Population Genomics Reveals the Underlying Structure of the Small Pelagic European Sardine and Suggests Low Connectivity within Macaronesia
Abstract
:1. Background
2. Materials and Methods
2.1. Sample Collection, DNA Extraction and Sequencing
2.2. Assembly Filtering and Re-Sequencing Data Pre-Processing
2.3. Population Structure
2.4. Population Differentiation
2.5. Recombination Rate
3. Results
3.1. Population Structure
3.2. Population Differentiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faria, J.; Froufe, E.; Tuya, F.; Alexandrino, P.; Pérez-Losada, M. Panmixia in the endangered slipper lobster scyllarides latus from the Northeastern Atlantic and Western Mediterranean. J. Crustac. Biol. 2013, 33, 557–566. [Google Scholar] [CrossRef]
- Andersson, L.; Bekkevold, D.; Berg, F.; Farrell, E.D.; Felkel, S.; Ferreira, M.S.; Fuentes-Pardo, A.P.; Goodall, J.; Pettersson, M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu. Rev. Anim. Biosci. 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Palero, F.; Abelló, P.; Macpherson, E.; Gristina, M.; Pascual, M. Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. Mol. Phylogenet. Evol. 2008, 48, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ruzafa, Á.; González-Wangüemert, M.; Lenfant, P.; Marcos, C.; García-Charton, J.A. Effects of fishing protection on the genetic structure of fish populations. Biol. Conserv. 2006, 129, 244–255. [Google Scholar] [CrossRef]
- Graves, J. Molecular insights into the population structures of cosmopolitan marine fishes. J. Hered. 1998, 89, 427–437. [Google Scholar] [CrossRef]
- Faria, R.; Johannesson, K.; Stankowski, S. Speciation in marine environments: Diving under the surface. J. Evol. Biol. 2021, 34, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Huertas, M.; Frigola-Tepe, X.; Coll, M.; Muñoz, M.; Viñas, J. The current knowledge status of the genetic population structure of the European sardine (Sardina pilchardus): Uncertainties to be solved for an appropriate fishery management. Rev. Fish. Biol. Fish. 2022, 32, 745–763. [Google Scholar] [CrossRef]
- Patarnello, T.; Volckaert, F.A.M.J.; Castilho, R. Pillars of Hercules: Is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol. 2007, 16, 4426–4444. [Google Scholar] [CrossRef]
- Tine, M.; Kuhl, H.; Gagnaire, P.A.; Louro, B.; Desmarais, E.; Martins, R.S.; Hecht, J.; Knaust, F.; Belkhir, K.; Klages, S.; et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 2014, 5, 5770. [Google Scholar] [CrossRef]
- Kasapidis, P.; Silva, A.; Zampicinini, G.; Magoulas, A. Evidence for microsatellite hitchhiking selection in European sardine (Sardina pilchardus) and implications in inferring stock structure. Sci. Mar. 2012, 76, 123–132. [Google Scholar] [CrossRef]
- Sá-Pinto, A.; Branco, M.; Sayanda, D.; Alexandrino, P. Patterns of colonization, evolution and gene flow in species of the genus Patella in the Macaronesian Islands. Mol. Ecol. 2008, 17, 519–532. [Google Scholar] [CrossRef]
- Sala, I.; Caldeira, R.M.A.; Estrada-Allis, S.N.; Froufe, E.; Couvelard, X. Lagrangian transport pathways in the northeast Atlantic and their environmental impact. Limnol. Oceanogr. Fluids Environ. 2013, 3, 40–60. [Google Scholar] [CrossRef]
- Francisco, S.M.; Faria, C.; Lengkeek, W.; Vieira, M.N.; Velasco, E.M.; Almada, V.C. Phylogeography of the shanny Lipophrys pholis (Pisces: Blenniidae) in the NE Atlantic records signs of major expansion event older than the last glaciation. J. Exp. Mar. Biol. Ecol. 2011, 403, 14–20. [Google Scholar] [CrossRef]
- Stefanni, S.; Castilho, R.; Sala-Bozano, M.; Robalo, J.I.; Francisco, S.M.; Santos, R.S.; Marques, N.; Brito, A.; Almada, V.C.; Mariani, S. Establishment of a coastal fish in the Azores: Recent colonisation or sudden expansion of an ancient relict population? Heredity 2015, 115, 527–537. [Google Scholar] [CrossRef]
- Hilmi, N.; Farahmand, S.; Lam, V.W.Y.; Cinar, M.; Safa, A.; Gilloteaux, J. The impacts of environmental and socio-economic risks on the fisheries in the mediterranean region. Sustainability 2021, 13, 10670. [Google Scholar] [CrossRef]
- Braga, H.O.; Azeiteiro, U.M.; Oliveira, H.M.F.; Pardal, M.A. Evaluating fishermen’s conservation attitudes and local ecological knowledge of the European sardine (Sardina pilchardus), Peniche, Portugal. J. Ethnobiol. Ethnomed. 2017, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- ICES Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). 2020. Available online: https://ices-library.figshare.com/articles/report/Working_Group_on_Southern_Horse_Mackerel_Anchovy_and_Sardine_WGHANSA_/18621557 (accessed on 22 January 2024).
- Parrish, R.H.; Serra, R.; Grant, W.S. The Monotypic Sardines, Sardina and Sardinops: Their Taxonomy, Distribution, Stock Structure, and Zoogeography. Can. J. Fish. Aquat. Sci. 1989, 46, 2019–2036. [Google Scholar] [CrossRef]
- Chlaida, M.; Laurent, V.; Kifani, S.; Benazzou, T.; Jaziri, H.; Planes, S. Evidence of a genetic cline for Sardina pilchardus along the Northwest African coast. ICES J. Mar. Sci. 2009, 66, 264–271. [Google Scholar] [CrossRef]
- Chlaida, M.; Kifani, S.; Lenfant, P.; Ouragh, L. First approach for the identification of sardine populations Sardina pilchardus (Walbaum 1792) in the Moroccan Atlantic by allozymes. Mar. Biol. 2006, 149, 169–175. [Google Scholar] [CrossRef]
- Laurent, V.; Caneco, B.; Magoulas, A.; Planes, S. Isolation by distance and selection effects on genetic structure of sardines Sardina pilchardus Walbaum. J. Fish. Biol. 2007, 71, 1–17. [Google Scholar] [CrossRef]
- Spanakis, E.; Tsimenides, N.; Zouros, E. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionian seas. J. Fish. Biol. 1989, 35, 417–437. [Google Scholar] [CrossRef]
- Atarhouch, T.; Rüber, L.; Gonzalez, E.G.; Albert, E.M.; Rami, M.; Dakkak, A.; Zardoya, R. Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus). Mol. Phylogenet. Evol. 2006, 39, 373–383. [Google Scholar] [CrossRef]
- Tinti, F.; Di Nunno, C.; Guarniero, I.; Talenti, M.; Tommasini, S.; Fabbri, E.; Piccinetti, C. Mitochondrial DNA sequence variation suggests the lack of genetic heterogeneity in the Adriatic and Ionian stocks of Sardina pilchardus. Mar. Biotechnol. 2002, 4, 163–172. [Google Scholar] [CrossRef]
- Gonzalez, E.G.; Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 2007, 7, 197. [Google Scholar] [CrossRef]
- Andreu, B.B. Las branquispinas en la caracterización de las poblaciones de Sardina pilchardus (Walb). Investig. Pesquera. 1969, 33, 425–607. [Google Scholar]
- Jemaa, S.; Bacha, M.; Khalaf, G.; Dessailly, D.; Rabhi, K.; Amara, R. What can otolith shape analysis tell us about population structure of the European sardine, Sardina pilchardus, from Atlantic and Mediterranean waters? J. Sea Res. 2015, 96, 11–17. [Google Scholar] [CrossRef]
- Neves, J.; Silva, A.A.; Moreno, A.; Veríssimo, A.; Santos, A.M.; Garrido, S. Population structure of the European sardine Sardina pilchardus from Atlantic and Mediterranean waters based on otolith shape analysis. Fish. Res. 2021, 243, 106050. [Google Scholar] [CrossRef]
- Alemany, F.; Álvarez, F. Growth differences among sardine (Sardina pilchardus Walb.) populations in Western Mediterranean. Sci. Mar. 1993, 57, 229–234. [Google Scholar]
- Ramon, M.M.; Castro, J.A. Genetic variation in natural stocks of Sardina pilchardus (sardines) from the western Mediterranean Sea. Heredity 1997, 78, 520–528. [Google Scholar] [CrossRef]
- Antoniou, A.; Manousaki, T.; Ramírez, F.; Cariani, A.; Cannas, R.; Kasapidis, P.; Magoulas, A.; Albo-Puigserver, M.; Lloret-Lloret, E.; Bellido, J.M.; et al. Sardines at a junction: Seascape genomics reveals ecological and oceanographic drivers of variation in the NW Mediterranean Sea. Mol. Ecol. 2023, 32, 1608–1628. [Google Scholar] [CrossRef]
- Barry, P.; Broquet, T.; Gagnaire, P.-A. Age-specific survivorship and fecundity shape genetic diversity in marine fishes. Evol. Lett. 2022, 6, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Louro, B.; De Moro, G.; Garcia, C.; Cox, C.J.; Veríssimo, A.; Sabatino, S.J.; Santos, A.M.; Canario, A.V. A haplotype-resolved draft genome of the European sardine (Sardina pilchardus). Gigascience 2019, 8, giz059. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.M.; Tørresen, O.K.; Kabeya, N.; Couto, A.; Petersen, B.; Felício, M.; Campos, P.F.; Fonseca, E.; Bandarra, N.; Lopes-Marques, M.; et al. “Out of the Can”: A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes 2018, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Pockrandt, C.; Alzamel, M.; Iliopoulos, C.S.; Reinert, K. GenMap: Ultra-fast computation of genome mappability. Bioinformatics 2020, 36, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 2014, 15, 356. [Google Scholar] [CrossRef]
- Fox, E.A.; Wright, A.E.; Fumagalli, M.; Vieira, F.G. ngsLD: Evaluating linkage disequilibrium using genotype likelihoods. Bioinformatics 2019, 35, 3855–3856. [Google Scholar] [CrossRef]
- Skotte, L.; Korneliussen, T.S.; Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 2013, 3, 693–702. [Google Scholar] [CrossRef]
- Meisner, J.; Albrechtsen, A. Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data. Genetics 2018, 210, 719–731. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Moltke, I.; Albrechtsen, A.; Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform. 2013, 14, 289. [Google Scholar] [CrossRef]
- Nielsen, R.; Korneliussen, T.; Albrechtsen, A.; Li, Y.; Wang, J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE 2012, 7, e37558. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.; Pool, J.E.; Xu, X.; Jiang, H.; Vinckenbosch, N.; Korneliussen, T.S.; et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.B. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Smedley, D.; Haider, S.; Ballester, B.; Holland, R.; London, D.; Thorisson, G.; Kasprzyk, A. BioMart—Biological queries made easy. BMC Genom. 2009, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Barroso, G.V.; Puzović, N.; Dutheil, J.Y. Inference of recombination maps from a single pair of genomes and its application to ancient samples. PLoS Genet. 2019, 15, e1008449. [Google Scholar] [CrossRef]
- Barroso, G.V.; Dutheil, J.Y. The landscape of nucleotide diversity in Drosophila melanogaster is shaped by mutation rate variation. Peer Community J. 2023, 3, e40. [Google Scholar] [CrossRef]
- Alvarado Bremer, J.R.; Viñas, J.; Mejuto, J.; Ely, B.; Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 2005, 36, 169–187. [Google Scholar] [CrossRef]
- Díaz-Jaimes, P.; Uribe-Alcocer, M.; Rocha-Olivares, A.; García-de-León, F.J.J.; Nortmoon, P.; Durand, J.D.D. Global phylogeography of the dolphinfish (Coryphaena hippurus): The influence of large effective population size and recent dispersal on the divergence of a marine pelagic cosmopolitan species. Mol. Phylogenet. Evol. 2010, 57, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, V. A review of phylogeography: Biotic and abiotic factors. Geol. Ecol. Landsc. 2018, 2, 268–274. [Google Scholar] [CrossRef]
- Pita, A.; Pérez, M.; Balado, M.; Presa, P. Out of the Celtic cradle: The genetic signature of European hake connectivity in South-western Europe. J. Sea Res. 2014, 93, 90–100. [Google Scholar] [CrossRef]
- Ouagajjou, Y.; Presa, P. The connectivity of Mytilus galloprovincialis in northern Morocco: A gene flow crossroads between continents. Estuar. Coast. Shelf Sci. 2015, 152, 1–10. [Google Scholar] [CrossRef]
- Ruggeri, P.; Splendiani, A.; Bonanomi, S.; Arneri, E.; Cingolani, N.; Santojanni, A.; Belardinelli, A.; Giovannotti, M.; Caputo, V. Temporal genetic variation as revealed by a microsatellite analysis of European sardine (Sardina pilchardus) archived samples. Can. J. Fish. Aquat. Sci. 2012, 69, 1698–1709. [Google Scholar] [CrossRef]
- Lavretsky, P.; McCracken, K.G.; Peters, J.L. Phylogenetics of a recent radiation in the mallards and allies (Aves: Anas): Inferences from a genomic transect and the multispecies coalescent. Mol. Phylogenet. Evol. 2014, 70, 402–411. [Google Scholar] [CrossRef]
- Grant, W.S.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Magoulas, A.; Castilho, R.; Caetano, S.; Marcato, S.; Patarnello, T. Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol. Phylogenet. Evol. 2006, 39, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Checkley, D.M.; Asch, R.G.; Rykaczewski, R.R. Climate, Anchovy, and Sardine. Ann. Rev. Mar. Sci. 2017, 9, 469–493. [Google Scholar] [CrossRef] [PubMed]
- Benazzouz, A.; Mordane, S.; Orbi, A.; Chagdali, M.; Hilmi, K.; Atillah, A.; Pelegrí, J.L.; Hervé, D. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 2014, 81, 38–54. [Google Scholar] [CrossRef]
- ICES Second workshop on Atlantic chub mackerel (Scomber colias) (WKCOLIAS2). ICES Sci. Rep. 2021, 3, 1–231.
- Domínguez-Petit, R.; Navarro, M.R.; Cousido-Rocha, M.; Tornero, J.; Ramos, F.; Hernández, C.; Landa, J.; Jurado-Ruzafa, A.; Nunes, C.; Silva, A.V. Spatial variability of life-history parameters of the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic. Sci. Mar. 2022, 86, 4. [Google Scholar] [CrossRef]
- Moreira, C.; Froufe, E.; Vaz-Pires, P.; Triay-Portella, R.; Correia, A.T. Landmark-based geometric morphometrics analysis of body shape variation among populations of the blue jack mackerel, Trachurus picturatus, from the North-East Atlantic. J. Sea Res. 2020, 163, 101926. [Google Scholar] [CrossRef]
- Neves, J.; Veríssimo, A.; Múrias Santos, A.; Garrido, S. Comparing otolith shape descriptors for population structure inferences in a small pelagic fish, the European sardine Sardina pilchardus (Walbaum, 1792). J. Fish Biol. 2023, 102, 1219–1236. [Google Scholar] [CrossRef]
Location | Short ID | Latitude | Longitude | Source | Collection Date (Number of Individuals) | Genetic Cluster | Tissue |
---|---|---|---|---|---|---|---|
Azores | AZO | 37.8 | −26.7 | Fish market | June 2017 (10) | West | Muscle |
Madeira | MAD | 32.0 | −16.9 | Fish market | July 2017 (10) | West | Muscle |
Canary Islands | CAN | 28.8 | −15.0 | Collaborators | July 2017 (5), June 2022 (5) | East | Muscle |
Bretagne | BRE | 48.3 | −4.9 | Fish market | July 2017 (3) | Center | Muscle |
Bay Biscay C | BCX | 43.3 | −1.9 | [32] | December 2018 (5) | Center | Pectoral fin |
Bay Biscay C | BC0 | 43.5 | −1.7 | PELACUS | Spring 2015 (5) | Center | Muscle |
Bay Biscay S | BS0 | 43.8 | −7.6 | PELACUS | Spring 2015 (5) | Center | Fin |
Iberia NW | IB1 | 42.2 | −9.6 | Fish market | June 2017 (5) | Center | Muscle |
Iberia NW | IB2 | 41.1 | −9.6 | Fish market | June 2017 (5) | Center | Muscle |
Gulf of Cádiz | CAD | 37.0 | −7.9 | [32] | October 2018 (5) | Center | Pectoral fin |
Morocco | MOR | 34.5 | −8.2 | Collaborators | July 2017 (5) | Center | Muscle |
Alboran Sea | ALB | 36.1 | −3.8 | PELACUS | 2017 (5) | Center | Muscle |
Mar Menor | MME | 38.0 | −0.7 | [32] | November 2018 (5) | East | Dorsal fin |
Gulf of Lion | LIO | 43.4 | 3.7 | [32] | November 2018 (5) | East | Pectoral fin |
Tunisia | TUN | 37.7 | 10.8 | Fish market | August 2017 (5) | East | Muscle |
Adriatic Sea | ADR | 44.9 | 13.1 | Fish market | August 2017 (10) | East | Muscle |
Aegean Sea | AEG | 40.2 | 22.9 | Fish market | August 2017 (10) | East | Muscle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Fonseca, R.R.; Campos, P.F.; Rey-Iglesia, A.; Barroso, G.V.; Bergeron, L.A.; Nande, M.; Tuya, F.; Abidli, S.; Pérez, M.; Riveiro, I.; et al. Population Genomics Reveals the Underlying Structure of the Small Pelagic European Sardine and Suggests Low Connectivity within Macaronesia. Genes 2024, 15, 170. https://doi.org/10.3390/genes15020170
da Fonseca RR, Campos PF, Rey-Iglesia A, Barroso GV, Bergeron LA, Nande M, Tuya F, Abidli S, Pérez M, Riveiro I, et al. Population Genomics Reveals the Underlying Structure of the Small Pelagic European Sardine and Suggests Low Connectivity within Macaronesia. Genes. 2024; 15(2):170. https://doi.org/10.3390/genes15020170
Chicago/Turabian Styleda Fonseca, Rute R., Paula F. Campos, Alba Rey-Iglesia, Gustavo V. Barroso, Lucie A. Bergeron, Manuel Nande, Fernando Tuya, Sami Abidli, Montse Pérez, Isabel Riveiro, and et al. 2024. "Population Genomics Reveals the Underlying Structure of the Small Pelagic European Sardine and Suggests Low Connectivity within Macaronesia" Genes 15, no. 2: 170. https://doi.org/10.3390/genes15020170
APA Styleda Fonseca, R. R., Campos, P. F., Rey-Iglesia, A., Barroso, G. V., Bergeron, L. A., Nande, M., Tuya, F., Abidli, S., Pérez, M., Riveiro, I., Carrera, P., Jurado-Ruzafa, A., G. Santamaría, M. T., Faria, R., Machado, A. M., Fonseca, M. M., Froufe, E., & C. Castro, L. F. (2024). Population Genomics Reveals the Underlying Structure of the Small Pelagic European Sardine and Suggests Low Connectivity within Macaronesia. Genes, 15(2), 170. https://doi.org/10.3390/genes15020170