Tempo and Mode of Genome Structure Evolution in Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Inferring Rates of Chromosome Evolution
3. Results
3.1. Data Collection
3.2. Rate Estimates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumont, B.L. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals. Genetics 2017, 205, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.J.D. Animal Cytology and Evolution; Cambridge University Press: Cambridge, UK, 1973; ISBN 9780521070713. [Google Scholar]
- Otto, S.P.; Barton, N.H. The Evolution of Recombination: Removing the Limits to Natural Selection. Genetics 1997, 147, 879–906. [Google Scholar] [CrossRef] [PubMed]
- Keightley, P.D.; Otto, S.P. Interference among Deleterious Mutations Favours Sex and Recombination in Finite Populations. Nature 2006, 443, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Barton, N.H. A General Model for the Evolution of Recombination. Genet. Res. 1995, 65, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Linkage Modifications and Sex Difference in Recombination. Genetics 1969, 63, 681–699. [Google Scholar] [CrossRef]
- Stebbins, G.L. Flowering Plants: Evolution Above the Species Level; Belknap Press of Harvard University Press: Harvard, UK, 1974; ISBN 9780674306851. [Google Scholar]
- Clarke, C.; Sheppard, P.M. Further Studies on the Genetics of the Mimetic Butterfly Papilio memnon, L. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1971, 263, 35–70. [Google Scholar] [CrossRef]
- Clarke, C.A.; Sheppard, P.M. The Evolution of Mimicry in the Butterfly Papilio Dardanus. Heredity 1960, 14, 163–173. [Google Scholar] [CrossRef]
- Charlesworth, D.; Charlesworth, B. Sex Differences in Fitness and Selection for Centric Fusions between Sex-Chromosomes and Autosomes. Genet. Res. 1980, 35, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.W.; Hjelmen, C.E.; Blackmon, H. The Probability of Fusions Joining Sex Chromosomes and Autosomes. Biol. Lett. 2020, 16, 20200648. [Google Scholar] [CrossRef]
- Sherman, P.W. Insect Chromosome Numbers and Eusociality. Am. Nat. 1979, 113, 925–935. [Google Scholar] [CrossRef]
- Ross, L.; Blackmon, H.; Lorite, P.; Gokhman, V.E.; Hardy, N.B. Recombination, Chromosome Number and Eusociality in the Hymenoptera. J. Evol. Biol. 2015, 28, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Otto, S.P. Selective Maintenance of Recombination between the Sex Chromosomes. J. Evol. Biol. 2014, 27, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kitano, J. The Contribution of Female Meiotic Drive to the Evolution of Neo-Sex Chromosomes. Evolution 2012, 66, 3198–3208. [Google Scholar] [CrossRef] [Green Version]
- Fishman, L.; Saunders, A. Centromere-Associated Female Meiotic Drive Entails Male Fitness Costs in Monkeyflowers. Science 2008, 322, 1559–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo-Manuel de Villena, F.; Sapienza, C. Female Meiosis Drives Karyotypic Evolution in Mammals. Genetics 2001, 159, 1179–1189. [Google Scholar] [CrossRef]
- Blackmon, H.; Justison, J.; Mayrose, I.; Goldberg, E.E. Meiotic Drive Shapes Rates of Karyotype Evolution in Mammals. Evolution 2019, 73, 511–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieseberg, L.H. Chromosomal Rearrangements and Speciation. Trends Ecol. Evol. 2001, 16, 351–358. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Kirkpatrick, M. Local Adaptation and the Evolution of Chromosome Fusions. Evolution 2014, 68, 2747–2756. [Google Scholar] [CrossRef]
- Peck, J.R. A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex. Genetics 1994, 137, 597–606. [Google Scholar] [CrossRef]
- Cicconardi, F.; Lewis, J.J.; Martin, S.H.; Reed, R.D.; Danko, C.G.; Montgomery, S.H. Chromosome Fusion Affects Genetic Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. Mol. Biol. Evol. 2021, 38, 4449–4462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness (COVER). Zootaxa 2011, 3148, 3–6. [Google Scholar] [CrossRef]
- Stevens, N.M. Studies in Spermatogenesis; Carnegie Institution of Washington: Washington, DC, USA, 1905. [Google Scholar]
- Blackmon, H.; Demuth, J.P. Coleoptera Karyotype Database. Coleopt. Bull. 2015, 69, 174–175. [Google Scholar] [CrossRef]
- Sylvester, T.; Hjelmen, C.E.; Hanrahan, S.J.; Lenhart, P.A.; Johnston, J.S.; Blackmon, H. Lineage-Specific Patterns of Chromosome Evolution Are the Rule Not the Exception in Polyneoptera Insects. Proc. Biol. Sci. 2020, 287, 20201388. [Google Scholar] [CrossRef] [PubMed]
- Tree of Sex Consortium Tree of Sex: A Database of Sexual Systems. Sci. Data 2014, 1, 140015. [CrossRef] [Green Version]
- Morelli, M.W.; Blackmon, H.; Hjelmen, C.E. Diptera and Drosophila Karyotype Databases: A Useful Dataset to Guide Evolutionary and Genomic Studies. Front. Ecol. Evol. 2022, 10, 832378. [Google Scholar] [CrossRef]
- Kuznetsova, V.G.; Golub, N.V. A Checklist of Chromosome Numbers and a Review of Karyotype Variation in Odonata of the World. Comp. Cytogenet. 2020, 14, 501–540. [Google Scholar] [CrossRef]
- Blackmon, H.; Demuth, J.P. Estimating Tempo and Mode of Y Chromosome Turnover: Explaining Y Chromosome Loss with the Fragile Y Hypothesis. Genetics 2014, 197, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Wiemers, M.; Chazot, N.; Wheat, C.W.; Schweiger, O.; Wahlberg, N. A Complete Time-Calibrated Multi-Gene Phylogeny of the European Butterflies. Zookeys 2020, 938, 97–124. [Google Scholar] [CrossRef]
- Letsch, H.; Gottsberger, B.; Ware, J.L. Not Going with the Flow: A Comprehensive Time-Calibrated Phylogeny of Dragonflies (Anisoptera: Odonata: Insecta) Provides Evidence for the Role of Lentic Habitats on Diversification. Mol. Ecol. 2016, 25, 1340–1353. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics Resolves the Timing and Pattern of Insect Evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef]
- Wiegmann, B.M.; Trautwein, M.D.; Winkler, I.S.; Barr, N.B.; Kim, J.-W.; Lambkin, C.; Bertone, M.A.; Cassel, B.K.; Bayless, K.M.; Heimberg, A.M.; et al. Episodic Radiations in the Fly Tree of Life. Proc. Natl. Acad. Sci. USA 2011, 108, 5690–5695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Tiley, G.P.; Galuska, S.R.; Reardon, C.R.; Kidder, T.I.; Rundell, R.J.; Barker, M.S. Multiple Large-Scale Gene and Genome Duplications during the Evolution of Hexapods. Proc. Natl. Acad. Sci. USA 2018, 115, 4713–4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FitzJohn, R.G. Diversitree: Comparative Phylogenetic Analyses of Diversification in R. Methods Ecol. Evol. 2012, 3, 1084–1092. [Google Scholar] [CrossRef]
- Ruckman, S.N.; Jonika, M.M.; Casola, C.; Blackmon, H. Chromosome Number Evolves at Equal Rates in Holocentric and Monocentric Clades. PLoS Genet. 2020, 16, e1009076. [Google Scholar] [CrossRef]
- Hill, J.; Rastas, P.; Hornett, E.A.; Neethiraj, R.; Clark, N.; Morehouse, N.; de la Paz Celorio-Mancera, M.; Cols, J.C.; Dircksen, H.; Meslin, C.; et al. Unprecedented Reorganization of Holocentric Chromosomes Provides Insights into the Enigma of Lepidopteran Chromosome Evolution. Sci. Adv. 2019, 5, eaau3648. [Google Scholar] [CrossRef] [Green Version]
- Blackmon, H.; Ross, L.; Bachtrog, D. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. J. Hered. 2017, 108, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Sved, J.A.; Chen, Y.; Shearman, D.; Frommer, M.; Gilchrist, A.S.; Sherwin, W.B. Extraordinary Conservation of Entire Chromosomes in Insects over Long Evolutionary Periods. Evolution 2016, 70, 229–234. [Google Scholar] [CrossRef]
- Mason, J.M.; Reddy, H.M.; Frydrychova, R.C. Telomere Maintenance in Organisms without Telomerase. In DNA Replication; Seligmann, H., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Rabosky, D.L.; Goldberg, E.E. Model Inadequacy and Mistaken Inferences of Trait-Dependent Speciation. Syst. Biol. 2015, 64, 340–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddison, W.P.; FitzJohn, R.G. The Unsolved Challenge to Phylogenetic Correlation Tests for Categorical Characters. Syst. Biol. 2015, 64, 127–136. [Google Scholar] [CrossRef] [PubMed]
- White, M.J.D. Modes of Speciation; W. H. Freeman: New York, NY, USA, 1978; ISBN 9780716702849. [Google Scholar]
- Templeton, A.R. Mechanisms of Speciation–A Population Genetic Approach. Annu. Rev. Ecol. Syst. 1981, 12, 23–48. [Google Scholar] [CrossRef]
- Baker, R.J.; Bickham, J.W. Speciation by Monobrachial Centric Fusions. Proc. Natl. Acad. Sci. USA 1986, 83, 8245–8248. [Google Scholar] [CrossRef] [PubMed]
- Grant, V. Plant Speciation; Columbia University Press: New York, NY, USA, 1971; ISBN 9780231032087. [Google Scholar]
2-Parameter Model | 3-Parameter Model | ||||
---|---|---|---|---|---|
Fusion | Fission | Fusion | Fission | Polyploidy | |
Blattodea | 0.201 | 0.223 | 0.119 | 0.082 | 0.001 |
Coleoptera | 0.036 | 0.064 | 0.016 | 0.025 | 0.001 |
Diptera | 0.863 | 0.678 | 0.692 | 0.521 | 0.008 |
Hemiptera | 0.106 | 0.121 | 0.984 | 0.927 | 0.003 |
Hymenoptera | 0.555 | 0.583 | 0.042 | 0.064 | 0.009 |
Lepidoptera | 13.005 | 12.842 | 0.508 | 0.548 | 0.008 |
Odonata | 0.004 | 0.001 | 0.004 | 0.001 | 0.035 |
Orthoptera | 0.161 | 0.216 | 0.039 | 0.025 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, J.M.; Jonika, M.M.; Dulin, J.N.; Blackmon, H. Tempo and Mode of Genome Structure Evolution in Insects. Genes 2023, 14, 336. https://doi.org/10.3390/genes14020336
Alfieri JM, Jonika MM, Dulin JN, Blackmon H. Tempo and Mode of Genome Structure Evolution in Insects. Genes. 2023; 14(2):336. https://doi.org/10.3390/genes14020336
Chicago/Turabian StyleAlfieri, James M., Michelle M. Jonika, Jennifer N. Dulin, and Heath Blackmon. 2023. "Tempo and Mode of Genome Structure Evolution in Insects" Genes 14, no. 2: 336. https://doi.org/10.3390/genes14020336