Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection, DNA Extraction, and Chloroplast Genome Sequencing
2.2. Chloroplast Genome Assembly and Annotation
2.3. Comparison Between Genomes
2.4. Identification of Divergent Hotspots
2.5. Codon Usage Bias and Ka/Ks Analysis
2.6. Simple Sequence Repeats (SSRs) and Long-Repeat Sequence Analysis
2.7. Phylogenetic Analysis
3. Results
3.1. General Features of the Chloroplast Genomes
3.2. Comparison of Chloroplast Genomes of the Five Astilbe Species
3.3. Divergent Hotspots in the Five Astilbe Chloroplast Genomes
3.4. Codon Usage Analysis
3.5. SSRs and Long-Repeat Analysis
3.6. Phylogenetic Analysis of Astilbe and Related Taxa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Deng, M.; Xu, Z.; Deng, M. Saxifragaceae. Identif. Control. Common Weeds 2017, 2, 487–490. [Google Scholar]
- Pan, J.T.; Gu, C.Z.; Huang, S.M.; Wei, Z.F.; Jin, S.Y.; Lu, L.D.; Akiyama, S.; Alexander, C.; Bartholomew, B.; Cullen, J.; et al. Saxifragaceae. Flora China 2001, 8, 269–452. [Google Scholar]
- Zhu, W.D.; Nie, Z.L.; Wen, J.; Sun, H. Molecular phylogeny and biogeography of Astilbe (Saxifragaceae) in Asia and eastern North America. Bot. J. Linn. Soc. 2013, 171, 377–394. [Google Scholar] [CrossRef]
- Trader, B.W. Molecular and Morphological Investigation of Astilbe. Doctoral Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2006. [Google Scholar]
- Kim, S.Y.; Kim, S.H.; Shin, H.C.; Kim, Y.D. Molecular phylogeny of Astilbe: Implications for phylogeography and morphological evolution. Korean J. Plant Taxon. 2009, 39, 35–41. [Google Scholar] [CrossRef]
- Han, S.H.; Oh, B.U. A morphological study of Korean Astilbe (Saxifragaceae). J. Asia Pac. Biodivers. 2019, 12, 302–310. [Google Scholar] [CrossRef]
- Oh, A.; Han, S.H.; Oh, B.U. Astilbe uljinensis (Saxifragaceae), a new species from South Korea. PhytoKeys 2020, 161, 89–98. [Google Scholar] [CrossRef]
- Chung, G.Y.; Jang, H.D.; Chang, K.S.; Choi, H.J.; Kim, Y.S.; Kim, H.J.; Son, D.C. A checklist of endemic plants on the Korean Peninsula II. Korean J. Plant Taxon. 2023, 53, 79–101. [Google Scholar] [CrossRef]
- Jansen, R.K.; Ruhlman, T.A. Plastid genomes of seed plants. In Genomics of Chloroplasts and Mitochondria; Bock, R., Knoop, V., Eds.; Springer: Dutch, The Netherlands, 2012; pp. 103–126. [Google Scholar] [CrossRef]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; de Pamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar] [CrossRef]
- Palmer, J.D. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 1985, 19, 325–354. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, J.W. The complete chloroplast genome of Chamaecyparis obtusa (Cupressaceae). Mitochondrial DNA B Resour. 2020, 5, 3278–3279. [Google Scholar] [CrossRef]
- Shin, S.; Kim, S.C.; Hong, K.N.; Kang, H.; Lee, J.W. The complete chloroplast genome of Torreya nucifera (Taxaceae) and phylogenetic analysis. Mitochondrial DNA B Resour. 2019, 4, 2537–2538. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, Y.; Huang, H.; Ding, Y.; Hu, Y.; Xu, Z. The complete chloroplast genome of an inverted-repeat-lacking species, Vicia sepium, and its phylogeny. Mitochondrial DNA B Resour. 2018, 3, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.I.; Lee, H.O.; Lee, I.H.; Kim, I.S.; Lee, S.W.; Yang, T.J.; Shim, D. Complete chloroplast genome of Pinus densiflora Siebold & Zucc. and comparative analysis with five pine trees. Forests 2019, 10, 600. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, J.W.; Lee, M.W.; Baek, S.H.; Hong, K.N. The complete chloroplast genome sequences of Larix kaempferi and Larix olgensis var. koreana (Pinaceae). Mitochondrial DNA B Resourc. 2018, 3, 36–37. [Google Scholar] [CrossRef]
- Kim, S.C.; Baek, S.H.; Lee, J.W.; Hyun, H.J. Complete chloroplast genome of Vaccinium oldhamii and phylogenetic analysis. Mitochondrial DNA B 2019, 4, 902–903. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Zhang, Y.; Li, Y.; Gong, J.; Yi, Y. The complete chloroplast genome of Rhododendron delavayi (Ericaceae). Mitochondrial DNA B Resourc 2020, 5, 37–38. [Google Scholar] [CrossRef]
- Wang, Z.F.; Feng, H.F.; Li, Y.Y.; Wang, H.F.; Cao, H.L. The complete chloroplast genome of Rhododendron datiandingense (Ericaceae). Mitochondrial DNA B Resour. 2021, 6, 1749–1751. [Google Scholar] [CrossRef]
- Wang, Z.F.; Chang, L.W.; Cao, H.L. The complete chloroplast genome of Rhododendron kawakamii (Ericaceae). Mitochondrial DNA B Resour. 2021, 6, 2538–2540. [Google Scholar] [CrossRef]
- Xu, X.; Wang, D. Characterization of the complete chloroplast genome of Corydalis inopinata Prain ex Fedde (Papaveraceae). Mitochondrial DNA B Resour. 2020, 5, 3284–3285. [Google Scholar] [CrossRef]
- Kim, S.C.; Ha, Y.H.; Park, B.K.; Jang, J.E.; Kang, E.S.; Kim, Y.S.; Kimspe, T.H.; Kim, H.J.; Kim, H.J. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS ONE 2023, 18, e0289625. [Google Scholar] [CrossRef]
- Choi, K.S.; Park, K.T.; Park, S. The chloroplast genome of Symplocarpus renifolius: A comparison of chloroplast genome structure in Araceae. Genes 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE 2018, 13, e0196069. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.E.; Meyer, G.; Vandergon, T.; Vandergon, V.O. Loss of the acetyl-CoA carboxylase (accD) gene in Poales. Plant Mol. Biol. Rep. 2013, 31, 21–31. [Google Scholar] [CrossRef]
- Cauz-Santos, L.A.; Munhoz, C.F.; Rodde, N.; Cauet, S.; Santos, A.A.; Penha, H.A.; Dornelas, M.C.; Varani, A.M.; Oliveira, G.C.X.; Bergès, H.; et al. The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: Structural organization and phylogenomic studies in Malpighiales. Front. Plant Sci. 2017, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.J.; Zhang, C.Y.; Yan, H.F.; Zhang, L.; Ge, X.J.; Hao, G. Complete plastid genome sequence of Primula sinensis (Primulaceae): Structure comparison, sequence variation and evidence for accD transfer to nucleus. PeerJ 2016, 4, e2101. [Google Scholar] [CrossRef]
- Kim, S.C.; Ha, Y.H.; Kim, D.K.; Son, D.C.; Kim, H.J.; Choi, K. Comparative analysis and phylogenetic study of the chloroplast genome sequences of two Korean endemic Primula varieties. Diversity 2022, 14, 458. [Google Scholar] [CrossRef]
- Choi, I.S.; Choi, B.H. The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae. PLoS ONE 2017, 12, e0173766. [Google Scholar] [CrossRef]
- Choi, K.S.; Ha, Y.H.; Gil, H.Y.; Choi, K.; Kim, D.K.; Oh, S.H. Two Korean endemic Clematis chloroplast genomes: Inversion, reposition, expansion of the inverted repeat region, phylogenetic analysis, and nucleotide substitution rates. Plants 2021, 10, 397. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, J.S.; Kim, J.H. Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species. AoB Plants 2016, 8, plw015. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. TRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Mayor, C.; Brudno, M.; Schwartz, J.R.; Poliakov, A.; Rubin, E.M.; Frazer, K.A.; Pachter, L.S.; Dubchak, I. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16, 1046–1047. [Google Scholar] [CrossRef]
- Díez Menéndez, C.; Poczai, P.; Williams, B.; Myllys, L.; Amiryousefi, A. IRplus: An augmented tool to detect inverted repeats in plastid genomes. Genome Biol. Evol. 2023, 15, evad177. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Du, L.; Zhang, C.; Liu, Q.; Zhang, X.; Yue, B.; Hancock, J. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 2018, 34, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- O’Neill, A.R.; Badola, H.K.; Dhyani, P.P.; Rana, S.K. Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas. J. Ethnobiol. Ethnomed. 2017, 13, 21. [Google Scholar] [CrossRef]
- Hori, K.; Wada, M.; Yahara, S.; Watanabe, T.; Devkota, H.P. Antioxidant phenolic compounds from the rhizomes of Astilbe rivularis. Nat. Prod. Res. 2018, 32, 453–456. [Google Scholar] [CrossRef]
- Yang, Q.; Xin, C. Characterization of the complete chloroplast genome sequence of Deutzia glabrata (Saxifragaceae). Mitochondrial DNA B Resour. 2020, 5, 764–765. [Google Scholar] [CrossRef]
- Folk, R.A.; Sewnath, N.; Xiang, C.L.; Sinn, B.T.; Guralnick, R.P. Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC Plant Biol. 2020, 20, 324. [Google Scholar] [CrossRef]
- Ao, L.; Li, N.; Fardous Mohammad Safiul, A.; Li, S.; Zhao, T.; Wang, J.; Zou, Y.; Li, R.; Chen, S. Characteristics of the complete chloroplast genome of Saxifragaceae species Bergenia purpurascens (Hook. f. et Thoms.) Engl. Mitochondrial DNA B Resour. 2023, 8, 1454–1458. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Zhao, Z.; Li, M.; Liu, Z.; Peng, D. Complete chloroplast genomes and comparative analyses of three Paraphalaenopsis (Aeridinae, Orchidaceae) species. Int. J. Mol. Sci. 2023, 24, 11167. [Google Scholar] [CrossRef] [PubMed]
- Grassi, F.; Labra, M.; Scienza, A.; Imazio, S. Chloroplast SSR markers to assess DNA diversity in wild and cultivated grapevines. Vitis 2002, 41, 157–158. [Google Scholar]
- Chen, Z.; Yu, X.; Yang, Y.; Wei, P.; Zhang, W.; Li, X.; Liu, C.; Zhao, S.; Li, X.; Liu, X. Comparative analysis of chloroplast genomes within Saxifraga (Saxifragaceae) takes insights into their genomic evolution and adaption to the high-elevation environment. Genes 2022, 13, 1673. [Google Scholar] [CrossRef]
Name | A. taquetii | A. uljinensis |
---|---|---|
BioProject Number | PRJNA1169649 | PRJNA1165810 |
BioSample Number | SAMN44080492 | SAMN43946943 |
SRA Number | SRR30899081 | SRR30841564 |
Accession Number | PQ412805 | PQ412804 |
Genome Size [GC (%)] | 156,968 [37.8] | 157,142 [37.8] |
LSC [GC (%)] | 87,223 [35.7] | 87,272 [35.7] |
SSC [GC (%)] | 18,167 [32.1] | 18,138 [32.2] |
IR [GC (%)] | 25,789 [43.2] | 25,866 [43.2] |
Category | Group of Genes | Name of Genes |
---|---|---|
Self-replication | Large-subunit ribosomal proteins | rpl2(×2) *, rpl14, rpl16 *, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 |
DNA-dependent RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | |
Small-subunit ribosomal proteins | rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12(×2) *, rps14, rps15, rps16 *, rps18, rps19 | |
Ribosomal RNAs | rrn4.5S(×2), rrn5S(×2), rrn16S(×2), rrn23S(×2) | |
Transfer RNAs | trnA-UGC(×2) *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-GAU(×2) *, trnI-CAU(×2), trnK-UUU *, trnL-CAA(×2), trnL-UAA *, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC *, trnW-CCA, trnY-GUA | |
Photosynthesis | Subunits of ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI |
Subunits of NADH dehydrogenase | ndhA *, ndhB(×2) *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunits of cytochrome b/f complex | petA, petB *, petD, petG, petL, petN | |
Subunits of photosystem I | psaA, psaB, psaC, psaI, psaJ | |
Subunits of photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ | |
Subunit of rubisco | rbcL | |
Photosystem assembly factors | pafI **, pafII | |
Photosystem biogenesis factor | pbf1 | |
Other genes | Subunit of Acetyl-CoA-carboxylase | accD |
C-type cytochrome synthesis gene | ccsA | |
Envelop membrane protein | cemA | |
ATP-dependent protease subunit P | clpP ** | |
Translational initiation factor | infA | |
Maturase | matK | |
Unknown function | Conserved open reading frames | ycf1, ycf2(×2) |
SSR Type | Repeat Unit | A. rivularis | A. taquetii | A. koreana | A. uljinensis | A. chinensis | Total |
---|---|---|---|---|---|---|---|
Mono- | A/T | 34 | 37 | 37 | 37 | 35 | 183 |
C/G | 1 | 1 | 1 | ||||
Di- | AT/TA | 9 | 9 | 10 | 11 | 17 | 57 |
AG/TC | - | - | - | - | 1 | ||
Tri- | AAT/TTA | - | 1 | 1 | 1 | 4 | 7 |
Tetra- | AAAG/TTTC | - | 0 | - | - | 2 | 6 |
AAAT/TTTA | - | - | - | - | 2 | ||
AATT/TTAA | - | - | - | - | 2 | ||
Penta- | AAAAT/TTTTA | - | - | - | - | 1 | 1 |
Total | 44 | 47 | 49 | 49 | 65 | 254 |
Type of repeat | A. rivularis | A. taquetii | A. koreana | A. uljinensis | A. chinensis |
Forward (F) | 14 | 14 | 15 | 13 | 16 |
Reverse (R) | 14 | 12 | 11 | 14 | 11 |
Palindromic (P) | 19 | 21 | 21 | 20 | 20 |
Complementary (C) | 2 | 2 | 2 | 2 | 2 |
Total | 49 | 49 | 49 | 49 | 49 |
Length of repeat (bp) | A. rivularis | A. taquetii | A. koreana | A. uljinensis | A. chinensis |
≤20 | 22 | 16 | 18 | 22 | 17 |
21~30 | 21 | 25 | 20 | 20 | 20 |
31~40 | 6 | 7 | 7 | 7 | 7 |
51~60 | - | - | 4 | - | 4 |
≥61 | - | 1 | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Park, B.K.; Kim, H.-J. Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species. Genes 2024, 15, 1410. https://doi.org/10.3390/genes15111410
Kim S-C, Park BK, Kim H-J. Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species. Genes. 2024; 15(11):1410. https://doi.org/10.3390/genes15111410
Chicago/Turabian StyleKim, Sang-Chul, Beom Kyun Park, and Hyuk-Jin Kim. 2024. "Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species" Genes 15, no. 11: 1410. https://doi.org/10.3390/genes15111410
APA StyleKim, S.-C., Park, B. K., & Kim, H.-J. (2024). Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species. Genes, 15(11), 1410. https://doi.org/10.3390/genes15111410