A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertelsen, M.; Jensen, H.; Bregnhøj, J.F.; Rosenberg, T. Prevalence of generalized retinal dystrophy in Denmark. Ophthalmic Epidemiol. 2014, 21, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Liew, G.; Michaelides, M.; Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014, 4, e004015. [Google Scholar] [CrossRef] [PubMed]
- Puech, B.; Kostrubiec, B.; Hache, J.C.; François, P. Epidémiologie et prévalence des principales dystrophies rétiniennes héréditaires dans le Nord de la France [Epidemiology and prevalence of hereditary retinal dystrophies in the Northern France]. J. Fr. Ophtalmol. 1991, 14, 153–164. [Google Scholar]
- Morimura, H.; Fishman, G.A.; Grover, S.A.; Fulton, A.B.; Berson, E.L.; Dryja, T.P. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc. Natl. Acad. Sci. USA 1998, 95, 3088–3093. [Google Scholar] [CrossRef] [PubMed]
- Moiseyev, G.; Chen, Y.; Takahashi, Y.; Wu, B.X.; Ma, J.X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 12413–12418. [Google Scholar] [CrossRef]
- Imanishi, Y.; Batten, M.L.; Piston, D.W.; Baehr, W.; Palczewski, K. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 2004, 164, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.-F.; Van Hooser, J.P.; Kuksa, V.; McBee, J.K.; He, Y.-G.; Janssen, J.J.M.; Driessen, C.A.G.G.; Palczewski, K. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus. J. Biol. Chem. 2001, 276, 32456–32465. [Google Scholar] [CrossRef]
- Kiser, P.D. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog. Retin. Eye Res. 2022, 88, 101013. [Google Scholar] [CrossRef]
- Kiser, P.D.; Farquhar, E.R.; Shi, W.; Sui, X.; Chance, M.R.; Palczewski, K. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc. Natl. Acad. Sci. USA 2012, 109, E2747–E2756. [Google Scholar] [CrossRef]
- Testa, F.; Murro, V.; Signorini, S.; Colombo, L.; Iarossi, G.; Parmeggiani, F.; Falsini, B.; Salvetti, A.P.; Brunetti-Pierri, R.; Aprile, G.; et al. RPE65-Associated Retinopathies in the Italian Population: A Longitudinal Natural History Study. Investig. Opthalmol. Vis. Sci. 2022, 63, 13. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, R.; Lantero, E.; Blanco-Kelly, F.; Avila-Fernandez, A.; Merida, I.M.; del Pozo-Valero, M.; Perea-Romero, I.; Zurita, O.; Jiménez-Rolando, B.; Swafiri, S.T.; et al. RPE65-related retinal dystrophy: Mutational and phenotypic spectrum in 45 affected patients. Exp. Eye Res. 2021, 212, 108761. [Google Scholar] [CrossRef] [PubMed]
- Astuti, G.D.N.; Bertelsen, M.; Preising, M.N.; Ajmal, M.; Lorenz, B.; Faradz, S.M.H.; Qamar, R.; Collin, R.W.J.; Rosenberg, T.; Cremers, F.P.M. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark. Eur. J. Hum. Genet. 2016, 24, 1071–1079. [Google Scholar] [CrossRef]
- Available online: https://ngs-data-ccu.epigenetic.ru/ (accessed on 12 September 2023).
- Ryzhkova, O.P.; Kardymon, O.L.; Prohorchuk, E.B.; Konovalov, F.A.; Maslennikov, A.B.; Stepanov, V.A.; Afanasyev, A.A.; Zaklyazminskaya, E.V.; Kostareva, A.A.; Pavlov, A.E.; et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Med. Genet. 2019, 18, 3–23. (In Russian) [Google Scholar] [CrossRef]
- Stepanova, A.A.; Kadyshev, V.V.; Shchagina, O.A.; Polyakov, A.V. Selective screening of patients with hereditary retinal degeneration to identify the target group for gene therapy with voretigene neparvovec. Med. Genet. 2022, 21, 51–55. (In Russian) [Google Scholar] [CrossRef]
- Dharmaraj, S.; Silva, E.; Pina, A.L.; Li, Y.Y.; Yang, J.M.; Carter, R.C.; Loyer, M.; El-Hilali, H.; Traboulsi, E.; Sundin, O.; et al. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet. 2000, 21, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.A.; Gyürüs, P.; Fleischer, L.L.; Bingham, E.L.; McHenry, C.L.; Apfelstedt–Sylla, E.; Zrenner, E.; Lorenz, B.; Richards, J.E.; Jacobson, S.G.; et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4293–4299. [Google Scholar]
- Gu, S.-M.; Thompson, D.A.; Srikumari, C.S.; Lorenz, B.; Finckh, U.; Nicoletti, A.; Murthy, K.; Rathmann, M.; Kumaramanickavel, G.; Denton, M.J.; et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 1997, 17, 194–197. [Google Scholar] [CrossRef]
- Marlhens, F.; Griffoin, J.M.; Bareil, C.; Arnaud, B.; Claustres, M.; Hamel, C.P. Autosomal recessive retinal dystrophy associated with two novel mutations in the RPE65 gene. Eur. J. Hum. Genet. 1998, 6, 527–531. [Google Scholar] [CrossRef]
- Weleber, R.G.; Michaelides, M.; Trzupek, K.M.; Stover, N.B.; Stone, E.M. The phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis. Investig. Opthalmol. Vis. Sci. 2011, 52, 292–302. [Google Scholar] [CrossRef]
- Henderson, R.H.; Waseem, N.; Searle, R.; van der Spuy, J.; Russell-Eggitt, I.; Bhattacharya, S.S.; Thompson, D.A.; Holder, G.E.; Cheetham, M.E.; Webster, A.R.; et al. An assessment of the apex microarray technology in genotyping patients with Leber congenital amaurosis and early-onset severe retinal dystrophy. Investig. Opthalmol. Vis. Sci. 2007, 48, 5684–5689. [Google Scholar] [CrossRef][Green Version]
- Weisschuh, N.; Obermaier, C.D.; Battke, F.; Bernd, A.; Kuehlewein, L.; Nasser, F.; Zobor, D.; Zernner, E.; Weber, E.; Wissinger, B.; et al. Genetic architecture of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over a 9-year period. Hum. Mutat. 2020, 41, 1514–1527. [Google Scholar] [CrossRef]
- Li, S.; Xiao, X.; Yi, Z.; Sun, W.; Wang, P.; Zhang, Q. RPE65 mutation frequency and phenotypic variation according to exome sequencing in a tertiary centre for genetic eye diseases in China. Acta Ophthalmol. 2020, 98, e181–e190. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, Z.; Xie, S.; Li, C.; Lv, L.; Zhang, M.; Zhao, J. Genetic and phenotypic characteristics of four Chinese families with fundus albipunctatus. Sci. Rep. 2017, 7, 46285. [Google Scholar] [CrossRef] [PubMed]
- Zampaglione, E.; Kinde, B.; Place, E.M.; Navarro-Gomez, D.; Maher, M.; Jamshidi, F.; Nassiri, S.; Mazzone, J.A.; Finn, C.; Schlegel, D.; et al. Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Genet. Med. 2020, 22, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Simovich, M.J.; Miller, B.; Ezzeldin, H.; Kirkland, B.T.; McLeod, G.; Fulmer, C.; Nathans, J.; Jacobson, S.G.; Pittler, S.J. Four novel mutations in the RPE65 gene in patients with Leber congenital amaurosis. Hum. Mutat. 2001, 18, 164. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.A.; McHenry, C.L.; Li, Y.; Richards, J.E.; Othman, M.I.; Schwinger, E.; Vollrath, D.; Jacobson, S.G.; Gal, A. Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am. J. Hum. Genet. 2002, 70, 224–229. [Google Scholar] [CrossRef]
- Motta, F.L.; Filippelli-Silva, R.; Kitajima, J.P.; Batista, D.A.; Wohler, E.S.; Sobreira, N.L.; Martin, R.P.; Sallum, J.M.F. Analysis of an NGS retinopathy panel detects chromosome 1 uniparental isodisomy in a patient with RPE65-related leber congenital amaurosis. Ophthalmic Genet. 2021, 42, 553–560. [Google Scholar] [CrossRef]
- Fingert, J.H.; Eliason, D.A.; Phillips, N.C.; Lotery, A.J.; Sheffield, V.C.; Stone, E.M. Case of stargardt disease caused by uniparental isodisomy. Arch. Ophthalmol. 2006, 124, 744. [Google Scholar] [CrossRef][Green Version]
- Rivolta, C.; Berson, E.L.; Dryja, T.P. Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type II gene USH2A. Arch. Ophthalmol. 2002, 120, 1566–1571. [Google Scholar] [CrossRef]
- Stone, E.M. Leber congenital amaurosis–a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson memorial lecture. Am. J. Ophthalmol. 2007, 144, 791–811.e6. [Google Scholar] [CrossRef]
- Sallum, J.M.F.; Kaur, V.P.; Shaikh, J.; Banhazi, J.; Spera, C.; Aouadj, C.; Viriato, D.; Fischer, M.D. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv. Ther. 2022, 39, 1179–1198. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Perumalsamy, V.; Shetty, S.; Kulm, M.; Sundaresan, P. Mutational screening of LCA genes emphasizing RPE65 in South Indian cohort of patients. PLoS ONE 2013, 8, e73172. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Motta, F.L.; Martin, R.P.; Porto, F.B.O.; Wohler, E.S.; Resende, R.G.; Gomes, C.P.; Pesquero, J.B.; Sallum, J.M.F. Pathogenicity Reclasssification of RPE65 Missense Variants Related to Leber Congenital Amaurosis and Early-Onset Retinal Dystrophy. Genes 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Colombo, L.; Maltese, P.E.; Castori, M.; El Shamieh, S.; Zeitz, C.; Audo, I.; Zulian, A.; Marinelli, C.; Benedetti, S.; Costantini, A.; et al. Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Investig. Opthalmology Vis. Sci. 2021, 62, 13. [Google Scholar] [CrossRef]
- Zhong, Z.; Rong, F.; Dai, Y.; Yibulayin, A.; Zeng, L.; Liao, J.; Wang, L.; Huang, Z.; Zhou, Z.; Chen, J. Seven novel variants expand the spectrum of RPE65-related Leber congenital amaurosis in the Chinese population. Mol. Vis. 2019, 25, 204–214. [Google Scholar] [PubMed]
- Chung, D.C.; Bertelsen, M.; Lorenz, B.; Pennesi, M.E.; Leroy, B.P.; Hamel, C.P.; Pierce, E.; Sallum, J.; Larsen, M.; Stieger, K.; et al. The Natural History of Inherited Retinal Dystrophy Due to Biallelic Mutations in the RPE65 Gene. Am. J. Ophthalmol. 2019, 199, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Philp, A.; Jin, M.; Li, S.; Schindler, E.; Iannaccone, A.; Lam, B.; Weleber, R.; Fishman, G.; Jacobson, S.; Mullins, R.; et al. Predicting the pathogenicity of RPE65 mutations. Hum. Mutat. 2009, 30, 1183–1188. [Google Scholar] [CrossRef][Green Version]
- Sallum, J.M.F.; Motta, F.L.; Arno, G.; Porto, F.B.O.; Resende, R.G.; Belfort, R., Jr. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 728–752. [Google Scholar] [CrossRef]
- Zenteno, J.C.; García-Montaño, L.A.; Cruz-Aguilar, M.; Ronquillo, J.; Rodas-Serrano, A.; Aguilar-Castul, L.; Matsui, R.; Vencedor-Meraz, C.I.; Arce-González, R.; Graue-Wiechers, F.; et al. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol. Genet. Genom. Med. 2020, 8. [Google Scholar] [CrossRef]
- Vázquez-Domínguez, I.; Duijkers, L.; Fadaie, Z.; Alaerds, E.C.W.; Post, M.A.; van Oosten, E.M.; O’gorman, L.; Kwint, M.; Koolen, L.; Hoogendoorn, A.D.M.; et al. The Predicted Splicing Variant c.11+5G>A in RPE65 Leads to a Reduction in mRNA Expression in a Cell-Specific Manner. Cells 2022, 11, 3640. [Google Scholar] [CrossRef]
- Jin, M.; Li, S.; Hu, J.; Jin, H.H.; Jacobson, S.G.; Bok, D. Functional Rescue of Retinal Degeneration-Associated Mutant RPE65 Proteins. Adv. Exp. Med. Biol. 2016, 854, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Rodelsperger, C.; Schuelke, M.; Seelow, D. Mutation Taster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.; Edwards, K.J.; Day, I.N.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Fay, J.C. Identification of deleterious mutations within three human genomes. Genome Res. 2009, 19, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, D.; Tanyalcin, I.; Ferté, J.; Gazzo, A.; Orlando, G.; Lenaerts, T.; Rooman, M.; Vranken, W. DEOGEN2: Prediction and interactive visualization of single amino acid variant deleteriousness in human proteins. Nucleic Acids Res. 2017, 45, W201–W206. [Google Scholar] [CrossRef]
- Smith, A.J.; Bainbridge, J.W.; Ali, R.R. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther. 2012, 19, 154–161. [Google Scholar] [CrossRef]
- Kang, C.; Scott, L.J. Voretigene Neparvovec: A Review in RPE65 Mutation-Associated Inherited Retinal Dystrophy. Mol. Diagn. Ther. 2020, 24, 487–495. [Google Scholar] [CrossRef]
Patient ID | Age at the Moment of Molecular Genetic Diagnosis | Sex | Place of Residence | Ethnic Group | Genotype | Nystagmus | Nyctalopia | Snellen BCVA | Central Foveal Retinal Thickness, µm | Color Vision Anomaly | ffERG | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD | OS | OD | OS | OU | OU | ||||||||
1 | 50 years | f | Chita region | Buryat | c.[370C>T]; [370C>T] | Yes | Full | 0.001 | 0.001 | 80 | 90 | MCh | ND |
2 | 5 years | m | Moscow region | Belarusian | c.[1451G>T]; [272G>A] | Yes | Full | 0.16 | 0.2 | 202 | 185 | Deu | Ext |
3 | 5 years | f | Kursk region | Russian | c.[1451-1G>A]; [304G>T] | No | inc | 0.2 | 0.2 | 134 | 129 | No | ND |
4 | 26 years | m | Buryatia | Buryat | c.[370C>T]; [370C>T] | Yes | Full | 0.01 | 0.01 | 90 | 102 | MCh | ND |
5 | 13 years | f | Dagestan | Lezgin | c.[1451G>A]; [1451G>A] | Yes | Full | 0.01 | 0.01 | 137 | 124 | Deu | Ext |
6 | 12 years | Yamalo-Nenets Autonomous Okrug | Russian | c.[982C>T]; [1340T>C] | No | inc | 0.3 | 0.16 | 230 | 247 | No | SubN | |
7 | 31 year | f | Irkutsk region | Russian | c.[304G>T]; [11+5G>A] | Yes | Full | 0.05 | 0.05 | 134 | 133 | MCh | ND |
8 | 6 years | m | Rostov region | Russian | c.304G>T(;) (304G>T) | No | inc | 0.4 | 0.4 | 153 | 158 | Tri | Ext |
9 | 3 years | m | Leningrad region | Russian | c.[11+5G>A]; [1565T>A] | Yes | Full | 0.2 | 0.2 | 176 | 176 | Tri | SubN |
10 | 9 years | m | Dagestan | Kumyk | c.[65T>C]; [65T>C] | Yes | inc | 0.6 | 0.7 | 170 | 185 | AnT | SubN |
11 | 6 years | f | Sverdlovsk region | Russian | c.[272G>A]; [304G>T] | Yes | inc | 0.05 | 0.05 | 182 | 221 | Dich | SubN |
12 | 36 years | f | Moscow region | Turkmen | c.[304G>]; [304G>T] | Yes | Full | 0.001 | 0.001 | 100 | 90 | MCh | Ext |
13 | 28 years | m | Moscow region | Russian | c.[1330C>T]; [595_596delAAinsT] | Yes | Full | 0.15 | 0.05 | 204 | 195 | MCh | ND |
14 | 24 years | m | Stavropol region | Russian | c.[304G>]; [304G>T] | Yes | Full | 0.01 | 0.01 | 199 | 216 | Dich | ND |
15 | 18 years | m | Bashkortostan | Bashkir | c.[271C>T]; [271C>T] | Yes | Full | 0.3 | 0.2 | 165 | 158 | AnT | ND |
16 | 12 years | m | Magadan Region | Russian | c.[304G>T]; [370C>T] | Yes | inc | 0.2 | 0.2 | 157 | 152 | AnT | SubN |
17 | 12 years | m | Sverdlovsk region | Tajik | c.[1450+1G>A]; [1450+1G>A] | Yes | inc | 0.1 | 0.05 | 213 | 271 | MCh | SubN |
18 | 11 years | m | Stavropol region | Dargin | c.[897C>A]; [897C>A] | Yes | Full | 0.05 | 0.2 | 234 | 215 | Tri | SubN |
19 | 4 years | m | Bryansk region | Russian | c.304G>T(;) (304G>T) | Yes | Full | 0.01 | 0.01 | 144 | 132 | AnT | Ext |
20 | 4 months | f | Smolensk region | Russian | c.[503T>A]; [304G>T] | No | inc | sv | sv | - | - | - | - |
21 | 1 year | m | Vologda region | Interethnic—Uzbek-Russian | c.[272G>A]; [725G>T] | Yes | inc | sv | sv | - | - | - | - |
22 | 5 years | f | Tuva region | Tuvan | c.[370C>T]; [1024T>C] | Yes | inc | 0.35 | 0.4 | 203 | 200 | Deu | Ext |
23 | 18 years | f | Moscow region | Russian | c.[230dup]; [272G>A] | Yes | Full | 0.1 | 0.16 | 271 | 245 | AnT | ND |
24 | 11 years | f | Leningrad region | Tajik | c.[1128G>A]; [1128G>A] | Yes | Full | 0.2 | 0.1 | 213 | 210 | Deu | Ext |
25 | 28 years | m | Omsk region | Russian | c.[617C>T]; [118G>A] | Yes | Full | 0.1 | 0.1 | 140 | 120 | MCh | ND |
26 | 4 years | f | Moscow region | Russian | c.[1307G>A]; [746G>A] | Yes | Full | 0.2 | 0.2 | 170 | 168 | AnT | Ext |
27 | 13 years | f | Tuva region | Tuvan | c.[370C>T]; [1024T>C] | No | Full | 0.3 | 0.3 | 172 | 180 | MCh | SubN |
28 | 43 years | m | Ivanovo region | Russian | c.[272G>A]; [11+5G>A] | Yes | Full | 0.001 | 0.001 | 186 | 134 | MCh | ND |
29 | 7 years | f | Buryatia | Kumyk | c.[1249G>C]; [65T>C] | Yes | Full | 0.4 | 0.4 | 189 | 179 | AnT | ND |
№ | Variant | Effect | Exon/Intron | № of chr. | Prevalence, % | Allele Frequency in gnomAD | References/Pathogenicity Criteria |
---|---|---|---|---|---|---|---|
1 | c.304G>T | p.(Glu102*) | ex 4 | 13 (11) | 21.2 | 0.00003580 | [16] |
2 | c.370C>T | p.(Arg124*) | ex 5 | 7 | 12.0 | 0.00005674 | [4] |
3 | c.272G>A | p.(Arg91Gln) | ex 4 | 5 | 8.6 | 0.00004600 | [17] |
4 | c.11+5G>A | splicing | in 1 | 3 | 5.17 | 0.000078 | [18] |
5 | c.65T>C | p.(Leu22Pro) | ex 2 | 3 | 5.17 | 0.000028 | [19] |
6 | c.1024T>C | p.(Tyr342His) | ex 10 | 2 | 3.45 | n/a | [15] |
7 | c.1450+1G>A | splicing | in 13 | 2 | 3.45 | n/a | PVS1, PM2 |
8 | c.1128+1G>A | splicing | in 10 | 2 | 3.45 | n/a | PVS1, PM2 |
9 | c.1451G>A | p.(Gly484Asp) | ex 14 | 2 | 3.45 | 0.000008047 | [20] |
10 | c.271C>T | p.(Arg91Trp) | ex 4 | 2 | 3.45 | 0.000053 | [4] |
11 | c.897C>A | p.(Tyr299*) | ex 9 | 2 | 3.45 | n/d | PVS1, PM2 |
12 | c.725G>T | p.(Ser242Ile) | ex 7 | 1 | 1.72 | n/d | PM2, PP3, PP2, PM3 |
13 | c.230dup | p.(Thr78Hisfs*10) | ex 3 | 1 | 1.72 | n/d | PVS1, PM2,PM3 |
14 | c.1307G>A | p.(Gly436Glu) | ex 12 | 1 | 1.72 | n/d | [17] |
15 | c.746A>G | p.(Tyr249Cys) | ex 8 | 1 | 1.72 | 0.00001773 | [21] |
16 | c.1330C>T | p.(Pro444Ser) | ex 12 | 1 | 1.72 | n/d | PM2, PP3, PP2, PM3 |
17 | c.595_596delAAinsT | p.(Asn199Phefs*9) | ex 6 | 1 | 1.72 | n/d | PVS1, PM2 |
18 | c.1565T>A | p.(Ile522Asn) | ex 14 | 1 | 1.72 | n/d | PM2, PP3, PP2, PM3 |
19 | c.1451G>T | p.(Gly484Val) | ex 14 | 1 | 1.72 | 0.00001207 | [22] |
20 | c.1451-G>A | splicing | in 14 | 1 | 1.72 | 0.000004024 | [23] |
21 | c.1340T>C | p.(Leu447Pro) | ex 13 | 1 | 1.72 | n/d | [15] |
22 | c.982C>T | p.(Leu328Phe) | ex 9 | 1 | 1.72 | 0.039 | [24] |
23 | c.617T>C | p.(Ile206Thr) | ex 6 | 1 | 1.72 | 0.000012 | [25] |
24 | c.118G>A | p.(Gly40Ser) | ex 3 | 1 | 1.72 | 0.000028 | [4] |
25 | c.503T>A | p.(Leu168His) | ex 6 | 1 | 1.72 | n/d | PM2, PP3, PP2, PM3 |
26 | c.1249G>C | p.(Glu417Gln) | ex 12 | 1 | 1.72 | 0.000004 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, A.; Ogorodova, N.; Kadyshev, V.; Shchagina, O.; Kutsev, S.; Polyakov, A. A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes 2023, 14, 2056. https://doi.org/10.3390/genes14112056
Stepanova A, Ogorodova N, Kadyshev V, Shchagina O, Kutsev S, Polyakov A. A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes. 2023; 14(11):2056. https://doi.org/10.3390/genes14112056
Chicago/Turabian StyleStepanova, Anna, Natalya Ogorodova, Vitaly Kadyshev, Olga Shchagina, Sergei Kutsev, and Aleksandr Polyakov. 2023. "A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation" Genes 14, no. 11: 2056. https://doi.org/10.3390/genes14112056
APA StyleStepanova, A., Ogorodova, N., Kadyshev, V., Shchagina, O., Kutsev, S., & Polyakov, A. (2023). A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes, 14(11), 2056. https://doi.org/10.3390/genes14112056