Genetic Aspects of Problematic and Risky Internet Use in Young Men—Analysis of ANKK1, DRD2 and NTRK3 Gene Polymorphism
Abstract
:1. Introduction
- The polymorphism of the ANKK1, DRD2 and NTRK3 genes influences the severity of symptoms of Internet addiction in men.
- The polymorphism of the ANKK1, DRD2 and NTRK3 genes affects the concentration of hormones that regulate men’s behavior.
2. Materials and Methods
2.1. Study Population
2.2. Test Material Collection
2.3. Determination of Biochemical and Hormonal Parameters
2.4. Sample Preparation
2.5. Genotyping
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group
3.2. Genotyping Results
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.L.; Chen, Z.J.; Ma, N.; Zhang, X.C.; Fu, X.M.; Zhang, D.R. Decision-making and prepotent response inhibition functions in excessive internet users. CNS Spectr. 2009, 14, 75–81. [Google Scholar] [CrossRef]
- Aboujaoude, E.; Koran, L.M.; Gamel, N.; Large, M.D.; Serpe, R.T. Potential markers for problematic internet use: A telephone survey of 2,513 adults. CNS Spectr. 2006, 11, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Hahn, E.; Reuter, M.; Spinath, F.M.; Montag, C. Internet addiction and its facets: The role of genetics and the relation to self-directedness. Addict Behav. 2017, 65, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Long, E.C.; Verhulst, B.; Neale, M.C.; Lind, P.A.; Hickie, I.B.; Martin, N.G.; Gillespie, N.A. The Genetic and Environmental Contributions to Internet Use and Associations with Psychopathology: A Twin Study. Twin Res. Hum. Genet. 2016, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vink, J.M.; Van Beijsterveldt, T.C.E.M.; Huppertz, C.; Bartels, M.; Boomsma, D.I. Heritability of compulsive Internet use in adolescents. Addict. Biol. 2016, 21, 460–468. [Google Scholar] [CrossRef]
- Werling, A.M.; Grünblatt, E. A review of the genetic basis of problematic Internet use. Curr. Opin. Behav. Sci. 2022, 46, 101149. [Google Scholar] [CrossRef]
- Pettorruso, M.; Valle, S.; Cavic, E.; Martinotti, G.; di Giannantonio, M.; Grant, J.E. Problematic Internet use (PIU), personality profiles and emotion dysregulation in a cohort of young adults: Trajectories from risky behaviors to addiction. Psychiatry Res. 2020, 289, 113036. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.E.; Rhee, J.K.; Kim, T.M.; Kwak, S.M.; Bang, S.H.; Cho, H.; Cheon, Y.H.; Min, J.A.; Yoo, G.S.; Kim, K.; et al. The association between the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4) rs1044396 and Internet gaming disorder in Korean male adults. PLoS ONE 2017, 12, e0188358. [Google Scholar] [CrossRef]
- King, S.M.; Keyes, M.; Winters, K.C.; McGue, M.; Iacono, W.G. Genetic and Environmental Origins of Gambling Behaviors from Ages 18 to 25: A Longitudinal Twin Family Study. Psychol. Addict. Behav. 2017, 31, 367. [Google Scholar] [CrossRef]
- Paik, S.H.; Choi, M.R.; Kwak, S.M.; Bang, S.H.; Chun, J.W.; Kim, J.Y.; Choi, J.; Cho, H.; Jeong, J.E.; Kim, D.J. An association study of Taq1A ANKK1 and C957T and—141C DRD2 polymorphisms in adults with internet gaming disorder: A pilot study. Ann. Gen. Psychiatry 2017, 16, 45. [Google Scholar] [CrossRef]
- Ponce, G.; Hoenicka, J.; Jiménez-Arriero, M.A.; Rodriguez-Jimenez, R.; Aragüés, M.; Martin-Sune, N.; Huertas, E.; Palomo, T. DRD2 and ANKK1 genotype in alcohol-dependent patients with psychopathic traits: Association and interaction study. Br. J. Psychiatry 2008, 193, 121–125. [Google Scholar] [CrossRef]
- Voisey, J.; Swagell, C.D.; Hughes, I.P.; van Daal, A.; Noble, E.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A DRD2 and ANKK1 haplotype is associated with nicotine dependence. Psychiatry Res. 2012, 196, 285–289. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Śmiarowska, M.; Strońska-Pluta, A.; Dziedziejko, V.; Grzywacz, A. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among Cannabis Dependency. Int. J. Environ. Res Public Health 2022, 19, 10915. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jeong, J.E.; Rhee, J.K.; Cho, H.; Chun, J.W.; Kim, T.M.; Choi, S.W.; Choi, J.S.; Kim, D.J. Targeted exome sequencing for the identification of a protective variant against Internet gaming disorder at rs2229910 of neurotrophic tyrosine kinase receptor, type 3 (NTRK3): A pilot study. J. Behav. Addict. 2016, 5, 631–638. [Google Scholar] [CrossRef]
- Althubaiti, A. Sample size determination: A practical guide for health researchers. J. Gen. Fam. Med. 2023, 24, 72–78. [Google Scholar] [CrossRef]
- Poprawa, R. Test of problematic using of the internet polish adaptation and validation of k. Young’s internet addiction test. Przegląd Psychol. 2011, 54, 193–216. [Google Scholar]
- Premnath, S.M.; Zubair, M. Electrochemiluminescence Method; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK594228/ (accessed on 26 September 2023).
- Alhajj, M.; Zubair, M.; Farhana, A. Enzyme Linked Immunosorbent Assay; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555922/ (accessed on 23 April 2023).
- Weinstein, A.; Lejoyeux, M. Neurobiological mechanisms underlying internet gaming disorder. Dialogues Clin. Neurosci. 2020, 22, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Miko, I. Genetic dominance: Genotype-phenotype relationships. Nat. Educ. 2008, 1, 140. [Google Scholar]
- Montag C, Kirsch P, Sauer C, The role of the CHRNA4 gene in Internet addiction: A case-control study. J. Addict. Med. 2012, 6, 191–195. [CrossRef] [PubMed]
- Nikoletopoulou, V.; Lickert, H.; Frade, J.M.; Rencurel, C.; Giallonardo, P.; Zhang, L.; Bibel, M.; Barde, Y.A. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 2010, 467, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, C.; Cui, Q. A Large-Scale Analysis of the Relationship of Synonymous SNPs Changing MicroRNA Regulation with Functionality and Disease. Int. J. Mol. Sci. 2015, 16, 23545. [Google Scholar] [CrossRef] [PubMed]
- Noble, E.P. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 116B, 103–125. [Google Scholar] [CrossRef]
- Neville, M.J.; Johnstone, E.C.; Walton, R.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004, 23, 540–545. [Google Scholar] [CrossRef]
- Han, D.H.; Lee, Y.S.; Yang, K.C.; Kim, E.Y.; Lyoo, I.K.; Renshaw, P.F. Dopamine genes and reward dependence in adolescents with excessive internet video game play. J. Addict. Med. 2007, 1, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Han, D.H.; Yang, K.C.; Daniels, M.A.; Na, C.; Kee, B.S.; Renshaw, P.F. Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. J. Affect. Disord. 2008, 109, 165–169. [Google Scholar] [CrossRef]
- Noble, E.P. The DRD2 gene in psychiatric and neurological disorders and its phenotypes. Pharmacogenomics 2000, 1, 309–333. [Google Scholar] [CrossRef]
- Peciña, M.; Mickey, B.J.; Love, T.; Wang, H.; Langenecker, S.A.; Hodgkinson, C.; Shen, P.H.; Villafuerte, S.; Hsu, D.; Weisenbach, S.L.; et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex 2013, 49, 877–890. [Google Scholar] [CrossRef]
- Tomska, N.; Rył, A.; Turoń-Skrzypińska, A.; Szylińska, A.; Marcinkowska, J.; Durys, D.; Rotter, I. Emotional State of Young Men in Relation to Problematic Internet Use. Int. J. Environ. Res. Public Health 2022, 19, 12153. [Google Scholar] [CrossRef]
- Tereshchenko, S.; Kasparov, E. Neurobiological Risk Factors for the Development of Internet Addiction in Adolescents. Behav. Sci. 2019, 9, 62. [Google Scholar] [CrossRef]
- Geisel, O.; Panneck, P.; Hellweg, R.; Wiedemann, K.; Müller, C.A. Hypothalamic-pituitary-adrenal axis activity in patients with pathological gambling and internet use disorder. Psychiatry Res. 2015, 226, 97–102. [Google Scholar] [CrossRef]
- Bolyakov, A.; Paduch, D.A. Prolactin in men’s health and disease. Curr. Opin. Urol. 2011, 21, 527–534. [Google Scholar] [CrossRef]
- Vinson, G.P.; Brennan, C.H. Addiction and the adrenal cortex. Endocr. Connect. 2013, 2, R1–R14. [Google Scholar] [CrossRef]
- Koenig, J.; Thaler, V.; Parzer, P.; Resch, F.; Kaess, M. Hair hormones in male youth with internet gaming disorder. World J. Biol. Psychiatry 2019, 20, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Brand, M.; Mies, J.; Lachmann, B.; Sariyska, R.Y.; Montag, C. The 2D:4D Marker and Different Forms of Internet Use Disorder. Front. Psychiatry 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, S.H.; Bang, S.A.; Yoon, E.J.; Cho, S.S.; Kim, S.E. Altered regional cerebral glucose metabolism in internet game overusers: A 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr. 2010, 15, 159–166. [Google Scholar] [CrossRef] [PubMed]
Program | Proces | Temperature [°C] | Time | Number of Cycles |
---|---|---|---|---|
Incubation | HotStart | 95 | 10 min | 1 |
Amplification and data collection | Denaturation | 95 | 10 s | 40 |
Attaching the primers | 60 | 30 s | ||
Elongation | 72 | 1 s | ||
Cooling | Cooling | 40 | 30 s | - |
Color compensation | Denaturation | 95 | 1 s | |
Cooling | 40 | 30 s | ||
Hybridization | 67 | All the time (1 reading/°C) | ||
Cooling | 40 | 45 s | ||
Melting curve | Hybridization | 60 | 1 s | |
Hybridization | 61 | All the time (5 reading/°C) | ||
Cooling | Cooling | 40 | - |
ANKK1 | DRD2 | NTRK3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Internet Addiction | AG + AA | GG | p | G/GG + GG/GG | G/G | p | GG + CG | CC | p |
high | 23 (5.65%) | 44 (10.81%) | 0.531 | 66 (16.18%) | 2 (0.49%) | 0.295 | 59 (14.50%) | 8 (1.97%) | 0.007 * |
average | 89 (21.87%) | 175 (43.00%) | 260 (63.73%) | 4 (0.98%) | 213 (52.33%) | 51 (12.53%) | |||
low | 22 (5.41%) | 54 (13.27%) | 76 (18.63%) | 0 (0.00%) | 72 (17.69%) | 4 (0.98%) | |||
GG + AA | AG | G/G + GG/GG | G/GG | GG + CC | CG | ||||
high | 45 (11.06%) | 22 (5.41%) | 0.548 | 52 (12.78%) | 15 (3.69%) | 0.483 | 34 (8.35%) | 33 (8.11%) | 0.017 * |
average | 189 (46.44%) | 75 (18.43%) | 214 (52.58%) | 50 (12.29%) | 146 (35.87%) | 118 (28.99%) | |||
low | 55 (13.51%) | 21 (5.16%) | 59 (14.50%) | 17 (4.18%) | 28 (6.88%) | 48 (11.79%) | |||
GG + GA | AA | G/GG + G/G | GG/GG | CC + CG | GG | ||||
high | 66 (16.22%) | 1 (0.25%) | 0.144 | 18 (4.41%) | 50 (12.25%) | 0.443 | 41 (10.07%) | 26 (6.39%) | 0.499 |
average | 250 (61.43%) | 14 (3.44%) | 54 (13.24%) | 210 (51.47%) | 169 (41.52%) | 95 (23.34%) | |||
low | 75 (18.43%) | 1 (0.25%) | 17 (4.17%) | 59 (14.46%) | 52 (12.78%) | 24 (5.90%) |
Gene ANKK1 Polymorphism Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | GG = 273 | AG, n = 118 | AA, n = 16 | p 1 | AA vs. GG + AG 2 | AG vs. AA + GG 2 | GG vs. AA + AG 2 | |||
Me | SD | Me | SD | Me | SD | |||||
PIUT | 13.00 | 17.15 | 16.00 | 17.44 | 17.50 | 9.67 | 0.443 | 0.562 | 0.548 | 0.334 |
LH | 5.33 | 11.77 | 5.53 | 2.56 | 6.33 | 4.73 | 0.128 | 0.134 | 0.179 | 0.462 |
FSH | 3.38 | 13.77 | 3.66 | 2.65 | 4.21 | 9.09 | 0.375 | 0.382 | 0.631 | 0.462 |
TT | 4.83 | 2.23 | 4.92 | 2.10 | 5.05 | 1.78 | 0.522 | 0.412 | 0.569 | 0.247 |
SHGB | 29.56 | 14.73 | 32.45 | 13.03 | 30.21 | 9.26 | 0.549 | 0.112 | 0.387 | 0.397 |
DHEAS | 354.25 | 122.88 | 376.30 | 158.67 | 389.80 | 99.29 | 0.106 | 0.161 | 0.610 | 0.534 |
E2 | 24.60 | 9.60 | 24.70 | 8.17 | 27.10 | 9.57 | 0.283 | 0.534 | 0.562 | 0.486 |
PRL | 237.50 | 151.91 | 214.00 | 113.68 | 273.00 | 83.08 | 0.032 * | 0.013 * | 0.018 * | 0.612 |
5-HT | 95.49 | 91.49 | 106.88 | 143.81 | 72.34 | 124.29 | 0.167 | 0.0 44 | 0.607 | 0.002 |
DA | 88.72 | 40.50 | 79.87 | 37.82 | 53.26 | 17.60 | 0.059 | 0.120 | 0.117 | 0.183 |
Gene DRD2 polymorphism analysis | ||||||||||
Variable | GG/GG, n = 319 | G/GG, n = 82 | G/G, n = 6 | p 1 | G/G vs. G/GG + GG/GG 2 | G/GG vs. G/G + GG/GG 2 | GG/GG vs. G/G + G/GG 2 | |||
Me | SD | Me | SD | Me | SD | |||||
PIUT | 14.00 | 16.93 | 14.00 | 17.26 | 15.50 | 21.81 | 0.559 | 0.418 | 0.580 | 0.518 |
LH | 5.39 | 10.88 | 5.52 | 4.26 | 4.97 | 4.22 | 0.251 | 0.552 | 0.373 | 0.349 |
FSH | 3.58 | 12.07 | 3.18 | 9.68 | 3.50 | 1.24 | 0.069 | 0.588 | 0.021 * | 0.028 * |
TT | 4.94 | 2.24 | 4.84 | 1.98 | 4.58 | 1.71 | 0.417 | 0.389 | 0.336 | 0.265 |
SHGB | 30.90 | 13.92 | 31.23 | 14.88 | 28.79 | 10.51 | 0.617 | 0.628 | 0.524 | 0.532 |
DHEAS | 368.20 | 140.14 | 338.80 | 97.40 | 398.70 | 221.26 | 0.244 | 0.525 | 0.107 | 0.140 |
E2 | 25.00 | 9.10 | 22.70 | 9.58 | 29.00 | 6.99 | 0.007 * | 0.315 | 0.033 * | 0.070 |
PRL | 238.00 | 121.63 | 229.00 | 194.95 | 225.00 | 88.12 | 0.545 | 0.476 | 0.466 | 0.415 |
5-HT | 94.80 | 93.59 | 117.84 | 156.89 | 78.95 | 102.63 | 0.339 | 0.625 | 0.164 | 0.182 |
DA | 81.28 | 39.31 | 88.06 | 41.90 | 96.19 | 41.60 | 0.456 | 0.425 | 0.363 | 0.294 |
Gene NTRK3 polymorphism analysis | ||||||||||
Variable | CG, n = 145 | GG, n = 199 | CC, n = 63 | p 1 | CC vs. GG + CG 2 | CG vs. CC + GG 2 | GG vs. CC + CG 2 | |||
Me | SD | Me | SD | Me | SD | |||||
PIUT | 13.00 | 17.13 | 15.00 | 16.78 | 18.00 | 17.18 | 0.147 | 0.070 | 0.157 | 0.613 |
LH | 5.40 | 9.95 | 5.53 | 11.43 | 4.95 | 2.19 | 0.454 | 0.327 | 0.596 | 0.352 |
FSH | 3.33 | 13.33 | 3.50 | 11.25 | 3.74 | 2.19 | 0.357 | 0.390 | 0.212 | 0.460 |
TT | 4.81 | 2.29 | 5.09 | 2.10 | 4.75 | 1.96 | 0.237 | 0.136 | 0.628 | 0.225 |
SHGB | 29.11 | 14.49 | 32.16 | 13.46 | 28.47 | 14.09 | 0.206 | 0.238 | 0.375 | 0.104 |
DHEAS | 373.50 | 138.62 | 340.25 | 130.07 | 350.60 | 121.22 | 0.006 * | 0.240 | 0.001 * | 0.013 * |
E2 | 24.15 | 9.84 | 24.60 | 8.85 | 25.10 | 8.04 | 0.634 | 0.602 | 0.628 | 0.600 |
PRL | 235.00 | 124.64 | 230.50 | 122.95 | 273.00 | 203.61 | 0.059 | 0.018 * | 0.271 | 0.369 |
5-HT | 97.42 | 107.58 | 98.80 | 104.24 | 93.95 | 126.50 | 0.604 | 0.615 | 0.497 | 0.512 |
DA | 71.60 | 41.89 | 78.11 | 40.25 | 96.19 | 32.50 | 0.515 | 0.365 | 0.606 | 0.466 |
ANKK1 Gene Polymorphism Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Low Internet Addiction | Average Level of Internet Addiction | High Internet Addiction | ||||||
Me (Q1; Q3) | Me (Q1; Q3) | p | Me (Q1; Q3) | Me (Q1; Q3) | p | Me (Q1; Q3) | Me (Q1; Q3) | p | |
GA, n = 22 | AA + GG, n = 55 | GA, n = 75 | AA + GG, n = 189 | GA, n = 22 | AA + GG, n = 45 | ||||
PRL | 216.50 (171.00; 348.00) | 231.00 (172.00; 303.00) | 0.517 | 212.00 (167.00; 283.00) | 247.50 (198.00; 329.50) | 0.09 | 216.00 (164.00; 321.00) | 242.00 189.00; 354.00) | 0.298 |
5-HT | 56.15 (36.21; 112.90) | 112.02 (37.23; 166.45) | 0.260 | 124.94 (87.49; 163.91) | 96.97 (45.54; 154.41) | 0.042 | 94.56 (57.42 213.31) | 91.91 (53.82; 141.44) | 0.454 |
AA, n = 1 | GG + GA, n = 75 | AA, n = 14 | GG + GA, n = 250 | AA, n = 1 | GG + GA, n = 66 | ||||
LH | 4.46 (4.13; 4.96) | 5.62 (4.47; 7.41) | - | 6.33 (4.95; 8.41) | 5.22 (3.82; 6.94) | 0.036 | 9.38 (6.88; 12.27) | 6.10 (4.74; 7.19) | - |
DA | 62.25 (60.21; 65.45) | 90.14 (56.63; 130.20) | - | 52.79 (44.98; 55.63) | 76.59 (53.20; 108.25) | 0.033 | 102.22 (85.75; 120.92) | 103.40 (49.25; 117.23) | - |
DRD2 gene polymorphism | |||||||||
G/GG, n = 17 | G/G + GG/GG, n = 59 | G/GG, n = 50 | G/G + GG/GG, n = 114 | G/GG, n = 15 | G/G + GG/GG, n = 52 | ||||
FSH | 3.45 (2.83; 4.21) | 4.14 (2.67; 6.07) | 0.179 | 2.76 (2.10; 3.99) | 3.50 (2.48; 4.89) | 0.040 | 3.41 (2.53; 5.44) | 3.74 (2.76; 4.33) | 0.517 |
PRL | 226.00 (167.50; 288.50) | 231.00 (172.00; 325.00) | 0.586 | 239.50 (189.50; 349.50) | 237.00 (187.00; 303.00) | 0426 | 176.50 (155.00; 295.00) | 255.00 (191.00; 358.00) | 0.034 |
GG/GG, n = 59 | G/G + G/GG, n = 17 | GG/GG, n = 210 | G/G + G/GG, n = 54 | GG/GG, n = 50 | G/G + G/GG, n = 18 | p | |||
FSH | 4.14 (2.67; 6.07) | 3.45 (2.83; 4.21) | 0.179 | 3.52 (2.48; 4.90) | 2.76 (2.19; 3.83) | 0.026 | 3.65 (2.68; 4.33) | 3.90 (2.74; 5.25) | 0.370 |
PRL | 231.00 (172.00; 325.00) | 226.00 167.50; 288.50) | 0.186 | 237.00 (187.00; 303.00) | 239.50 (189.50; 342.50) | 0.446 | 255.00 (191.00; 358.00) | 179.00 (158.00; 299.00) | 0.046 |
NTRK3 gene polymorphism | |||||||||
CC, n = 4 | GG + CG, n = 72 | CC, n = 51 | GG + CG, n = 213 | CC, n = 8 | GG + CG, n = 59 | ||||
PRL | 158.00 (127.00; 504.00) | 231.50 (172.00; 324.00) | 0.462 | 278.00 (224.00; 345.00) | 234.00 (178.00; 295.00) | 0.007 | 329.00 (234.50; 374.00) | 232.00 (177.00; 354.00) | 0.267 |
CG, n = 28 | GG + CC, n = 48 | CG, n = 118 | GG + CC, n = 146 | CG, n = 33 | GG + CC, n = 34 | ||||
LH | 5.70 (4.58; 7.42) | 5.44 (4.44; 7.39) | 0.365 | 5.09 (4.00; 6.49) | 5.52 (3.80; 7.46) | 0.252 | 6.54 (5.36; 7.42) | 5.44 (4.01; 6.83) | 0.028 |
DHEAS | 334.60 (265.70; 403.80) | 364.35 (327.70; 448.50) | 0.133 | 380.30 (305.20; 461.70 | 344.50 (263.10; 443.80 | 0.039 | 445.30 (315.60; 551.20 | 350.80 (284.25; 418.30 | 0.248 |
E2 | 22.70 (17.50; 27.80) | 24.00 (19.10; 30.40) | 0.410 | 24.10 (19.90; 32.00) | 25.25 (20.50; 31.00) | 0.584 | 28.00 (23.80; 35.00) | 24.85 (19.70; 30.75) | 0.155 |
DA | 62.75 (49.05; 86.10) | 107.20 (68.38; 137.46) | 0.02 | 60.82 (50.08; 96.15) | 88.72 (54.38; 110.59) | 0.069 | 104.12 (49.88; 130.65) | 102.81 (44.93; 111.41) | 0.228 |
Effect | CC | CG | GG | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p | OR | Cl −95% | Cl +95% | p | OR | Cl −95% | Cl +95% | p | OR | Cl −95% | Cl +95% | |
SHGB | 0.909 | 1.194 | 0.058 | 24.746 | 0.212 | 1.026 | 0.986 | 1.068 | 0.773 | 0.994 | 0.953 | 1.037 |
DHEAS | 0.995 | 0.999 | 0.849 | 1.177 | 0.140 | 1.004 | 0.999 | 1.009 | 0.670 | 1.001 | 0.995 | 1.008 |
E2 | 0.731 | 2.117 | 0.029 | 152.387 | 0.152 | 1.049 | 0.983 | 1.120 | 0.376 | 1.047 | 0.946 | 1.158 |
PRL | 0.845 | 0.961 | 0.646 | 1.430 | 0.165 | 1.003 | 0.999 | 1.008 | 0.729 | 0.999 | 0.993 | 1.005 |
5-HT | 0.888 | 1.050 | 0.534 | 2.065 | 0.254 | 1.005 | 0.997 | 1.013 | 0.259 | 0.997 | 0.992 | 1.002 |
DA | 0.994 | 0.997 | 0.453 | 2.196 | 0.039 * | 0.986 | 0.973 | 0.999 | 0.989 | 1.000 | 0.984 | 1.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rył, A.; Tomska, N.; Jakubowska, A.; Ogrodniczak, A.; Palma, J.; Rotter, I. Genetic Aspects of Problematic and Risky Internet Use in Young Men—Analysis of ANKK1, DRD2 and NTRK3 Gene Polymorphism. Genes 2024, 15, 169. https://doi.org/10.3390/genes15020169
Rył A, Tomska N, Jakubowska A, Ogrodniczak A, Palma J, Rotter I. Genetic Aspects of Problematic and Risky Internet Use in Young Men—Analysis of ANKK1, DRD2 and NTRK3 Gene Polymorphism. Genes. 2024; 15(2):169. https://doi.org/10.3390/genes15020169
Chicago/Turabian StyleRył, Aleksandra, Natalia Tomska, Anna Jakubowska, Alicja Ogrodniczak, Joanna Palma, and Iwona Rotter. 2024. "Genetic Aspects of Problematic and Risky Internet Use in Young Men—Analysis of ANKK1, DRD2 and NTRK3 Gene Polymorphism" Genes 15, no. 2: 169. https://doi.org/10.3390/genes15020169
APA StyleRył, A., Tomska, N., Jakubowska, A., Ogrodniczak, A., Palma, J., & Rotter, I. (2024). Genetic Aspects of Problematic and Risky Internet Use in Young Men—Analysis of ANKK1, DRD2 and NTRK3 Gene Polymorphism. Genes, 15(2), 169. https://doi.org/10.3390/genes15020169