The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometric Measurements
2.2.2. Biochemical Assays
2.3. Genotyping of GIPR Single Nucleotide Variants
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wharton, S.; Lau, D.C.W.; Vallis, M.; Sharma, A.M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boulé, N.; et al. Obesity in Adults: A Clinical Practice Guideline. CMAJ 2020, 192, E875–E891. [Google Scholar] [CrossRef]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why Primary Obesity Is a Disease? J. Transl. Med. 2019, 17, 169. [Google Scholar] [CrossRef]
- Yadav, H.M.; Jawahar, A. Environmental Factors and Obesity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/nbk580543/ (accessed on 27 July 2022).
- Eurostat: Overweight and Obesity-BMI Statistics. Available online: https://Ec.Europa.Eu/Eurostat/Statistics-Explained/Index.Php?Title=Overweight_and_obesity_-_BMI_statistics (accessed on 27 July 2022).
- Fryar, C.D.; Carroll, M.D.; Afful, J. Prevalence of Overweight, Obesity, and Severe Obesity Among Adults Aged 20 And Over: United States, 1960–1962 Through 2017–2018; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Huvenne, H.; Dubern, B.; Clément, K.; Poitou, C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes. Facts 2016, 9, 158–173. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and Limitations of Genome-Wide Association Studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Akbari, P.; Gilani, A.; Sosina, O.; Kosmicki, J.A.; Khrimian, L.; Fang, Y.-Y.; Persaud, T.; Garcia, V.; Sun, D.; Li, A.; et al. Sequencing of 640,000 Exomes Identifies GPR75 Variants Associated with Protection from Obesity. Science 2021, 373, eabf8683. [Google Scholar] [CrossRef]
- Turcot, V.; Lu, Y.; Highland, H.M.; Schurmann, C.; Justice, A.E.; Fine, R.S.; Bradfield, J.P.; Esko, T.; Giri, A.; Graff, M.; et al. Protein-Altering Variants Associated with Body Mass Index Implicate Pathways That Control Energy Intake and Expenditure in Obesity. Nat. Genet. 2018, 50, 26–41. [Google Scholar] [CrossRef]
- Speliotes, E.K.; Willer, C.J.; Berndt, S.I.; Monda, K.L.; Thorleifsson, G.; Jackson, A.U.; Allen, H.L.; Lindgren, C.M.; Luan, J.; Mägi, R.; et al. Association Analyses of 249,796 Individuals Reveal 18 New Loci Associated with Body Mass Index. Nat. Genet. 2010, 42, 937–948. [Google Scholar] [CrossRef]
- Dorajoo, R.; Blakemore, A.I.F.; Sim, X.; Ong, R.T.-H.; Ng, D.P.K.; Seielstad, M.; Wong, T.-Y.; Saw, S.-M.; Froguel, P.; Liu, J.; et al. Replication of 13 Obesity Loci among Singaporean Chinese, Malay and Asian-Indian Populations. Int. J. Obes. 2012, 36, 159–163. [Google Scholar] [CrossRef] [Green Version]
- The Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Wen, W.; Cho, Y.-S.; Zheng, W.; Dorajoo, R.; Kato, N.; Qi, L.; Chen, C.-H.; Delahanty, R.J.; Okada, Y.; et al. Meta-Analysis Identifies Common Variants Associated with Body Mass Index in East Asians. Nat. Genet. 2012, 44, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Watanabe, K.; Boonvisut, S.; Makishima, S.; Miyashita, H.; Iwamoto, S. Common Variants of GIP Are Associated with Visceral Fat Accumulation in Japanese Adults. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G1108–G1114. [Google Scholar] [CrossRef] [PubMed]
- Opinto, G.; Natalicchio, A.; Marchetti, P. Physiology of Incretins and Loss of Incretin Effect in Type 2 Diabetes and Obesity. Arch. Physiol. Biochem. 2013, 119, 170–178. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. Incretin Hormones: Their Role in Health and Disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Samms, R.J.; Sloop, K.W.; Gribble, F.M.; Reimann, F.; Adriaenssens, A.E. GIPR Function in the Central Nervous System: Implications and Novel Perspectives for GIP-Based Therapies in Treating Metabolic Disorders. Diabetes 2021, 70, 1938–1944. [Google Scholar] [CrossRef]
- Deshmukh, H.A.; Madsen, A.L.; Viñuela, A.; Have, C.T.; Grarup, N.; Tura, A.; Mahajan, A.; Heggie, A.J.; Koivula, R.W.; De Masi, F.; et al. Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. J. Clin. Endocrinol. Metab. 2021, 106, 80–90. [Google Scholar] [CrossRef]
- He, Y.; Zheng, C.; He, M.-H.; Huang, J.-R. The Causal Relationship Between Body Mass Index and the Risk of Osteoarthritis. Int J. Gen. Med. 2021, 14, 2227–2237. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, K.-H.; He, J.-Y.; Zeng, Y.; Greenbaum, J.; Xia, X.; Liu, H.-M.; Lv, W.-Q.; Lin, X.; Zhang, W.-D.; et al. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a CFDR Method. Sci. Rep. 2017, 7, 16397. [Google Scholar] [CrossRef]
- Lyssenko, V.; Eliasson, L.; Kotova, O.; Pilgaard, K.; Wierup, N.; Salehi, A.; Wendt, A.; Jonsson, A.; De Marinis, Y.Z.; Berglund, L.M.; et al. Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes 2011, 60, 2424–2433. [Google Scholar] [CrossRef]
- GIANT Consortium; The MAGIC Investigators; Saxena, R.; Hivert, M.-F.; Langenberg, C.; Tanaka, T.; Pankow, J.S.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; et al. Genetic Variation in GIPR Influences the Glucose and Insulin Responses to an Oral Glucose Challenge. Nat. Genet. 2010, 42, 142–148. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Eilbeck, K.; Lewis, S.E.; Mungall, C.J.; Yandell, M.; Stein, L.; Durbin, R.; Ashburner, M. The Sequence Ontology: A tool for the unification of genome annotations. Genome. Biol. 2005, 6, R44. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lanktree, M.B.; Taylor, K.C.; Hakonarson, H.; Lange, L.A.; Keating, B.J. Gene-Centric Meta-Analyses of 108 912 Individuals Confirm Known Body Mass Index Loci and Reveal Three Novel Signals. Hum. Mol. Genet. 2013, 22, 184–201. [Google Scholar] [CrossRef] [PubMed]
- DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium; Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; et al. Large-Scale Association Analyses Identify New Loci Influencing Glycemic Traits and Provide Insight into the Underlying Biological Pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Chu, A.Y.; Grarup, N.; Manning, A.K.; Hivert, M.-F.; Shungin, D.; Tönjes, A.; Yesupriya, A.; Barnes, D.; Bouatia-Naji, N.; et al. No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels. Diabetes 2012, 61, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Ingelsson, E.; Langenberg, C.; Hivert, M.-F.; Prokopenko, I.; Lyssenko, V.; Dupuis, J.; Mägi, R.; Sharp, S.; Jackson, A.U.; Assimes, T.L.; et al. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans. Diabetes 2010, 59, 1266–1275. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- WHO Global InfoBase Team. The SuRF Report 2. Surveillance of Chronic Disease Risk Factors: Country-Level Data and Comparable Estimates; World Health Organization: Geneva, Switzerland, 2005; p. 22. [Google Scholar]
- Abadi, A.; Alyass, A.; Robiou du Pont, S.; Bolker, B.; Singh, P.; Mohan, V.; Diaz, R.; Engert, J.C.; Yusuf, S.; Gerstein, H.C.; et al. Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass Index Distribution. Am. J. Hum. Genet. 2017, 101, 925–938. [Google Scholar] [CrossRef]
- Reddon, H.; Guéant, J.-L.; Meyre, D. The Importance of Gene-Environment Interactions in Human Obesity. Clin. Sci. 2016, 130, 1571–1597. [Google Scholar] [CrossRef]
- Hennig, B.J.; Fulford, A.J.; Sirugo, G.; Rayco-Solon, P.; Hattersley, A.T.; Frayling, T.M.; Prentice, A.M. FTO gene Variation and Measures of Body Mass in an African Population. BMC Med. Genet. 2009, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Chu, A.Y.; Kang, J.H.; Huang, J.; Rose, L.M.; Jensen, M.K.; Liang, L.; Curhan, G.C.; Pasquale, L.R.; Wiggs, J.L.; et al. Fried Food Consumption, Genetic Risk, and Body Mass Index: Gene-Diet Interaction Analysis in Three US Cohort Studies. BMJ 2014, 348, g1610. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ma, X.; Tang, T.; Higuchi, K.; Peng, D.; Zhang, R.; Chen, M.; Yan, J.; Wang, S.; Yan, D.; et al. The Effect of Glucose-Dependent Insulinotropic Polypeptide (GIP) Variants on Visceral Fat Accumulation in Han Chinese Populations. Nutr. Diabetes 2017, 7, e278. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Que, S.; Xu, J.; Peng, T. Alanine Aminotransferase-Old Biomarker and New Concept: A Review. Int. J. Med. Sci. 2014, 11, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, J.H.D.A.; De Moor, M.H.M.; de Geus, E.J.C.; Lubke, G.H.; Vink, J.M.; Willemsen, G.; Boomsma, D.I. The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST. Behav. Genet. 2013, 43, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, M. Association between Serum Liver Enzymes and Metabolic Syndrome in Korean Adults. Int. J. Environ. Res. Public Health 2018, 15, 1658. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef]
- Zhang, L.; He, J.; Sun, X.; Pang, D.; Hu, J.; Feng, B. GIPR rs10423928 and Bone Mineral Density in Postmenopausal Women in Shanghai. Endocr. Connect. 2022, 11, e210583. [Google Scholar] [CrossRef]
- Barbosa-Yañez, R.L.; Markova, M.; Dambeck, U.; Honsek, C.; Machann, J.; Schüler, R.; Kabisch, S.; Pfeiffer, A.F.H. Predictive Effect of GIPR SNP Rs10423928 on Glucose Metabolism Liver Fat and Adiposity in Prediabetic and Diabetic Subjects. Peptides 2020, 125, 170237. [Google Scholar] [CrossRef]
- Ahlqvist, E.; Osmark, P.; Kuulasmaa, T.; Pilgaard, K.; Omar, B.; Brøns, C.; Kotova, O.; Zetterqvist, A.V.; Stančáková, A.; Jonsson, A.; et al. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance. Diabetes 2013, 62, 2088–2094. [Google Scholar] [CrossRef]
- Wang, G.-J.; Yang, P.; Xie, H.-G. Gene Variants in Noncoding Regions and Their Possible Consequences. Pharmacogenomics 2006, 7, 203–209. [Google Scholar] [CrossRef]
- Thondam, S.K.; Cuthbertson, D.J.; Wilding, J.P.H. The Influence of Glucose-Dependent Insulinotropic Polypeptide (GIP) on Human Adipose Tissue and Fat Metabolism: Implications for Obesity, Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides 2020, 125, 170208. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, K.; Yamada, Y.; Ban, N.; Ihara, Y.; Tsukiyama, K.; Zhou, H.; Fujimoto, S.; Oku, A.; Tsuda, K.; Toyokuni, S.; et al. Inhibition of Gastric Inhibitory Polypeptide Signaling Prevents Obesity. Nat. Med. 2002, 8, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Stančáková, A.; Paananen, J.; Soininen, P.; Kangas, A.J.; Bonnycastle, L.L.; Morken, M.A.; Collins, F.S.; Jackson, A.U.; Boehnke, M.L.; Kuusisto, J.; et al. Effects of 34 Risk Loci for Type 2 Diabetes or Hyperglycemia on Lipoprotein Subclasses and Their Composition in 6,580 Nondiabetic Finnish Men. Diabetes 2011, 60, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Lyssenko, V.; Ericson, U.; Gullberg, B.; Wirfält, E.; Groop, L.; Orho-Melander, M. Genetic Variation in the Glucose-Dependent Insulinotropic Polypeptide Receptor Modifies the Association between Carbohydrate and Fat Intake and Risk of Type 2 Diabetes in the Malmö Diet and Cancer Cohort. J. Clin. Endocrinol. Metab. 2012, 97, E810–E818. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Imamura, F.; Ye, Z.; Schulze, M.B.; Zheng, J.; Ardanaz, E.; Arriola, L.; Boeing, H.; Dow, C.; Fagherazzi, G.; et al. Interaction between Genes and Macronutrient Intake on the Risk of Developing Type 2 Diabetes: Systematic Review and Findings from European Prospective Investigation into Cancer (EPIC)-InterAct. Am. J. Clin. Nutr. 2017, 106, 263–275. [Google Scholar] [CrossRef] [Green Version]
Control Group | Study Group | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Mean | Median | SD | Mean | Median | SD | |||
Age [years] | 48.42 | 47.00 | 14.52 | 56.88 | 60.00 | 13.19 | <0.0001 | ||
Body weight [kg] | 62.15 | 60.60 | 8.72 | 82.29 | 81.50 | 13.32 | <0.0001 | ||
BMI [kg/m2] | 22.33 | 22.51 | 1.79 | 29.72 | 28.72 | 4.06 | <0.0001 | ||
WC [cm] | 79.76 | 79.00 | 9.28 | 99.42 | 99.00 | 11.97 | <0.0001 | ||
NC [cm] | 33.81 | 33.00 | 3.03 | 37.62 | 38.00 | 3.52 | <0.0001 | ||
Glucose [mg/dL] | 90.20 | 88.00 | 16.57 | 98.40 | 92.00 | 27.90 | <0.0001 | ||
TG [mg/dL] | 111.90 | 94.00 | 69.12 | 170.39 | 142.50 | 121.50 | <0.0001 | ||
HDL [mg/dL] | 73.15 | 70.00 | 17.96 | 60.55 | 59.00 | 15.36 | <0.0001 | ||
AST [IU/L] | 26.26 | 25.00 | 7.64 | 29.48 | 27.00 | 12.97 | <0.0001 | ||
ALT [IU/L] | 24.33 | 22.00 | 11.63 | 34.97 | 29.00 | 23.59 | <0.0001 | ||
Health status and tobacco use | |||||||||
N | % | N | % | ||||||
Metabolic syndrome | 38 | 13 | 288 | 52 | <0.0001 | ||||
Diabetes | 16 | 5 | 76 | 13 | <0.0001 | ||||
Hypertension | 72 | 22 | 283 | 48 | <0.0001 | ||||
CVD | 25 | 8 | 65 | 11 | 0.0836 | ||||
Cigarette smoker | 54 | 16 | 100 | 17 | 0.7594 |
Study Group n (%) | Control Group n (%) | OR (95% CI) | p-Value | |
---|---|---|---|---|
rs11672660 | ||||
allele | ||||
T | 272 (23) | 156 (24) | 0.99 (0.79–1.24) | 0.9541 |
C | 886 (77) | 502 (76) | 1.01 (0.81–1.27) | |
genotypes | ||||
TT | 34 (6) | 18 (5.5) | 1.08 (0.60–1.94) | 0.8824 |
CT | 204 (35) | 120 (36.5) | 0.95 (0.71–1.26) | 0.7190 |
CC | 341 (59) | 191 (58) | 0.96 (0.73–1.27) | 0.8315 |
pHW | 0.6346 | 0.8807 | ||
rs2334255 | ||||
allele | ||||
T | 247 (21) | 148 (23) | 0.92 (0.73–1.15) | 0.4773 |
G | 925 (79) | 508 (77) | 1.09 (0.87–1.37) | |
genotypes | ||||
TT | 25 (4) | 11 (3) | 1.28 (0.62–2.65) | 0.5961 |
GT | 197 (34) | 126 (39) | 0.81 (0.61–1.08) | 0.1497 |
GG | 364 (62) | 191 (58) | 1.18 (0.89–1.55) | 0.2591 |
pHW | 0.7985 | 0.0719 | ||
rs10423928 | ||||
allele | ||||
A | 282 (24) | 167 (20) | 1.24 (0.99–1.54) | 0.0588 |
T | 908 (76) | 666 (80) | 0.81 (0.65–1.00) | |
genotypes | ||||
AA | 37 (6) | 23 (7) | 0.89 (0.52–1.53) | 0.6786 |
AT | 208 (35) | 121 (36) | 0.94 (0.71–1.25) | 0.7206 |
TT | 350 (59) | 189 (57) | 1.09 (0.83–1.43) | 0.5791 |
pHW | 0.4161 | 0.5475 |
With MS n (%) | Without MS n (%) | OR (95% CI) | p-Value | |
---|---|---|---|---|
rs11672660 | ||||
allele | ||||
T | 162 (26) | 230 (22) | 1.20 (0.95–1.51) | 0.1370 |
C | 472 (74) | 802 (78) | 0.84 (0.66–1.05) | |
genotypes | ||||
TT | 18 (6) | 31 (6) | 0.84 (0.52–1.71) | 0.8807 |
CT | 126 (40) | 168 (33) | 1.38 (1.03–1.85) | 0.0304 |
CC | 173 (54) | 317 (61) | 0.75 (0.57–1.00) | 0.0593 |
pHW | 0.4258 | 0.1723 | ||
rs2334255 | ||||
allele | ||||
T | 135 (21) | 231 (22) | 0.94 (0.74–1.19) | 0.6266 |
G | 505 (79) | 811 (78) | 1.06 (0.84–1.35) | |
genotypes | ||||
TT | 10 (3) | 27 (5) | 0.59 (0.28–1.24) | 0.1704 |
GT | 115 (36) | 177 (34) | 1.09 (0.81–1.46) | 0.6016 |
GG | 195 (61) | 317 (61) | 1.04 (0.75–1.34) | 1.0000 |
pHW | 0.1546 | 0.7232 | ||
rs10423928 | ||||
allele | ||||
A | 171 (26) | 237 (22) | 1.25 (0.99–1.57) | 0.0536 |
T | 475 (74) | 825 (78) | 0.79 (0.64–1.00) | |
genotypes | ||||
AA | 21 (6.5) | 33 (6) | 1.05 (0.60–1.85) | 0.8853 |
AT | 129 (40) | 171 (32) | 1.40 (1.05–1.87) | 0.0222 |
TT | 173 (53.5) | 327 (62) | 0.72 (0.54–0.95) | 0.0221 |
pHW | 0.6408 | 0.1008 |
Excessive Weight 1 | Metabolic Syndrome | ||||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | ||
CT 2 | CC 2 | CT 2 | CC 2 | ||||||
rs11672660 | crude | 0.9 | 0.54–1.48 | 0.94 | 0.58–1.53 | 1.37 | 0.82–2.28 | 0.99 | 0.61–1.63 |
adjusted 3 | 1.15 | 0.67–1.95 | 1.26 | 0.75–2.11 | 1.7 | 0.99–2.92 | 1.17 | 0.70–1.97 | |
GT 2 | GG 2 | GT 2 | GG 2 | ||||||
rs2334255 | crude | 0.92 | 0.53–1.62 | 1.12 | 0.65–1.94 | 1.59 | 0.87–2.88 | 1.5 | 0.84–2.67 |
adjusted 3 | 0.92 | 0.51–1.69 | 1.1 | 0.62–1.97 | 1.71 | 0.91–3.19 | 1.56 | 0.85–2.87 | |
AT 4 | TT 4 | AT 4 | TT 4 | ||||||
rs10423928 | crude | 1.23 | 0.73–2.06 | 1.32 | 0.80–2.18 | 1.16 | 0.67–1.99 | 0.81 | 0.48–1.38 |
adjusted 3 | 1.27 | 0.74–2.21 | 1.43 | 0.84–2.43 | 1.23 | 0.69–2.18 | 0.83 | 0.47–1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michałowska, J.; Miller-Kasprzak, E.; Seraszek-Jaros, A.; Mostowska, A.; Bogdański, P. The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health. Genes 2022, 13, 1534. https://doi.org/10.3390/genes13091534
Michałowska J, Miller-Kasprzak E, Seraszek-Jaros A, Mostowska A, Bogdański P. The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health. Genes. 2022; 13(9):1534. https://doi.org/10.3390/genes13091534
Chicago/Turabian StyleMichałowska, Joanna, Ewa Miller-Kasprzak, Agnieszka Seraszek-Jaros, Adrianna Mostowska, and Paweł Bogdański. 2022. "The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health" Genes 13, no. 9: 1534. https://doi.org/10.3390/genes13091534
APA StyleMichałowska, J., Miller-Kasprzak, E., Seraszek-Jaros, A., Mostowska, A., & Bogdański, P. (2022). The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health. Genes, 13(9), 1534. https://doi.org/10.3390/genes13091534