Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Total RNA Extraction
2.3. Synthesis of cDNA Synthesis
2.4. Candidate Reference Genes Primer Design
2.5. Determination of Standard Preparation and Determination of Gene Amplification Efficiency
2.6. Quantitative Real-Time PCR (qRT-PCR)
2.7. Data Processing and Analysis
3. Results
3.1. Verification of Primer Specificity and Specificity Analysis
3.2. Ct Analysis of Reference Genes in Leaves or Roots of Infected Sweet Potatoes
3.3. Stability Analysis of Candidate Genes
3.3.1. GeNorm Analysis of Candidate Reference Genes in Leaves or Roots of Sweet Potato
3.3.2. NormFinder Analysis of Candidate Reference Genes in Leaves or Roots of Sweet Potato
3.3.3. BestKeeper Analysis of Candidate Reference Genes in Leaves or Roots of Sweet Potato
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ginzinger, D.G. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 2002, 30, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2022, 29, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.D.; Wang, B.; Li, Y.P.; Zeng, M.J.; Liu, J.T.; Ye, X.R.; Zhu, H.S.; Wen, Q.F. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions. Sci. Rep. 2021, 11, 3161. [Google Scholar] [CrossRef]
- Yu, Y.T.; Zhang, G.; Chen, Y.K.; Bai, Q.Q.; Gao, C.S.; Zeng, L.B.; Li, Z.M.; Cheng, Y.; Chen, J.; Sun, X.P.; et al. Selection of reference genes for qPCR analyses of gene expression in ramie leaves and roots across eleven abiotic/biotic treatments. Sci. Rep. 2019, 9, 20004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Løvdal, T.; Lillo, C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 2009, 387, 238–242. [Google Scholar] [CrossRef]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, B.J.; Willems, L.; Bassel, G.W.; van Bolderen-Veldkamp, R.P.; Ligterink, W.; Hilhorst, H.W.; Bentsink, L. Identification of reference genes for RT–qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol. 2012, 53, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Pang, X.; Wan, H.; Ahammed, G.J.; Yu, J.; Yao, Z.; Ruan, M.; Ye, Q.; Li, Z.; Wang, R.; et al. Identification of Optimal Reference Genes for Normalization of qPCR Analysis during Pepper Fruit Development. Front. Plant Sci. 2017, 8, 1128. [Google Scholar] [CrossRef] [Green Version]
- Park, S.C.; Kim, Y.H.; Ji, C.Y.; Park, S.; Jeong, J.C.; Lee, H.S.; Kwak, S.S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE 2012, 7, e51502. [Google Scholar] [CrossRef]
- Glare, E.; Divjak, M.; Bailey, M.; Walters, E. β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 2002, 57, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.M.; Liu, Y.P.; Ma, X.; Shuai, Q.; Gai, J.Y.; Li, Y. Evaluation of reference genes for normalization of gene expression using quantitative RT-PCR under aluminum, cadmium, and heat stresses in soybean. PLoS ONE 2017, 12, e0168965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Cong, P.H.; Tian, Y.; Zhu, Y.M. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots. PLoS ONE 2017, 12, e0185288. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Biochemical and Communications Biophysical Research. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Nicot, N.; Hausman, J.F.; Hoffmann, L.; Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 2005, 56, 2907–2914. [Google Scholar] [CrossRef] [PubMed]
- Lilly, S.T.; Drummond, R.S.M.; Pearson, M.N.; MacDiarmid, R.M. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant Microbe Interact. 2011, 24, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Mascia, T.; Santovito, E.; Gallitelli, D.; Cillo, F. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol. Plant Pathol. 2010, 11, 805–816. [Google Scholar] [CrossRef]
- Baek, E.; Yoon, J.Y.; Palukaitis, P. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco. Virology 2017, 510, 29–39. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Udvardi, M.K.; Czechowski, T.; Scheible, W.R. Eleven golden rules of quantitative RT-PCR. Plant Cell Online 2008, 20, 1736–1737. [Google Scholar] [CrossRef] [Green Version]
- Guenin, S.; Mauriat, M.; Pelloux, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Lu, H.; Wan, C.; Tang, D.; Zhao, Y.; Luo, K.; Li, S.; Wang, J. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato. Plants 2020, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Untiveros, M.; Fuentes, S.; Salazar, L.F. Synergistic interaction of sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 2007, 91, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Mukasa, S.B.; Rubaihayo, P.R.; Valkonen, J.P.T. Incidence of viruses and virus like diseases of sweet potato in Uganda. Plant Dis. 2003, 87, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Ateka, E.M.; Njeru, R.W.; Kibaru, A.G.; Kimenju, J.W.; Barg, E.; Gibson, R.W.; Vetten, H.J. Identification and distribution of viruses infecting sweet potato in Kenya. Ann. Appl. Biol. 2004, 144, 371–379. [Google Scholar] [CrossRef]
- Yang, C.; Pan, H.; Liu, Y.; Zhou, X. Stably expressed housekeeping genes across developmental stages in the two-spotted spider mite, Tetranychus urticae. PLoS ONE 2015, 10, e0120833. [Google Scholar] [CrossRef]
- Yu, J.; Su, Y.; Sun, J.; Liu, J.; Li, Z.; Zhang, B. Selection of stable reference genes for gene expression analysis in sweet potato (Ipomoea batatas L.). Mol. Cell. Probes 2020, 53, 101610. [Google Scholar] [CrossRef]
- Li, G.L.; Xu, G.C.; Lin, Z.M.; Li, H.W.; Liu, Z.H.; Xu, Y.Q.; Zhang, H.; Ji, R.C.; Luo, W.B.; Qiu, Y.X.; et al. Selection of suitable reference genes for RT-qPCR normalization in sweet potato (Ipomoea batatas L.) under different stresses. J. Hortic. Sci. Biotech. 2021, 96, 209–219. [Google Scholar]
- Jarošová, J.; Kundu, J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010, 10, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Classification | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
leaf samples not infected with viruses (n = 8) | Gene name | ATUB | 18S | CYP | UBI | ARF | ACT | GAP | PLD |
coeff. of Corr. [r] | 0.99 | 0.98 | 0.97 | 0.97 | 0.96 | 0.96 | 0.94 | 0.62 | |
coeff. of det. [r2] | 0.97 | 0.96 | 0.95 | 0.95 | 0.93 | 0.92 | 0.88 | 0.39 | |
Geo Mean [Ct] | 19.45 | 14.37 | 21.1 | 19.71 | 21.28 | 21.99 | 21.2 | 22.74 | |
min [Ct] | 18.29 | 13.71 | 19.61 | 18.34 | 20.03 | 20.72 | 19.54 | 21.27 | |
max [Ct] | 21.58 | 15.28 | 22.46 | 21.02 | 22.86 | 23.84 | 23.14 | 24.32 | |
SD [±Ct] | 0.87 | 0.38 | 0.73 | 0.76 | 0.76 | 0.82 | 0.9 | 0.9 | |
CV [%] | 4.46 | 2.61 | 3.48 | 3.85 | 3.57 | 3.72 | 4.25 | 3.97 | |
min [x-fold] | −2.23 | −1.58 | −2.81 | −2.58 | −2.38 | −2.43 | −3.15 | −2.77 | |
max [x-fold] | 4.39 | 1.87 | 2.58 | 2.49 | 2.98 | 3.59 | 3.82 | 2.98 | |
SD [±x-fold] | 1.83 | 1.3 | 1.66 | 1.69 | 1.7 | 1.76 | 1.87 | 1.87 | |
leaf samples infected with virus (n = 8) | Gene name | CYP | ARF | PLD | 18S | ACT | ATUB | GAP | UBI |
coeff. of Corr. [r] | 0.97 | 0.90 | 0.87 | 0.79 | 0.71 | 0.66 | 0.64 | 0.58 | |
coeff. of det. [r2] | 0.94 | 0.81 | 0.75 | 0.63 | 0.51 | 0.44 | 0.4 | 0.34 | |
Geo Mean [Ct] | 20.56 | 21.24 | 22.24 | 13.58 | 21.7 | 18.6 | 21.39 | 19.44 | |
min [Ct] | 19.95 | 20.49 | 21.42 | 13.07 | 21.03 | 17.65 | 20.11 | 19.06 | |
max [Ct] | 21.18 | 22.03 | 22.94 | 13.99 | 22.54 | 19.91 | 22.34 | 20.36 | |
SD [±Ct] | 0.25 | 0.38 | 0.35 | 0.27 | 0.45 | 0.55 | 0.54 | 0.27 | |
CV [%] | 1.22 | 1.77 | 1.59 | 2.01 | 2.08 | 2.93 | 2.52 | 1.37 | |
min [x-fold] | −1.52 | −1.69 | −1.76 | −1.43 | −1.59 | −1.94 | −2.43 | −1.3 | |
max [x-fold] | 1.54 | 1.73 | 1.62 | 1.32 | 1.78 | 2.48 | 1.94 | 1.89 | |
SD [±x-fold] | 1.19 | 1.3 | 1.28 | 1.21 | 1.37 | 1.46 | 1.45 | 1.2 | |
nonvirus-infected root samples (n = 8) | Gene name | 18S | GAP | CYP | ACT | ATUB | UBI | PLD | ARF |
coeff. of Corr. [r] | 0.99 | 0.95 | 0.94 | 0.81 | 0.78 | 0.75 | 0.72 | 0.47 | |
coeff. of det. [r2] | 0.98 | 0.9 | 0.88 | 0.65 | 0.61 | 0.56 | 0.52 | 0.22 | |
Geo Mean [Ct] | 13.41 | 21.1 | 22.78 | 22.73 | 23.92 | 21.16 | 22.79 | 23.04 | |
min [Ct] | 13.08 | 20.24 | 21.97 | 22.03 | 22.44 | 20.09 | 22.01 | 21.97 | |
max [Ct] | 13.84 | 22.05 | 24.01 | 23.47 | 24.77 | 22.21 | 23.64 | 23.98 | |
SD [±Ct] | 0.2 | 0.45 | 0.5 | 0.43 | 0.53 | 0.48 | 0.43 | 0.51 | |
CV [%] | 1.46 | 2.12 | 2.2 | 1.89 | 2.21 | 2.26 | 1.87 | 2.2 | |
min [x-fold] | −1.25 | −1.82 | −1.76 | −1.62 | −2.79 | −2.1 | −1.71 | −2.1 | |
max [x-fold] | 1.35 | 1.93 | 2.34 | 1.67 | 1.8 | 2.07 | 1.8 | 1.92 | |
SD [±x-fold] | 1.15 | 1.36 | 1.42 | 1.35 | 1.44 | 1.39 | 1.34 | 1.42 | |
virus-infected root samples (n = 8) | Gene name | CYP | PLD | GAP | ACT | UBI | ARF | 18S | ATUB |
coeff. of Corr. [r] | 0.95 | 0.91 | 0.84 | 0.62 | 0.58 | 0.27 | −0.37 | −0.39 | |
coeff. of det. [r2] | 0.89 | 0.82 | 0.7 | 0.38 | 0.33 | 0.07 | 0.13 | 0.15 | |
Geo Mean [Ct] | 22.64 | 21.96 | 20.9 | 22.09 | 21.02 | 22.61 | 13.02 | 23.01 | |
min [Ct] | 21.86 | 21.26 | 20.47 | 21.35 | 20.14 | 22.35 | 11.44 | 22.28 | |
max [Ct] | 23.52 | 22.7 | 21.27 | 22.62 | 21.79 | 22.91 | 13.73 | 23.73 | |
SD [±Ct] | 0.52 | 0.3 | 0.26 | 0.26 | 0.52 | 0.17 | 0.41 | 0.31 | |
CV [%] | 2.31 | 1.36 | 1.22 | 1.19 | 2.45 | 0.77 | 3.17 | 1.36 | |
min [x-fold] | −1.71 | −1.63 | −1.35 | −1.67 | −1.85 | −1.2 | −3 | −1.65 | |
max [x-fold] | 1.85 | 1.67 | 1.29 | 1.45 | 1.7 | 1.23 | 1.63 | 1.65 | |
SD [±x-fold] | 1.44 | 1.23 | 1.19 | 1.2 | 1.43 | 1.13 | 1.33 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Sun, X.; Zhu, X.; Wu, B.; Hong, H.; Xin, Z.; Xin, X.; Peng, J.; Jiang, S. Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants. Genes 2023, 14, 1477. https://doi.org/10.3390/genes14071477
Li G, Sun X, Zhu X, Wu B, Hong H, Xin Z, Xin X, Peng J, Jiang S. Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants. Genes. 2023; 14(7):1477. https://doi.org/10.3390/genes14071477
Chicago/Turabian StyleLi, Guangyan, Xiaohui Sun, Xiaoping Zhu, Bin Wu, Hao Hong, Zhimei Xin, Xiangqi Xin, Jiejun Peng, and Shanshan Jiang. 2023. "Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants" Genes 14, no. 7: 1477. https://doi.org/10.3390/genes14071477
APA StyleLi, G., Sun, X., Zhu, X., Wu, B., Hong, H., Xin, Z., Xin, X., Peng, J., & Jiang, S. (2023). Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants. Genes, 14(7), 1477. https://doi.org/10.3390/genes14071477