- van Steensel, M. Does progressive symmetric erythrokeratoderma exist? Br. J. Dermatol. 2004, 150, 1043–1045. [Google Scholar] [CrossRef]
- Gottfried, I.; Landau, M.; Glaser, F.; Di, W.-L.; Ophir, J.; Mevorah, B.; Ben-Tal, N.; Kelsell, D.P.; Avraham, K.B. A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Hum. Mol. Genet. 2002, 11, 1311–1316. [Google Scholar] [CrossRef]
- Fuchs-Telem, D.; Pessach, Y.; Mevorah, B.; Shirazi, I.; Sarig, O.; Sprecher, E. Erythrokeratoderma variabilis caused by a recessive mutation in GJB3. Clin. Exp. Dermatol. 2011, 36, 406–411. [Google Scholar] [CrossRef]
- Ishida-Yamamoto, A. Erythrokeratodermia variabilis et progressiva. J. Dermatol. 2016, 43, 280–285. [Google Scholar] [CrossRef]
- Boyden, L.M.; Vincent, N.G.; Zhou, J.; Hu, R.; Craiglow, B.G.; Bayliss, S.J.; Rosman, I.S.; Lucky, A.W.; Diaz, L.A.; Goldsmith, L.A.; et al. Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma. Am. J. Hum. Genet. 2017, 100, 978–984. [Google Scholar] [CrossRef]
- Shah, K.; Ansar, M.; Mugha, Z.-U.-N.; Kha, F.S.; Ahmad, W.; Ferrar, T.M.; Richard, A. Sprit Recessive progressive symmetric erythrokeratoderma results from a homozygous loss-of-function mutation of KRT83 and is allelic with dominant monilethrix. J. Med. Genet. 2017, 54, 186–189. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Z.; Lee, B.H.; Vu, S.; Hu, L.; Lee, M.; Bu, D.; Cao, X.; Hwang, S.; Yang, Y.; et al. Gain-of-Function Mutations in TRPM4 Activation Gate Cause Progressive Symmetric Erythrokeratodermia. J. Investig. Dermatol. 2018, 139, 1089–1097. [Google Scholar] [CrossRef]
- Charfeddine, C.; Laroussi, N.; Mkaouar, R.; Jouini, R.; Khayat, O.; Redissi, A.; Mosbah, A.; Dallali, H.; Debbiche, A.C.; Zaouak, A.; et al. Expanding the clinical phenotype associated with NIPAL4 mutation: Study of a Tunisian consanguineous family with erythrokeratodermia variabilis—Like Autosomal Recessive Congenital Ichthyosis. PLoS ONE 2021, 16, e0258777. [Google Scholar] [CrossRef]
- Terrinoni, A.; Sala, G.; Bruno, E.; Pitolli, C.; Minieri, M.; Pieri, M.; Gambacurta, A.; Campione, E.; Belardi, R.; Bernardini, S. Partial Loss of Function ABCA12 Mutations Generate Reduced Deposition of Glucosyl-Ceramide, Leading to Patchy Ichthyosis and Erythrodermia Resembling Erythrokeratodermia Variabilis et Progressiva (EKVP). Int. J. Mol. Sci. 2023, 24, 13962. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesth. Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Hotz, A.; Kopp, J.; Bourrat, E.; Oji, V.; Süßmuth, K.; Komlosi, K.; Bouadjar, B.; Tantcheva-Poór, I.; Hellström Pigg, M.; Betz, R.C.; et al. Mutational Spectrum of the ABCA12 Gene and Genotype-Phenotype Correlation in a Cohort of 64 Patients with Autosomal Recessive Congenital Ichthyosis. Genes 2023, 14, 717. [Google Scholar] [CrossRef]
- Ennouri, M.; Zimmer, A.D.; Bahloul, E.; Chaabouni, R.; Marrakchi, S.; Turki, H.; Fakhfakh, F.; Bougacha-Elleuch, N.; Fischer, J. Clinical and genetic investigation of ichthyosis in familial and sporadic cases in south of Tunisia: Genotype–phenotype correlation. BMC Med. Genom. 2022, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Pujol, R.; Gilaberte, M.; Toll, A.; Florensa, L.; Lloreta, J.; Gonzalez-Ensenat, M.; Fischer, J.; Azon, A.; Pujol, R.; Gilaberte, M.; et al. Erythrokeratoderma variabilis-like ichthyosis in Chanarin-Dorfman syndrome. Br. J. Dermatol. 2005, 153, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Cadieux-Dion, M.; Turcotte-Gauthier, M.; Noreau, A.; Martin, C.; Meloche, C.; Gravel, M.; Drouin, C.A.; Rouleau, G.A.; Nguyen, D.K.; Cossette, P. Expanding the clinical phenotype associated with ELOVL4 mutation: Study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014, 71, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Lefévre, C.; Audebert, S.; Jobard, F.; Bouadjar, B.; Lakhdar, H.; Boughdene-Stambouli, O.; Blanchet-Bardon, C.; Heilig, R.; Foglio, M.; Weissenbach, J.; et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum. Mol. Genet. 2003, 12, 2369–2378. [Google Scholar] [CrossRef]
- Raghunath, M.; Hennies, H.-C.; Ahvazi, B.; Vogel, M.; Reis, A.; Steinert, P.M.; Traupe, H. Self-Healing Collodion Baby: A Dynamic Phenotype Explained by a Particular Transglutaminase-1 Mutation. J. Investig. Dermatol. 2003, 120, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Oji, V.; Hautier, J.M.; Ahvazi, B.; Hausser, I.; Aufenvenne, K.; Walker, T.; Seller, N.; Steijlen, P.M.; Küster, W.; Hovnanian, A.; et al. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: Evidence for a temperature-sensitive phenotype. Hum. Mol. Genet. 2006, 15, 3083–3097. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.A.; Plagnol, V.; Nitoiu, D.; Bland, P.J.; Blaydon, D.C.; Chronnell, C.M.; Poon, D.S.; Bourn, D.; Gardos, L.; Csaszar, A.; et al. Targeted sequence capture and high-throughput sequencing in the molecular diagnosis of ichthyosis and other skin diseases. J. Investig. Dermatol. 2013, 133, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.C.; Cullup, T.; Norgett, E.E.; Hill, T.; Barton, S.; Dale, B.A.; Sprecher, E.; Sheridan, E.; Taylor, A.E.; Wilroy, R.S.; et al. ABCA12 is the major harlequin ichthyosis gene. J. Investig. Dermatol. 2006, 126, 2408–2413. [Google Scholar] [CrossRef]
- Israeli, S.; Goldberg, I.; Fuchs-Telem, D.; Bergman, R.; Indelman, M.; Bitterman-Deutsch, O.; Harel, A.; Mashiach, Y.; Sarig, O.; Sprecher, E. Non-syndromic autosomal recessive congenital ichthyosis in the Israeli population. Clin. Exp. Dermatol. 2013, 38, 911–916. [Google Scholar] [CrossRef]
- Bastaki, F.; Mohamed, M.; Nair, P.; Saif, F.; Mustafa, E.M.; Bizzari, S.; Al-Ali, M.T.; Hamzeh, A.R. Summary of mutations underlying autosomal recessive congenital ichthyoses (ARCI) in Arabs with four novel mutations in ARCI-related genes from the United Arab Emirates. Int. J. Dermatol. 2017, 56, 514–523. [Google Scholar] [CrossRef]
- Hou, Y.C.C.; Yu, H.C.; Martin, R.; Cirulli, E.T.; Schenker-Ahmed, N.M.; Hicks, M.; Cohen, I.V.; Jönsson, T.J.; Heister, R.; Napier, L.; et al. Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc. Natl. Acad. Sci. USA 2020, 117, 3053–3062. [Google Scholar] [CrossRef] [PubMed]
Patient | Sex | Age | Origin | Mutation 1 | Mutation 2 |
---|---|---|---|---|---|
1 | f | 35 y | Caucasian | c.4139A>G, p.(Asn1380Ser) | c.6962+1G>A, p.? |
2 | m | 28 y | Caucasian | c.4139A>G, p.(Asn1380Ser) | c.6962+1G>A, p.? |
3 | f | 29 y | Caucasian | c.130C>T, p.(Arg44Trp) | c.4544G>A, p.(Arg1515Gln) |
4 | f | 38 y | North African | c.3809A>G, p.(Tyr1270Cys)homozygous | c.6852G>C, p.(Glu2284Asp)homozygous |
5 | f | 25 y | Caucasian | c.1270G>T, p.(Glu424*) | c.6611G>A, p.(Arg2204Gln) |
6 | f | 33 y | North African | c.2864-6T>A, p.? | c.2864-2A>T, p.? |
7 | m | 9 y | Caucasian | c.596G>A, p.(Trp199*) | c.6611G>A, p.(Arg2204Gln) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotz, A.; Fölster-Holst, R.; Oji, V.; Bourrat, E.; Frank, J.; Marrakchi, S.; Ennouri, M.; Wankner, L.; Komlosi, K.; Alter, S.; et al. Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations. Genes 2024, 15, 288. https://doi.org/10.3390/genes15030288
Hotz A, Fölster-Holst R, Oji V, Bourrat E, Frank J, Marrakchi S, Ennouri M, Wankner L, Komlosi K, Alter S, et al. Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations. Genes. 2024; 15(3):288. https://doi.org/10.3390/genes15030288
Chicago/Turabian StyleHotz, Alrun, Regina Fölster-Holst, Vinzenz Oji, Emmanuelle Bourrat, Jorge Frank, Slaheddine Marrakchi, Mariem Ennouri, Lotta Wankner, Katalin Komlosi, Svenja Alter, and et al. 2024. "Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations" Genes 15, no. 3: 288. https://doi.org/10.3390/genes15030288
APA StyleHotz, A., Fölster-Holst, R., Oji, V., Bourrat, E., Frank, J., Marrakchi, S., Ennouri, M., Wankner, L., Komlosi, K., Alter, S., & Fischer, J. (2024). Erythrokeratodermia Variabilis-like Phenotype in Patients Carrying ABCA12 Mutations. Genes, 15(3), 288. https://doi.org/10.3390/genes15030288