Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Sampling
2.2. Sex Identification Using Sex-Specific DNA Marker
2.3. Histological Analysis
2.4. Transcriptome Sequencing and Analyses
2.5. In Vivo Experiment and RNA Interference
2.6. Real-Time qPCR
3. Results
3.1. Sex Identification and Histological Observation
3.2. Transcriptome Sequencing and Analyses
3.3. foxl2 Knockdown In Vivo
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shelton, W.L.; Mims, S.D. Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture 2012, 356–357, 116–118. [Google Scholar]
- Ruan, R.; Feng, T.; Li, Y.; Yue, H.; Ye, H.; Du, H.; Liu, Q.; Ruan, J.; Li, C.; Wei, Q. Screening and identification of female-specific DNA sequences in octaploid sturgeon using comparative genomics with high-throughput sequencing. Genomics 2021, 113, 4237–4244. [Google Scholar]
- Takehana, Y.; Naruse, K.; Hamaguchi, S.; Sakaizumi, M. Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma 2007, 116, 463–470. [Google Scholar]
- Takehana, Y.; Hamaguchi, S.; Sakaizumi, M. Different origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsi. Chromosome Res. 2008, 16, 801–811. [Google Scholar]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417, 559–563. [Google Scholar]
- Matsuda, M.; Sato, T.; Toyazaki, Y.; Nagahama, Y.; Hamaguchi, S.; Sakaizumi, M. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zoolog. Sci. 2003, 20, 159–161. [Google Scholar]
- Myosho, T.; Otake, H.; Masuyama, H.; Matsuda, M.; Kuroki, Y.; Fujiyama, A.; Naruse, K.; Hamaguchi, S.; Sakaizumi, M. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 2012, 191, 163–170. [Google Scholar]
- Berbejillo, J.; Martinez-Bengochea, A.; Bedo, G.; Brunet, F.; Volff, J.N.; Vizziano-Cantonnet, D. Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Mol. Reprod. Dev. 2012, 79, 504–516. [Google Scholar]
- Berbejillo, J.; Martinez-Bengochea, A.; Bedó, G.; Vizziano-Cantonnet, D. Expression of dmrt1 and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish. Physiol. Biochem. 2013, 39, 91–94. [Google Scholar] [CrossRef]
- Okada, H.; Hagihara, S.; Yamashita, K.; Ijiri, S.; Adachi, S. Expression pattern of foxl2 and dmrt1 in gonad of Amur sturgeon Acipenser schrenckii in relation to sex differentiation. Aquaculture 2017, 479, 712–720. [Google Scholar]
- Wang, W.; Zhu, H.; Dong, Y.; Tian, Z.; Dong, T.; Hu, H.; Niu, C. Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. Fish. Physiol. Biochem. 2017, 43, 1557–1569. [Google Scholar] [CrossRef]
- Yarmohammadi, M.; Pourkazemi, M.; Kazemi, R. Differential expression of foxl2 and cyp19a1a mRNA during gonad developmental stages in great sturgeon Huso huso. J. Fish. Biol. 2017, 90, 1104–1111. [Google Scholar] [CrossRef]
- Burcea, A.; Popa, G.O.; Florescu Gune, I.E.; Maereanu, M.; Dudu, A.; Georgescu, S.E.; Costache, M. Expression characterization of six genes possibly involved in gonad development for stellate sturgeon individuals (Acipenser stellatus, Pallas 1771). Int. J. Genom. 2018, 2018, 7835637. [Google Scholar]
- Chen, S.; Zhang, G.; Shao, C.; Huang, Q.; Liu, G.; Zhang, P.; Song, W.; An, N.; Chalopin, D.; Volff, J.N.; et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 2014, 46, 253–260. [Google Scholar]
- Qu, M.; Liu, Y.; Zhang, Y.; Wan, S.; Ravi, V.; Qin, G.; Jiang, H.; Wang, X.; Zhang, H.; Zhang, B.; et al. Seadragon genome analysis provides insights into its phenotype and sex determination locus. Sci. Adv. 2021, 7, eabg5196. [Google Scholar] [CrossRef]
- Zheng, S.; Tao, W.; Yang, H.; Kocher, T.D.; Wang, Z.; Peng, Z.; Jin, L.; Pu, D.; Zhang, Y.; Wang, D. Identification of sex chromosome and sex-determining gene of southern catfish (Silurus meridionalis) based on XX, XY and YY genome sequencing. Proc. Biol. Sci. 2022, 289, 20212645. [Google Scholar] [CrossRef]
- Vidotto, M.; Grapputo, A.; Boscari, E.; Barbisan, F.; Coppe, A.; Grandi, G.; Kumar, A.; Congiu, L. Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genom. 2013, 14, 407. [Google Scholar] [CrossRef]
- Yue, H.; Li, C.; Du, H.; Zhang, S.; Wei, Q. Sequencing and de novo assembly of the gonadal transcriptome of the endangered Chinese Sturgeon (Acipenser sinensis). PLoS ONE 2015, 10, e0127332. [Google Scholar] [CrossRef]
- Du, H.; Jian, J.; Wang, B.; Liu, X.; Chen, J.; Xiao, K.; Xia, J.; Yang, J.; Gao, Y.; Chen, L. Hypothalamus-pituitary-gonad axis transcriptome profiling for sex differentiation in Acipenser sinensis. Sci. Data 2019, 6, 87. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, L.; Tian, H.; Yang, B.; Wang, E.; Zhu, B. Transcript annotation of Chinese sturgeon (Acipenser sinensis) using Iso-seq and RNA-seq data. Sci. Data 2023, 10, 105. [Google Scholar] [CrossRef]
- Hagihara, S.; Yamashita, R.; Yamamoto, S.; Ishihara, M.; Abe, T.; Ijiri, S.; Adachi, S. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J. Appl. Ichthyol. 2014, 30, 1557–1564. [Google Scholar]
- Chen, Y.; Xia, Y.; Shao, C.; Han, L.; Chen, X.; Yu, M.; Sha, Z. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads. Physiol. Genom. 2016, 48, 464–476. [Google Scholar] [CrossRef]
- Degani, G.; Hurvitz, A.; Eliraz, Y.; Meerson, A. Sex-related gonadal gene expression differences in the Russian sturgeon (Acipenser gueldenstaedtii) grown in stable aquaculture conditions. Anim. Reprod. Sci. 2019, 200, 75–85. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Gong, Q.; Lai, J.; Song, M.; Du, J.; Deng, X. Gonadal transcriptome sequencing of the critically endangered Acipenser dabryanus to discover candidate sex-related genes. PeerJ 2018, 6, e5389. [Google Scholar] [CrossRef]
- Song, W.; Jiang, K.; Zhang, F.; Lin, Y.; Ma, L. Transcriptome sequencing, de novo assembly and differential gene expression analysis of the early development of Acipenser baeri. PLoS ONE 2015, 10, e0137450. [Google Scholar] [CrossRef]
- Klopp, C.; Lasalle, A.; Di Landro, S.; Vizziano-Cantonnet, D. RNA-Seq transcriptome data of undifferentiated and differentiated gonads of Siberian sturgeon. Data Brief. 2020, 31, 105741. [Google Scholar] [CrossRef]
- Hale, M.C.; McCormick, C.R.; Jackson, J.R.; Dewoody, J.A. Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): The relative merits of normalization and rarefaction in gene discovery. BMC Genom. 2009, 10, 203. [Google Scholar] [CrossRef]
- Hale, M.C.; Jackson, J.R.; Dewoody, J.A. Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica 2010, 138, 745–756. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, X.; Li, L.; Jiang, H.; Chen, J. High-throughput sequencing of microRNA transcriptome and expression assay in the sturgeon, Acipenser schrenckii. PLoS ONE 2014, 9, e115251. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, L.; Li, L.; Jiang, H.; Chen, J. Conservation, sex-biased expression and functional annotation of microRNAs in the gonad of Amur sturgeon (Acipenser schrenckii). Comp. Biochem. Physiol. D Genom. Proteom. 2016, 18, 54–61. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, J.; Sun, Y.; Zhu, Y.; Zhang, Z.; Wang, Y. Transcriptome analysis provides insights into differentially expressed genes and long noncoding RNAs involved in sex-related differences in Amur sturgeon (Acipenser schrenckii). Mol. Reprod. Dev. 2019, 86, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, L.; Huang, W.; Ahmad, H.I.; Li, H.; Jiang, H.; Chen, J. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon (Acipenser schrenckii). Front. Zool. 2020, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.B.; Zhang, Y.; Dong, X.L.; Xi, Q.K.; Song, D.; Fu, H.T.; Sun, D.J. Comparative transcriptome analysis of testes and ovaries for the discovery of novel genes from Amur sturgeon (Acipenser schrenckii). Genet. Mol. Res. 2015, 14, 18913–18927. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Huang, Y.; Du, H.; Li, C.; Lv, Y.; Ruan, R.; Ye, H.; Bian, C.; You, X.; Xu, J.; et al. Draft genome and complete Hox-cluster characterization of the Sterlet (Acipenser ruthenus). Front. Genet. 2019, 10, 776. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Stöck, M.; Kneitz, S.; Klopp, C.; Woltering, J.M.; Adolfi, M.C.; Feron, R.; Prokopov, D.; Makunin, A.; Kichigin, I.; et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020, 4, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Huang, Y.; Lv, Y.; Du, H.; Ruan, Z.; Li, C.; Ye, H.; Zhang, H.; Wu, J.; Wang, C.; et al. The American paddlefish genome provides novel insights into chromosomal evolution and bone mineralization in early vertebrates. Mol. Biol. Evol. 2021, 38, 1595–1607. [Google Scholar] [CrossRef]
- Degani, G.; Nevo Sarel, M.; Hajouj, A.; Hurvitz, A.; Veksler-Lublinsky, I.; Meerson, A. Whole-genome inter-sex variation in Russian sturgeon (Acipenser gueldenstaedtii). Int. J. Mol. Sci. 2022, 23, 9469. [Google Scholar] [CrossRef]
- Wildhaber, M.L.; Papoulias, D.M.; DeLonay, A.J.; Tillitt, D.E.; Bryan, J.L.; Annis, M.L.; Allert, J.A. Gender identification of shovelnose sturgeon using ultrasonic andendoscopic imagery and the application of the method to the pallidsturgeon. J. Fish. Biol. 2010, 67, 114–132. [Google Scholar] [CrossRef]
- Du, H.; Zhang, X.; Leng, X.; Zhang, S.; Luo, J.; Liu, Z.; Qiao, X.; Kynard, B.; Wei, Q. Gender and gonadal maturity stage identification of captive Chinese sturgeon, Acipenser sinensis, using ultrasound imagery and sex steroids. Gen. Comp. Endocrinol. 2016, 245, 36–43. [Google Scholar] [CrossRef]
- Keyvanshokooh, S.; Gharaei, A. A review of sex determination and searches for sex-specific markers in sturgeon. Aquac. Res. 2010, 41, e1–e7. [Google Scholar] [CrossRef]
- Billard, R.; Lecointre, G. Biology and conservation of sturgeon and paddlefish. Rev. Fish. Biol. Fisher 2001, 10, 355–392. [Google Scholar] [CrossRef]
- Kuhl, H.; Guiguen, Y.; Höhne, C.; Kreuz, E.; Du, K.; Klopp, C.; Lopez-Roques, C.; Yebra-Pimentel, E.S.; Ciorpac, M.; Gessner, J.; et al. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200089. [Google Scholar] [CrossRef] [PubMed]
- Scribner, K.T.; Kanefsky, J. Molecular sexing of lake sturgeon. J. Great Lahes Res. 2021, 47, 934–936. [Google Scholar] [CrossRef]
- Ye, H.; Takeuchi, Y.; Du, H.; Yue, H.; Ruan, R.; Li, C.; Wei, Q. Spermatogonia from cryopreserved testes of critically endangered chinese sturgeon efficiently colonized and preferentially proliferated in the recipient gonads of Yangtze sturgeon. Mar. Biotechnol. 2022, 24, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Li, C.J.; Yue, H.M.; Du, H.; Yang, X.G.; Yoshino, T.; Hayashida, T.; Takeuchi, Y.; Wei, Q.W. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology 2017, 94, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Hu, W. Progress in research on fish sex determining genes. Water Biol. Secur. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Li, X.Y.; Mei, J.; Ge, C.T.; Liu, X.L.; Gui, J.F. Sex determination mechanisms and sex control approaches in aquaculture animals. Sci. China Life Sci. 2022, 65, 1091–1122. [Google Scholar] [CrossRef] [PubMed]
- Flynn, S.R.; Benfey, T.J. Sex differentiation and aspects of gametogenesis in shortnose sturgeon Acipenser brevirostrum Lesueur. J. Fish. Biol. 2007, 70, 1027–1044. [Google Scholar] [CrossRef]
- Hayman, E.S.; Fairgrieve, W.T.; Luckenbach, J.A. Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination. Gene 2021, 764, 145093. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.Y.; Gong, Y.; Guo, X.F.; Liu, M.; Zhou, Y.L.; Li, Z.; Zhou, L.; Wang, Z.W.; Gui, J.F. Gonadal transcriptomes reveal sex-biased expression genes associated with sex determination and differentiation in red-tail catfish (Hemibagrus wyckioides). BMC Genom. 2023, 24, 183. [Google Scholar] [CrossRef]
- Tenugu, S.; Pranoty, A.; Mamta, S.K.; Senthilkumaran, B. Development and organisation of gonadal steroidogenesis in bony fishes—A review. Aquac. Fish. 2021, 6, 223–246. [Google Scholar] [CrossRef]
- Lasalle, A.; Norbis, W.; Vizziano-Cantonnet, D. Sex identification of morphologically-undifferentiated Siberian sturgeon with statistical analysis of gene expression patterns. J. Appl. Ichthyol. 2021, 37, 835–846. [Google Scholar] [CrossRef]
- Wang, D.; Kobayashi, T.; Zhou, L.; Nagahama, Y. Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem. Biophys. Res. Commun. 2004, 320, 83–89. [Google Scholar] [CrossRef]
- Nakamoto, M.; Matsuda, M.; Wang, D.S.; Nagahama, Y.; Shibata, N. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun. 2006, 344, 353–361. [Google Scholar] [CrossRef]
- Vizziano, D.; Randuineau, G.; Baron, D.; Cauty, C.; Guiguen, Y. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev. Dyn. 2007, 236, 2198–2206. [Google Scholar] [CrossRef]
- Ijiri, S.; Kaneko, H.; Kobayashi, T.; Wang, D.S.; Sakai, F.; Paul-Prasanth, B.; Nakamura, M.; Nagahama, Y. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol. Reprod. 2008, 78, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Zhang, G.R.; Wei, K.J.; Ji, W.; Gardner, J.P.; Yang, R.B.; Chen, K.C. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus. Fish. Physiol. Biochem. 2015, 41, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zou, Y.; Liang, D.; Tan, X.; Jiao, S.; Wu, Z.; Li, J.; Zhang, P.; You, F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod. Fertil. Dev. 2019, 31, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Huhtinen, K.; Desai, R.; Ståhle, M.; Salminen, A.; Handelsman, D.J.; Perheentupa, A.; Poutanen, M. Endometrial and endometriotic concentrations of estrone and estradiol are determined by local metabolism rather than circulating levels. J. Clin. Endocrinol. Metab. 2012, 97, 4228–4235. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Gauri, M.; Li, T.; Wang, R.; Lin, S.X. Current knowledge of the multifunctional 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1). Gene 2016, 588, 54–61. [Google Scholar] [CrossRef]
- Wang, D.S.; Kobayashi, T.; Zhou, L.Y.; Paul-Prasanth, B.; Ijiri, S.; Sakai, F.; Okubo, K.; Morohashi, K.; Nagahama, Y. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 2007, 21, 712–725. [Google Scholar] [CrossRef]
- Leng, X.Q.; Du, H.J.; Li, C.J.; Cao, H. Molecular characterization and expression pattern of dmrt1 in the immature Chinese sturgeon Acipenser sinensis. J. Fish. Biol. 2016, 88, 567–579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, R.; Li, Y.; Yue, H.; Ye, H.; Jin, J.; Wu, J.; Du, H.; Li, C. Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus. Genes 2023, 14, 2058. https://doi.org/10.3390/genes14112058
Ruan R, Li Y, Yue H, Ye H, Jin J, Wu J, Du H, Li C. Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus. Genes. 2023; 14(11):2058. https://doi.org/10.3390/genes14112058
Chicago/Turabian StyleRuan, Rui, Ying Li, Huamei Yue, Huan Ye, Jiali Jin, Jinping Wu, Hao Du, and Chuangju Li. 2023. "Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus" Genes 14, no. 11: 2058. https://doi.org/10.3390/genes14112058
APA StyleRuan, R., Li, Y., Yue, H., Ye, H., Jin, J., Wu, J., Du, H., & Li, C. (2023). Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus. Genes, 14(11), 2058. https://doi.org/10.3390/genes14112058