ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. DNA Extraction and Sample Preparation
2.3. Whole Genome Sequencing (WGS) and Data Analysis
2.4. Bioinformatics Analysis
2.5. Validation of the Identified Variants and Genotyping
3. Results
3.1. Whole Genome Sequencing—Variant Annotation
3.2. Variants Within miRNA Regions and miRNAs Affected
3.3. Investigation of Target Genes of Affected miRNAs
3.4. Investigation of miRNA Variants
3.5. Common miRNA Variants
3.6. Validation of Common Variants—Genotyping Results
3.7. Common miRNA Variants and Differential Expression of miRNAs
4. Discussion
4.1. miRNAs Affected by Exclusive Variants
4.2. Molecular Mechanisms and Pathways Affected by miRNA Variants
4.3. Exclusive Variants in miRNA Regions
4.4. Study Limitations and Strengths
4.5. Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A Unique View on Male Infertility around the Globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, Z.; Kong, Y.; Jin, M.; Ma, L. Global, Regional and National Burden of Male Infertility in 204 Countries and Territories Between 1990 and 2019: An Analysis of Global Burden of Disease Study. BMC Public Health 2023, 23, 2195. [Google Scholar] [CrossRef]
- Skinner, M.K. Encyclopedia of Reproduction; Academic Press: Cambridge, MA, USA, 2018; Volume 357. [Google Scholar]
- Esteller, M. Non-Coding RNAs in Human Disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161. [Google Scholar]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 388354. [Google Scholar] [CrossRef]
- Plotnikova, O.; Baranova, A.; Skoblov, M. Comprehensive Analysis of Human MicroRNA–MRNA Interactome. Front. Genet. 2019, 10, 473651. [Google Scholar] [CrossRef]
- Wu, S.; Huang, S.; Ding, J.; Zhao, Y.; Liang, L.; Liu, T.; Zhan, R.; He, X. Multiple MicroRNAs Modulate P21Cip1/Waf1 Expression by Directly Targeting Its 3’ Untranslated Region. Oncogene 2010, 29, 2302–2308. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of MiRNAs on Target Genes and Critical MiRNAs in Cancers. Front. Genet. 2020, 11, 526581. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, J.; Cairns, M.J. Identifying MiRNAs, Targets and Functions. Brief. Bioinform. 2014, 15, 1–19. [Google Scholar] [CrossRef]
- Khawar, M.B.; Mehmood, R.; Roohi, N. MicroRNAs: Recent Insights towards Their Role in Male Infertility and Reproductive Cancers. Bosn. J. Basic Med. Sci. 2019, 19, 31. [Google Scholar] [CrossRef]
- Mukherjee, A.; Koli, S.; Reddy, K.V.R. Regulatory Non-Coding Transcripts in Spermatogenesis: Shedding Light on ‘Dark Matter’. Andrology 2014, 2, 360–369. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Carrell, D.T.; Jenkins, T.G.; Yeste, M. The Role of MiRNAs in Male Human Reproduction: A Systematic Review. Andrology 2020, 8, 7–26. [Google Scholar] [CrossRef]
- Machowska, M.; Galka-Marciniak, P.; Kozlowski, P. Consequences of Genetic Variants in MiRNA Genes. Comput. Struct. Biotechnol. J. 2022, 20, 6443. [Google Scholar] [CrossRef]
- Moszyńska, A.; Gebert, M.; Collawn, J.F.; Bartoszewski, R. SNPs in MicroRNA Target Sites and Their Potential Role in Human Disease. Open Biol. 2017, 7, 170019. [Google Scholar] [CrossRef]
- Andrew, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online] 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 7 September 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114. [Google Scholar] [CrossRef]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Liu, C.J.; Fu, X.; Xia, M.; Zhang, Q.; Gu, Z.; Guo, A.Y. MiRNASNP-v3: A Comprehensive Database for SNPs and Disease-Related Variations in MiRNAs and MiRNA Targets. Nucleic Acids Res. 2021, 49, D1276–D1281. [Google Scholar] [CrossRef]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef]
- Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; et al. MiRTargetLink 2.0—Interactive MiRNA Target Gene and Target Pathway Networks. Nucleic Acids Res. 2021, 49, W409–W416. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Consortium, T.G.O.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.; Ping, J.; Lu, H.; Zhou, G.; Lu, Y. 3DSNP 2.0: Update and Expansion of the Noncoding Genomic Variant Annotation Database. Nucleic Acids Res. 2022, 50, D950–D955. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Chatziparasidou, A.; Kyrgiafini, M.A.; Sarafidou, T.; Moutou, K.A.; Mamuris, Z. Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs Through GWAS and In Silico Analysis. Curr. Issues Mol. Biol. 2024, 46, 6522–6532. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Lewis, B.P.; Shih, I.H.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of Mammalian MicroRNA Targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef]
- Corral-Vazquez, C.; Salas-Huetos, A.; Blanco, J.; Vidal, F.; Sarrate, Z.; Anton, E. Sperm MicroRNA Pairs: New Perspectives in the Search for Male Fertility Biomarkers. Fertil. Steril. 2019, 112, 831–841. [Google Scholar] [CrossRef]
- Metzler-Guillemain, C.; Victorero, G.; Lepoivre, C.; Bergon, A.; Yammine, M.; Perrin, J.; Sari-Minodier, I.; Boulanger, N.; Rihet, P.; Nguyen, C. Sperm MRNAs and MicroRNAs as Candidate Markers for the Impact of Toxicants on Human Spermatogenesis: An Application to Tobacco Smoking. Syst. Biol. Reprod. Med. 2015, 61, 139–149. [Google Scholar] [CrossRef]
- Najafipour, R.; Momeni, A.; Yousefipour, F.; Mousavi, S.; Moghbelinejad, S. Underexpression of Hsa-MiR-449 Family and Their Promoter Hypermethylation in Infertile Men: A Case-Control Study. Int. J. Reprod. Biomed. 2021, 19, 23. [Google Scholar] [CrossRef]
- Conflitti, A.C.; Cicolani, G.; Buonacquisto, A.; Pallotti, F.; Faja, F.; Bianchini, S.; Blaconà, G.; Bruno, S.M.; Linari, A.; Lucarelli, M.; et al. Sperm DNA Fragmentation and Sperm-Borne MiRNAs: Molecular Biomarkers of Embryo Development? Int. J. Mol. Sci. 2023, 24, 1007. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Backes, C.; Leidinger, P.; Keller, A.; Lubbad, A.M.; Hammadeh, M.; Meese, E. MicroRNA Expression Profiles in Human Testicular Tissues of Infertile Men with Different Histopathologic Patterns. Fertil. Steril. 2014, 101, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Zhao, M.; Ding, N.; Yan, L.; Chen, J.; Gao, L.; Zhang, G.; Sun, X.; Gu, Y.; et al. MicroRNA Expression Profiles in the Seminal Plasma of Nonobstructive Azoospermia Patients with Different Histopathologic Patterns. Fertil. Steril. 2021, 115, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, X.; Wang, Z.; Li, J.; Xu, Z.; Miao, M.; Chen, G.; Lei, X.; Wu, J.; Shi, H.; et al. MicroRNA Expression Profile Analysis in Sperm Reveals Hsa-Mir-191 as an Auspicious Omen of In Vitro Fertilization. BMC Genom. 2020, 21, 165. [Google Scholar] [CrossRef] [PubMed]
- Belleannée, C.; Légaré, C.; Calvo, É.; Thimon, V.; Sullivan, R. MicroRNA Signature Is Altered in Both Human Epididymis and Seminal Microvesicles Following Vasectomy. Hum. Reprod. 2013, 28, 1455–1467. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Blanco, J.; Vidal, F.; Mercader, J.M.; Garrido, N.; Anton, E. New Insights into the Expression Profile and Function of Micro-Ribonucleic Acid in Human Spermatozoa. Fertil. Steril. 2014, 102, 213–222. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.; Zhao, Z.; Feng, M.; Zhang, S. Identification of Potential Core Genes and MiRNAs in Testicular Seminoma via Bioinformatics Analysis. Mol. Med. Rep. 2019, 20, 4013–4022. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Guo, J.; Zhang, P.; Zeng, W. The Roles of MicroRNAs in Regulation of Mammalian Spermatogenesis. J. Anim. Sci. Biotechnol. 2017, 8, 35. [Google Scholar] [CrossRef]
- Song, Y.; Kelava, L.; Zhang, L.; Kiss, I. Microarray Data Analysis to Identify MiRNA Biomarkers and Construct the LncRNA-MiRNA-MRNA Network in Lung Adenocarcinoma. Medicine 2022, 101, E30393. [Google Scholar] [CrossRef]
- Shi, J.; Gong, L.; Chen, L.; Luo, J.; Song, G.; Xu, J.; Lv, Z.; Tao, H.; Xia, Y.; Ye, Z. MiR-618 Suppresses Metastasis in Gastric Cancer by Downregulating the Expression of TGF-Β2. Anat. Rec. 2019, 302, 931–940. [Google Scholar] [CrossRef]
- Ivanovic, R.F.; Viana, N.I.; Morais, D.R.; Moura, C.; Silva, I.A.; Leite, K.R.; Pontes-Junior, J.; Nahas, W.C.; Srougi, M.; Reis, S.T. MiR-618: Possible Control over TIMP-1 and Its Expression in Localized Prostate Cancer. BMC Cancer 2018, 18, 992. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhong, C.; Duan, S. MiR-1269a and MiR-1269b: Emerging Carcinogenic Genes of the MiR-1269 Family. Front. Cell Dev. Biol. 2022, 10, 809132. [Google Scholar] [CrossRef] [PubMed]
- Castanhole-Nunes, M.M.U.; Tunissiolli, N.M.; Oliveira, A.R.C.P.; Mattos, M.F.; Galbiatti-Dias, A.L.S.; Kawasaki-Oyama, R.S.; Pavarino, E.C.; da Silva, R.F.; Goloni-Bertollo, E.M. MiR-612, MiR-637, and MiR-874 Can Regulate VEGFA Expression in Hepatocellular Carcinoma Cell Lines. Genes 2022, 13, 282. [Google Scholar] [CrossRef]
- Tang, J.; Tao, Z.H.; Wen, D.; Wan, J.L.; Liu, D.L.; Zhang, S.; Cui, J.F.; Sun, H.C.; Wang, L.; Zhou, J.; et al. MiR-612 Suppresses the Stemness of Liver Cancer via Wnt/β-Catenin Signaling. Biochem. Biophys. Res. Commun. 2014, 447, 210–215. [Google Scholar] [CrossRef]
- Ibañez-Perez, J.; Díaz-Nuñez, M.; Clos-García, M.; Lainz, L.; Iglesias, M.; Díez-Zapirain, M.; Rabanal, A.; Bárcena, L.; González, M.; Lozano, J.J.; et al. MicroRNA-Based Signatures Obtained from Endometrial Fluid Identify Implantative Endometrium. Hum. Reprod. 2022, 37, 2375–2391. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Yan, L.; Liang, G.; Zhu, C.; Wang, Y.; Ji, S.; He, C.; Sun, J.; Zhang, J. Exosomal MicroRNAs in Tubal Fluid May Be Involved in Damage to Tubal Reproductive Function Associated with Tubal Endometriosis. Reprod. Biomed. Online 2023, 47, 103249. [Google Scholar] [CrossRef]
- Zhou, W.; Lian, Y.; Jiang, J.; Wang, L.; Ren, L.; Li, Y.; Yan, X.; Chen, Q. Differential Expression of MicroRNA in Exosomes Derived from Endometrial Stromal Cells of Women with Endometriosis-Associated Infertility. Reprod. Biomed. Online 2020, 41, 170–181. [Google Scholar] [CrossRef]
- Feng, C.; Shen, J.M.; Lv, P.P.; Jin, M.; Wang, L.Q.; Rao, J.P.; Feng, L. Construction of Implantation Failure Related LncRNA-MRNA Network and Identification of LncRNA Biomarkers for Predicting Endometrial Receptivity. Int. J. Biol. Sci. 2018, 14, 1361. [Google Scholar] [CrossRef]
- Fu, J.; Qu, R.G.; Zhang, Y.J.; Gu, R.H.; Li, X.; Sun, Y.J.; Wang, L.; Sang, Q.; Sun, X.X. Screening of MiRNAs in Human Follicular Fluid Reveals an Inverse Relationship Between MicroRNA-663b Expression and Blastocyst Formation. Reprod. Biomed. Online 2018, 37, 25–32. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Ruan, J.; Li, Z.; Zhuang, X.; Tzeng, C.M. Integrated Analysis MiRNA and MRNA Profiling in Patients with Severe Oligozoospermia Reveals MiR-34c-3p Downregulates PLCXD3 Expression. Oncotarget 2016, 7, 52781. [Google Scholar] [CrossRef]
- Heidary, Z.; Zaki-Dizaji, M.; Saliminejad, K.; Khorram Khorshid, H.R. MicroRNA Profiling in Spermatozoa of Men with Unexplained Asthenozoospermia. Andrologia 2019, 51, e13284. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Blanco, J.; Vidal, F.; Grossmann, M.; Pons, M.C.; Garrido, N.; Anton, E. Spermatozoa from Normozoospermic Fertile and Infertile Individuals Convey a Distinct MiRNA Cargo. Andrology 2016, 4, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Yuan, Q.; Niu, M.; Fu, H.; Zhou, F.; Zhang, W.; Wang, H.; Wen, L.; Wu, L.; Li, Z.; et al. Distinct Expression Profiles and Novel Targets of MicroRNAs in Human Spermatogonia, Pachytene Spermatocytes, and Round Spermatids between OA Patients and NOA Patients. Mol. Ther. Nucleic Acids 2017, 9, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Piryaei, F.; Mozdarani, H.; Sadighi Gilani, M.A.; Rajender, S.; Finelli, R.; Darestanifarahani, M.; Sarli, A.; Mehta, P.; Agarwal, A. Global Analysis in Nonobstructive Azoospermic Testis Identifies MiRNAs Critical to Spermatogenesis. Andrologia 2023, 2023, 2074931. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Khaizaran, Z.A.; Ayesh, B.M.; Fischer, U.; Khaizaran, S.A.; Al-Battah, F.; Hammadeh, M.; Keller, A.; Meese, E. MicroRNAs in Combined Spent Culture Media and Sperm Are Associated with Embryo Quality and Pregnancy Outcome. Fertil. Steril. 2020, 113, 970–980. [Google Scholar] [CrossRef]
- Noveski, P.; Popovska-Jankovic, K.; Kubelka-Sabit, K.; Filipovski, V.; Lazarevski, S.; Plaseski, T.; Plaseska-Karanfilska, D. MicroRNA Expression Profiles in Testicular Biopsies of Patients with Impaired Spermatogenesis. Andrology 2016, 4, 1020–1027. [Google Scholar] [CrossRef]
- Rooda, I.; Kaselt, B.; Liivrand, M.; Smolander, O.P.; Salumets, A.; Velthut-Meikas, A. Hsa-Mir-548 Family Expression in Human Reproductive Tissues. BMC Genom. Data 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Lin, F.J.; Shen, L.; Jang, C.W.; Falnes, P.; Zhang, Y. Ikbkap/Elp1 Deficiency Causes Male Infertility by Disrupting Meiotic Progression. PLOS Genet. 2013, 9, e1003516. [Google Scholar] [CrossRef]
- Kaye, E.G.; Basavaraju, K.; Nelson, G.M.; Zomer, H.D.; Roy, D.; Joseph, I.I.; Rajabi-Toustani, R.; Qiao, H.; Adelman, K.; Reddi, P.P. RNA Polymerase II Pausing Is Essential during Spermatogenesis for Appropriate Gene Expression and Completion of Meiosis. Nat. Commun. 2024, 15, 848. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Sarafidou, T.; Mamuris, Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. Biology 2022, 11, 1510. [Google Scholar] [CrossRef]
- Nagirnaja, L.; Aston, K.I.; Conrad, D.F. Genetic Intersection of Male Infertility and Cancer. Fertil. Steril. 2018, 109, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Da Ni, F.; Hao, S.L.; Yang, W.X. Multiple Signaling Pathways in Sertoli Cells: Recent Findings in Spermatogenesis. Cell Death Dis. 2019, 10, 541. [Google Scholar] [CrossRef]
- Lane, D.P. Cancer. P53, Guardian of the Genome. Nature 1992, 358, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Beumer, T.L.; Roepers-Gajadien, H.L.; Gademan, I.S.; Van Buul, P.P.W.; Gil-Gomez, G.; Rutgers, D.H.; De Rooij, D.G. The Role of the Tumor Suppressor P53 in Spermatogenesis. Cell Death Differ. 1998, 5, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Gentile, T.; Gentile, M.; Morelli, A.; Donnarumma, F.; Cuomo, F.; De Filippo, S.; Montano, L. P53 Protein Evaluation on Spermatozoa DNA in Fertile and Infertile Males. J. Hum. Reprod. Sci. 2019, 12, 114. [Google Scholar] [CrossRef]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of MRNA Translation and Stability by MicroRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef]
- Gong, J.; Tong, Y.; Zhang, H.M.; Wang, K.; Hu, T.; Shan, G.; Sun, J.; Guo, A.Y. Genome-Wide Identification of SNPs in MicroRNA Genes and the SNP Effects on MicroRNA Target Binding and Biogenesis. Hum. Mutat. 2012, 33, 254–263. [Google Scholar] [CrossRef]
- Fu, A.; Hoffman, A.E.; Liu, R.; Jacobs, D.I.; Zheng, T.; Zhu, Y. Targetome Profiling and Functional Genetics Implicate MiR-618 in Lymphomagenesis. Epigenetics 2014, 9, 730–737. [Google Scholar] [CrossRef]
- Feng, X.; Ji, D.; Liang, C.; Fan, S. Does MiR-618 Rs2682818 Variant Affect Cancer Susceptibility? Evidence from 10 Case-Control Studies. Biosci. Rep. 2019, 39, BSR20190741. [Google Scholar] [CrossRef]
- Radanova, M.; Mihaylova, G.; Mihaylova, Z.; Ivanova, D.; Tasinov, O.; Nazifova-Tasinova, N.; Pavlov, P.; Mirchev, M.; Conev, N.; Donev, I. Circulating MiR-618 Has Prognostic Significance in Patients with Metastatic Colon Cancer. Curr. Oncol. 2021, 28, 1204–1215. [Google Scholar] [CrossRef]
- Chen, Y.; Du, M.; Chen, W.; Zhu, L.; Wu, C.; Zhang, Z.; Wang, M.; Chu, H.; Gu, D.; Chen, J. Polymorphism Rs2682818 in MiR-618 Is Associated with Colorectal Cancer Susceptibility in a Han Chinese Population. Cancer Med. 2018, 7, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Xia, H.; Lan, Q.; Gu, J.; Huang, H.; Zheng, F.; Zheng, Y. Polymorphism Rs2682818 Participates in the Progression of Colorectal Carcinoma via MiR-618-TIMP1 Regulatory Axis. Sci. Rep. 2021, 11, 23186. [Google Scholar] [CrossRef] [PubMed]
- Ozbayer, C.; Degirmenci, I.; Ustuner, D.; Ak, G.; Saydam, F.; Colak, E.; Gunes, H.V.; Metintas, M. MiRSNPs of MiR1274 and MiR3202 Genes That Target MeCP2 and DNMT3b Are Associated with Lung Cancer Risk: A Study Conducted on MassARRAY Genotyping. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 223–236. [Google Scholar] [CrossRef]
- Navabi, A.; Aznab, M.; Heydarpour, F. The Association between MicroRNA Polymorphisms and the Risk of Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis. Cancer Epidemiol. 2022, 81, 102285. [Google Scholar] [CrossRef]
- Pan, H.; Chen, B.; Wang, J.; Wang, X.; Hu, P.; Wu, S.; Liu, Y.; Xu, Z.; Zhang, W.; Wang, B.; et al. The MiR-449b Polymorphism, Rs10061133 A>G, Is Associated with Premature Ovarian Insufficiency. Menopause 2016, 23, 1009–1011. [Google Scholar] [CrossRef]
- Rah, H.C.; Chung, K.W.; Ko, K.H.; Kim, E.S.; Kim, J.O.; Sakong, J.H.; Kim, J.H.; Lee, W.S.; Kim, N.K. MiR-27a and MiR-449b Polymorphisms Associated with a Risk of Idiopathic Recurrent Pregnancy Loss. PLoS ONE 2017, 12, e0177160. [Google Scholar] [CrossRef]
- Kim, J.O.; Ahn, E.H.; Sakong, J.H.; An, H.J.; Park, H.S.; Kim, Y.R.; Lee, J.R.; Lee, W.S.; Kim, N.K. Association of MiR-27aA>G, MiR-423C>a, MiR-449bA>G, and MiR-604A>G Polymorphisms with Risk of Recurrent Implantation Failure. Reprod. Sci. 2020, 27, 29–38. [Google Scholar] [CrossRef]
- Castellini, C.; Cordeschi, G.; Tienforti, D.; Barbonetti, A. Relationship between Male Aging and Semen Quality: A Retrospective Study on over 2500 Men. Arch. Gynecol. Obstet. 2024, 309, 2843–2852. [Google Scholar] [CrossRef]
- Shi, Z.; Yu, M.; Guo, T.; Sui, Y.; Tian, Z.; Ni, X.; Chen, X.; Jiang, M.; Jiang, J.; Lu, Y.; et al. MicroRNAs in Spermatogenesis Dysfunction and Male Infertility: Clinical Phenotypes, Mechanisms and Potential Diagnostic Biomarkers. Front. Endocrinol. 2024, 15, 1293368. [Google Scholar] [CrossRef]
- Barbu, M.G.; Thompson, D.C.; Suciu, N.; Voinea, S.C.; Cretoiu, D.; Predescu, D.V. The Roles of MicroRNAs in Male Infertility. Int. J. Mol. Sci. 2021, 22, 2910. [Google Scholar] [CrossRef]
- Spitzer, T.; Fujimoto, V. Ethnic Differences in Assisted Reproductive Technologies Outcomes. Semin. Reprod. Med. 2013, 31, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, C.; Marcu, D.; Immler, S. Accounting for the Genetic Load in Assisted Reproductive Technology. Clin. Transl. Med. 2022, 12, e864. [Google Scholar] [CrossRef] [PubMed]
- Saint Pierre, A.; Génin, E. How Important Are Rare Variants in Common Disease? Brief. Funct. Genom. 2014, 13, 353–361. [Google Scholar] [CrossRef] [PubMed]
Demographics | Normozoospermic (n = 10) | Teratozoospermic (n = 5) | Asthenozoospermic (n = 5) | Oligozoospermic (n = 5) | p-Value |
---|---|---|---|---|---|
Age | 28–53 Mean = 36.4 (SD = 7.2) | 31–49 Mean = 38 (SD = 6.82) | 21–32 Mean = 29 (SD = 5.07) | 34–41 Mean = 39 (SD = 2.83) | 0.049717 (ANOVA) 0.037 (Tukey’s test, Asthenoz.–Oligoz.) |
Body Mass Index (BMI) | 19.5–40.4 Mean = 26.97 (SD = 6.07) | 24.8–33 Mean = 29.24 (SD = 3.31) | 20.5–32.3 Mean = 25.33 (SD = 5.28) | 26.5–36.3 Mean = 31.1 (SD = 4.43) | 0.362778 (ANOVA) |
Smoking | 30% Not Smoking, 70% Smoking | 60% Not Smoking, 40% Smoking | 60% Not Smoking, 40% Smoking | 40% Not Smoking, 60% Smoking | 0.4148 (chi-square test) |
Alcohol | 100% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 0.560632 (chi-square test) |
Variant | Gene | miRNAs | Region |
---|---|---|---|
rs17797090 | MIR3652 | hsa-mir-3652 | pre-miRNA |
rs2682818 | MIR618 | hsa-mir-618 | pre-miRNA |
rs35170395 | MIR3171 | hsa-mir-3171 | pre-miRNA |
rs7210937 | MIR1269B | hsa-mir-1269b | pre-miRNA and seed region |
rs10670323 | MIR516B2 | hsa-mir-516b-2 | pre-miRNA |
rs72563729 | MIR200B | hsa-mir-200b | pre-miRNA |
rs74904371 | MIR2682 | hsa-mir-2682, hsa-miR-2682-3p | pre-miRNA and seed region |
rs451887 | MIR5692B | hsa-mir-5692b | pre-miRNA and seed region |
rs5996397 | MIR650 | hsa-mir-650 | pre-miRNA |
rs200194626 | MIR663B | hsa-mir-663b | pre-miRNA |
rs199671138 | MIR663B | hsa-mir-663b | pre-miRNA |
rs12233076 | MIR4441 | hsa-mir-4441 | pre-miRNA |
rs78831152 | MIR4789 | hsa-mir-4789 | pre-miRNA |
rs6787734 | MIR3135A | hsa-mir-3135a | pre-miRNA |
rs142342924 | MIR3135A | hsa-mir-3135a | pre-miRNA |
rs4994089 | MIR548U | hsa-mir-548u | pre-miRNA |
rs374409015 | MIR4467 | hsa-mir-4467 | pre-miRNA and seed region |
rs6943868 | MIR3683 | hsa-mir-3683 | pre-miRNA |
rs1844035 | MIR4477B | hsa-mir-4477a, hsa-mir-4477b | pre-miRNA |
Variants | Genes | miRNAs | Region |
---|---|---|---|
rs17091403 | MIR2110 | hsa-mir-2110 | pre-miRNA |
rs12803915 | MIR612 | hsa-mir-612 | pre-miRNA |
rs17797090 | MIR3652 | hsa-mir-3652 | pre-miRNA |
rs2682818 | MIR618 | hsa-mir-618 | pre-miRNA |
rs11435035 | MIR5094 | hsa-mir-5094 | pre-miRNA |
rs7210937 | MIR1269B | hsa-miR-1269b | pre-miRNA and seed region |
rs74704964 | MIR518D | hsa-mir-518d | pre-miRNA |
rs117258475 | MIR296 | hsa-mir-296, hsa-miR-296-3p | mature miRNA and pre-miRNA |
rs451887 | MIR5692B | hsa-mir-5692b | pre-miRNA and seed region |
rs5996397 | MIR650 | hsa-mir-650 | pre-miRNA |
rs12233076 | MIR4441 | hsa-mir-4441 | pre-miRNA |
rs78832554 | MIR4786 | hsa-mir-4786 | pre-miRNA |
rs6787734 | MIR3135A | hsa-mir-3135a | pre-miRNA |
rs142342924 | MIR3135A | hsa-mir-3135a | pre-miRNA |
rs10575780 | MIR3938 | hsa-mir-3938 | pre-miRNA |
rs10061133 | MIR449B | hsa-mir-449b, hsa-miR-449b-5p | mature miRNA and pre-miRNA |
rs73024232 | MIR3939 | hsa-mir-3939 | pre-miRNA and seed region |
rs67030829 | MIR4645 | hsa-mir-4645 | pre-miRNA |
rs4994089 | MIR548U | hsa-mir-548u | pre-miRNA |
rs921372085 | MIR4656 | hsa-mir-4656 | pre-miRNA |
rs12549434 | MIR5680 | hsa-mir-5680 | pre-miRNA |
rs113454901 | MIR3689D1 | hsa-mir-3689d-1 | pre-miRNA |
rs1844035 | MIR4477B | hsa-mir-4477a, hsa-mir-4477b | pre-miRNA |
rs356125 | MIR2278 | hsa-mir-2278 | pre-miRNA |
Variants | Genes | miRNAs | Region |
---|---|---|---|
rs17091403 | MIR2110 | hsa-mir-2110 | pre-miRNA |
rs12803915 | MIR612 | hsa-mir-612 | pre-miRNA |
rs17797090 | MIR3652 | hsa-mir-3652 | pre-miRNA |
rs191393746 | MIR1538 | hsa-mir-1538 | pre-miRNA |
rs7210937 | MIR1269B | hsa-miR-1269b | pre-miRNA and seed region |
rs72855836 | MIR3976 | hsa-mir-3976 | pre-miRNA |
rs56013413 | MIR520H | hsa-mir-520h | pre-miRNA |
rs117258475 | MIR296 | hsa-mir-296, hsa-miR-296-3p | mature miRNA and pre-miRNA |
rs451887 | MIR5692B | hsa-mir-5692b | pre-miRNA and seed region |
rs200194626 | MIR663B | hsa-mir-663b | pre-miRNA |
rs199671138 | MIR663B | hsa-mir-663b | pre-miRNA |
rs767805489 | MIR1302-4 | hsa-mir-1302-4 | pre-miRNA |
rs12233076 | MIR4441 | hsa-mir-4441 | pre-miRNA |
rs918690276 | MIR548AD | hsa-mir-548ad | pre-miRNA |
rs114803590 | MIR559 | hsa-mir-559 | pre-miRNA |
rs78831152 | MIR4789 | hsa-mir-4789 | pre-miRNA |
rs6787734 | MIR3135A | hsa-mir-3135a | pre-miRNA |
rs772572114 | MIR3142 | hsa-miR-3142 | mature miRNA and pre-miRNA |
rs10061133 | MIR449B | hsa-mir-449b, hsa-miR-449b-5p | mature miRNA and pre-miRNA |
rs73024232 | MIR3939 | hsa-miR-3939 | pre-miRNA and seed region |
rs12197631 | MIR548A1 | hsa-mir-548a-1 | pre-miRNA |
rs6943868 | MIR3683 | hsa-mir-3683 | pre-miRNA |
rs12549434 | MIR5680 | hsa-mir-5680 | pre-miRNA |
rs73235381 | MIR548H4 | hsa-mir-548h-4, hsa-miR-548h-3p | mature miRNA and pre-miRNA |
rs184537764 | MIR548H4 | hsa-mir-548h-4 | pre-miRNA |
rs1844035 | MIR4477B | hsa-mir-4477a, hsa-mir-4477b | pre-miRNA |
rs356125 | MIR2278 | hsa-mir-2278 | pre-miRNA |
Variants | MAF | miRNAs | Region | RegulomeDB Rank | 3DSNP Score |
---|---|---|---|---|---|
rs17797090 | 0.17 | hsa-mir-3652 | pre-miRNA | 1f | 203.36 |
rs2682818 | 0.42 | hsa-mir-618 | pre-miRNA | 4 | 18.24 |
rs10670323 | 0.37 | hsa-mir-516b-2 | pre-miRNA | 7 | 17.23 |
rs72563729 | 0.04 | hsa-mir-200b | pre-miRNA | 4 | 13.67 |
rs74904371 | 0.08 | hsa-mir-2682, hsa-miR-2682-3p | pre-miRNA and seed region | 4 | 65.09 |
rs5996397 | 0.38 | hsa-mir-650 | pre-miRNA | 1d | 11.19 |
rs6787734 | 0.50 | hsa-mir-3135a | pre-miRNA | 1d | 3.09 |
rs374409015 | 0.08 | hsa-mir-4467 | pre-miRNA and seed region | 1f | 3.82 |
Variants | MAF | miRNAs | Region | RegulomeDB Rank | 3DSNP Score |
---|---|---|---|---|---|
rs17091403 | 0.12 | hsa-mir-2110 | pre-miRNA | 1f | 205.72 |
rs12803915 | 0.33 | hsa-mir-612 | pre-miRNA | 1f | 56.74 |
rs17797090 | 0.17 | hsa-mir-3652 | pre-miRNA | 1f | 203.36 |
rs2682818 | 0.42 | hsa-mir-618 | pre-miRNA | 4 | 18.24 |
rs11435035 | 0.48 | hsa-mir-5094 | pre-miRNA | 2b | 7.04 |
rs74704964 | 0.07 | hsa-mir-518d | pre-miRNA | 5 | 17.68 |
rs5996397 | 0.38 | hsa-mir-650 | pre-miRNA | 1d | 11.19 |
rs6787734 | 0.50 | hsa-mir-3135a | pre-miRNA | 1d | 3.09 |
rs10061133 | 0.34 | hsa-mir-449b, hsa-miR-449b-5p | mature miRNA and pre-miRNA | 1f | 5.52 |
rs73024232 | 0.38 | hsa-mir-3939 | pre-miRNA and seed region | 4 | 201.97 |
rs67030829 | 0.03 | hsa-mir-4645 | pre-miRNA | 4 | 213.74 |
rs356125 | 0.13 | hsa-mir-2278 | pre-miRNA | 1f | 4.85 |
Variants | MAF | miRNAs | Region | RegulomeDB Rank | 3DSNP Score |
---|---|---|---|---|---|
rs17091403 | 0.12 | hsa-mir-2110 | pre-miRNA | 1f | 205.72 |
rs12803915 | 0.33 | hsa-mir-612 | pre-miRNA | 1f | 56.74 |
rs17797090 | 0.17 | hsa-mir-3652 | pre-miRNA | 1f | 203.36 |
rs191393746 | 0.04 | hsa-mir-1538 | pre-miRNA | 4 | 204.49 |
rs56013413 | 0.30 | hsa-mir-520h | pre-miRNA | 7 | 20.62 |
rs767805489 | <0.01 | hsa-mir-1302-4 | pre-miRNA | 2b | 1.49 |
rs114803590 | 0.05 | hsa-mir-559 | pre-miRNA | 1f | 2.20 |
rs6787734 | 0.50 | hsa-mir-3135a | pre-miRNA | 1d | 3.09 |
rs772572114 | <0.01 | hsa-mir-3142 | mature miRNA and pre-miRNA | 1f | 6.22 |
rs10061133 | 0.34 | hsa-mir-449b, hsa-miR-449b-5p | mature miRNA and pre-miRNA | 1f | 5.52 |
rs73024232 | 0.38 | hsa-miR-3939 | pre-miRNA and seed region | 4 | 201.97 |
rs184537764 | 0.11 | hsa-mir-548h-4 | pre-miRNA | 1f | 2.30 |
rs356125 | 0.13 | hsa-mir-2278 | pre-miRNA | 1f | 4.85 |
Variants | MAF | miRNAs | Region | Infertility Category |
---|---|---|---|---|
rs17797090 | 0.17 | hsa-mir-3652 | pre-miRNA | Terato–Astheno–Oligo |
rs1844035 | 0.50 | hsa-mir-4477a, hsa-mir-4477b | pre-miRNA | Terato–Astheno–Oligo |
rs7210937 | 0.50 | hsa-mir-1269b | pre-miRNA and seed region | Terato–Astheno–Oligo |
rs451887 | 0.50 | hsa-mir-5692b | pre-miRNA and seed region | Terato–Astheno–Oligo |
rs12233076 | 0.49 | hsa-mir-4441 | pre-miRNA | Terato–Astheno–Oligo |
rs6787734 | 0.50 | hsa-mir-3135a | pre-miRNA | Terato–Astheno–Oligo |
rs5996397 | 0.38 | hsa-mir-650 | pre-miRNA | Terato–Astheno |
rs142342924 | 0.27 | hsa-mir-3135a | pre-miRNA | Terato–Astheno |
rs4994089 | 0.25 | hsa-mir-548u | pre-miRNA | Terato–Astheno |
rs2682818 | 0.42 | hsa-mir-618 | pre-miRNA | Terato–Astheno |
rs200194626 | <0.01 | hsa-mir-663b | pre-miRNA | Terato–Oligo |
rs199671138 | <0.01 | hsa-mir-663b | pre-miRNA | Terato–Oligo |
rs78831152 | 0.26 | hsa-mir-4789 | pre-miRNA | Terato–Oligo |
rs6943868 | 0.48 | hsa-mir-3683 | pre-miRNA | Terato–Oligo |
rs17091403 | 0.12 | hsa-mir-2110 | pre-miRNA | Astheno–Oligo |
rs12803915 | 0.33 | hsa-mir-612 | pre-miRNA | Astheno–Oligo |
rs117258475 | 0.02 | hsa-mir-296, hsa-miR-296-3p | mature miRNA and pre-miRNA | Astheno–Oligo |
rs10061133 | 0.34 | hsa-mir-449b, hsa-miR-449b-5p | mature miRNA and pre-miRNA | Astheno–Oligo |
rs73024232 | 0.38 | hsa-mir-3939 | pre-miRNA and seed region | Astheno–Oligo |
rs12549434 | 0.19 | hsa-mir-5680 | pre-miRNA | Astheno–Oligo |
rs356125 | 0.13 | hsa-mir-2278 | pre-miRNA | Astheno–Oligo |
Variants | p-Value |
---|---|
rs1844035 | 0.023 |
rs12233076 | 0.004 |
rs142342924 | 0.002 |
rs6943868 | 0.02 |
rs117258475 | 0.041 |
rs73024232 | 0.015 |
rs12549434 | 0.006 |
rs356125 | 0.036 |
miRNAs | Tissue | Comparison | Function | References |
---|---|---|---|---|
hsa-mir-296 | Semen | Fertile patients vs. teratozoospermic patients | NA | Corral-Vazquez et al. (2019) [38] |
hsa-mir-296 | Semen | Smokers vs. non-smokers | Downregulated | Metzler-Guillemain et al. (2015) [39] |
hsa-mir-449b | Semen | Infertile vs. fertile men | Downregulated | Najafipour et al. (2021) [40] |
hsa-mir-449b | Semen | Men of couples undergoing ART | Positively associated with sperm DNA fragmentation | Confitti et al. (2023) [41] |
hsa-mir-449b | Testicular tissue | Patients with germ cell arrest vs. normal | Downregulated | Abu-Halima et al. (2014) [42] |
hsa-mir-548u | Seminal plasma | Patients with Sertoli cell-only syndrome (SCOS) vs. normal fertile controls | Upregulated | Zhang et al. (2021) [43] |
hsa-mir-618 | Semen | Comparison between IVF patients’ groups with different fertilization, effective embryo rate and high-quality embryo rate | NA | Xu et al. (2020) [44] |
hsa-mir-663b | Seminal microvesicles | Patients before vasectomy and after vasectomy | Upregulated | Belleannée et al. 2013 [45] |
hsa-mir-663b | Semen | Ten individuals with normal seminogram, standard karyotype, and proven fertility | Most stable miRNA (top 10) | Salas-Huetos et al. (2014) [46] |
hsa-mir-650 | Testicular tissue | Seminoma tissues vs. normal tissues | Downregulated | Wang et al. (2019) [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrgiafini, M.-A.; Vasilev, V.V.; Chatziparasidou, A.; Mamuris, Z. ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing. Genes 2024, 15, 1393. https://doi.org/10.3390/genes15111393
Kyrgiafini M-A, Vasilev VV, Chatziparasidou A, Mamuris Z. ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing. Genes. 2024; 15(11):1393. https://doi.org/10.3390/genes15111393
Chicago/Turabian StyleKyrgiafini, Maria-Anna, Veselin Veselinov Vasilev, Alexia Chatziparasidou, and Zissis Mamuris. 2024. "ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing" Genes 15, no. 11: 1393. https://doi.org/10.3390/genes15111393
APA StyleKyrgiafini, M.-A., Vasilev, V. V., Chatziparasidou, A., & Mamuris, Z. (2024). ΜicroRNA (miRNA) Variants in Male Infertility: Insights from Whole-Genome Sequencing. Genes, 15(11), 1393. https://doi.org/10.3390/genes15111393