Qualitative and Quantitative Detection of Mealworm DNA in Raw and Commercial Food Products Using Real-Time PCR
Abstract
:1. Introduction
- (1)
- Develop an efficient test for the qualitative and quantitative determination of yellow mealworms, based on the detection of a cytochrome I oxidase (mtDNA) fragment- specific species studied;
- (2)
- Validate the test and statistically confirm the qualitative and quantitative identification of mealworms;
- (3)
- Apply the developed test for the analysis of commercial food products available in the European market.
- (4)
- Determinate a DNA isolation method appropriate for raw samples of two life stages for this insect (adults and larvae) and commercial food products.
2. Materials and Methods
2.1. DNA Isolation
2.2. Species and Quantitative Identification of Yellow Mealworms
- -
- The specificity of the yellow mealworm identification reaction;
- -
- The linearity of the test for the quantitative identification of yellow mealworms;
- -
- The limit of detection; and
- -
- The application of the test for analysing commercial samples of food containing yellow mealworms.
Real-Time PCR Conditions
2.3. Specificity and Sensitivity Tests
2.4. Statistical Analysis
2.5. Quantitative Analysis
2.6. Application of the Method for Commercial Food Products
3. Results
3.1. DNA Extraction
3.2. Yellow Mealworm DNA Detection Test
3.3. Biological Specificity of the Test: Statistical Confirmation of Specificity
3.4. Linearity and Field of the Test: Statistical Confirmation of Linearity and Specificity
3.5. Limit of Detection
3.6. Quantitative Analysis
3.7. Analysis of Processed Food Containing Insects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nesic, K.; Zagon, J. Insects—A promising feed and food protein source? Meat Technol. 2019, 60, 56–67. [Google Scholar] [CrossRef]
- IFIF. What is the global feed industry. In International Feed Industry Federation Factsheet; International Feed Industry Federation (IFIF): Wiehl, Germany, 2019; Available online: https://ifif.org/wp-content/uploads/2019/06/IFIF-Fact-Sheet-October-11th-2019.pdf (accessed on 11 October 2019).
- McLeod, A. World Livestock 2011-Livestock in Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Hong, J.; Taehee, H.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Belghit, I.; Waagbø, R.; Lock, E.J.; Liland, N.S. Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr. 2019, 25, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Krogdahl, A.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Itterbeeck, J.; Heetkamp, M.J.; Van Den Brand, H.; Van Loon, J.J.; Van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/893 of 24 May 2017. Available online: http://data.europa.eu/eli/reg/2017/893/oj (accessed on 24 May 2017).
- Nešić, K.; Pavlović, N.; Jojić-Maličević, L. Utvrđivanjeprisustvamesno-koštanogbrašnaporeklomgoveda u hrani za životinjeprimenom tri različitakomercijalnaimunohemijskatesta. Sci. J. Meat Technol. 2012, 53, 173–178. Available online: http://www.journalmeattechnology.com/index.php/meat_technology/article/view/249 (accessed on 15 May 2022).
- van Raamsdonk, L.W.D.; van der Fels-Klerx, H.J.; de Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. 2017, 34, 1384–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Zhang, G.L.; Li, S.; Ivanov, A.R.; Fenyo, D.; Lisacek, F.; Murthy, S.K.; Karger, B.L.; Brusic, V. Pathway analysis and transcriptomics improve protein identification by shotgun proteomics from samples comprising small number of cells-a benchmarking study. BMC Genom. 2014, 15 (Suppl. 9), S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforza, S.; Corradini, R.; Tedeschi, T.; Marchelli, R. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem. Soc. Rev. 2011, 40, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 51/2013 of 16 January 2013. Available online: http://data.europa.eu/eli/reg/2013/51/oj (accessed on 15 May 2022).
- Marien, A.; Debode, F.; Aerts, C.; Ancion, C.; Francis, F.; Berben, G. Detection of Hermetiaillucens by real-time PCR. J. Insects Food Feed 2018, 4, 115–122. [Google Scholar] [CrossRef]
- Debode, F.; Marien, A.; Gérard, A.; Francis, F.; Fumière, O.; Berben, G. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit. Contam. 2017, 34, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Gwinner, J.; Harnisch, R.; Muck, O. Manual on the Prevention of Post-Harvest Grain Loses; Hamburg, Post-Harvest Project; Deutsche Gesellschaft TechnischeZusammenarbeit (GTZ) GmbH: Eschborn, Germany, 1990. [Google Scholar]
- Garino, C.; Zagon, J.; Nesic, K. Novel real-time PCR protocol for the detection of house cricket (Achetadomesticus) in feed. Anim. Feed Sci. Technol. 2021, 280, 115057. [Google Scholar] [CrossRef]
- Satoshi, F.; Miyanoshita, A.; Imamura, T. Real-time PCR-based identification methods for Megaseliascalaris (Loew) (Diptera: Phoridae) targeting mitochondrial DNA. Food Sci. Technol. Res. 2022, 28, 119–122. [Google Scholar] [CrossRef]
- Arslan, A.; Ilhak, O.; Calicioglu, M. Effect of method of cooking on identification of heat processed beef using polymerase chain reaction (PCR) technique. Meat Sci. 2006, 72, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Haunshi, S.; Basumatary, R.; Girish, P.S.; Doley, S.; Bardoloi, R.K.; Kumar, A. Identification of chicken, duck, pigeon and pig meat by species-specific markers of mitochondrial origin. Meat Sci. 2009, 83, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, H.Y. Species identification of commercial jerky products in food and feed using direct pentaplex PCR assay. Food Control 2017, 78, 1–6. [Google Scholar] [CrossRef]
Type of Sample | Sample Composition | No. of Sample |
---|---|---|
R | field cricket | 1/1 |
R | superworm | 1/2 |
R | dubia cockroach | 1/3 |
R | yellow mealworm | 1/4 |
R | migratory locust | 1/5 |
R | banded cricket | 1/6 |
P | dried mealworm larvae | 2/1 |
P | mealworm larvae 20%, dried crickets 10% | 2/2 |
P | dried mealworm larvae | 2/3 |
P | mealworm larvae 4% | 2/4 |
P | mealworm 10% | 2/5 |
P | dried cricket | 2/6 |
P | dipterans/crustaceans | 2/7 |
P | cricket 0.3%, mealworm 0.2% | 2/8 |
P | crustaceans/no insects | 2/9 |
R | mealworm | 3/1 |
R | superworm | 3/2 |
R | field cricket | 3/3 |
R | migratory locust | 3/4 |
R | madagascar cockroach | 3/5 |
P | no insects/crustaceans | 4/1 |
P | dried mealworm larvae | 4/2 |
P | dipterans/crustaceans 2 | 4/3 |
P | no insects/crustaceans | 4/4 |
R | mealworm larvae | 5/1 |
R | superworm larva | 5/2 |
R | field cricket | 6/1 |
R | superworm | 6/2 |
R | dubia cockroach | 6/3 |
R | yellow mealworm | 6/4 |
R | migratory locust | 6/5 |
R | banded cricket | 6/6 |
R | superworm larva | 6/8 |
No. of Sample | Modification | ||||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | ||||||
c [ng/uL] | A260/280 | c [ng/uL] | A260/280 | c [ng/uL] | A260/280 | c [ng/ul] | A260/280 | ||
superworm | 3/2 | 29.8 | 1.70 | 36.4 | 1.40 | 110.9 | 1.84 | 58.0 | 1.78 |
mealworm | 3/1 | 23.0 | 1.47 | 39.0 | 1.39 | 450.5 | 1.86 | 238.3 | 1.94 |
mealworm larva | 5/1 | 40.4 | 1.64 | 59.9 | 1.70 | 75.0 | 1.72 | 84.2 | 1.70 |
superworm larva | 5/2 | 25.1 | 1.92 | 62.8 | 1.68 | 185.3 | 1.82 | 127.6 | 1.81 |
Type of Sample | Sample Composition | No. of Sample | c [ng/uL] | A260/282 | m [g] | c [ng/uL] | A260/282 | m [g] | Wr | DNA Content (R) | Purity | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | field cricket | 3/3 | 554.8 | 1.85 | 0.51 | 671.1 | 1.87 | 0.51 | 0.827 | 116.30 | < | 201.33 | 0.02 | < | 0.19 |
field cricket | 6/1 | 39.5 | 1.61 | 0.45 | 58.4 | 1.39 | 0.55 | 0.827 | 18.90 | < | 17.52 | 0.22 | < | 0.16 | |
superworm | 3/2 | 39.8 | 1.70 | 0.45 | 58.0 | 1.78 | 0.55 | 0.839 | 18.20 | < | 17.40 | 0.08 | < | 0.18 | |
superworm | 6/2 | 154.9 | 2.00 | 0.55 | 110.9 | 1.84 | 0.45 | 1.143 | 44.00 | < | 46.47 | 0.16 | < | 0.20 | |
yellow mealworm | 1/4 | 21.8 | 1.44 | 0.51 | 29.4 | 1.36 | 0.54 | 0.785 | 7.60 | < | 8.82 | 0.08 | < | 0.29 | |
yellow mealworm | 3/1 | 23.0 | 1.45 | 0.50 | 20.7 | 1.43 | 0.50 | 1.111 | 2.30 | < | 6.90 | 0.02 | < | 0.15 | |
yellow mealworm | 6/4 | 450.3 | 2.13 | 0.51 | 424.1 | 2.13 | 0.51 | 1.062 | 26.20 | < | 135.09 | 0.00 | < | 0.21 | |
migratory locust | 3/4 | 35.5 | 1.54 | 0.49 | 39.3 | 1.59 | 0.48 | 0.884 | 3.85 | < | 11.79 | 0.05 | < | 0.16 | |
migratory locust | 6/5 | 754.2 | 1.87 | 0.50 | 982.1 | 1.87 | 0.50 | 0.768 | 227.90 | < | 294.63 | 0.00 | < | 0.19 | |
banded cricket | 1/6 | 221.6 | 1.90 | 0.50 | 262.2 | 1.73 | 0.50 | 0.845 | 40.64 | < | 78.67 | 0.17 | < | 0.19 | |
banded cricket | 6/6 | 341.2 | 1.92 | 0.55 | 221.3 | 1.90 | 0.46 | 1.290 | 119.90 | > | 102.36 | 0.02 | < | 0.19 | |
Dubia cockroach | 1/3 | 385.5 | 1.86 | 0.52 | 352.4 | 1.84 | 0.51 | 1.073 | 33.10 | < | 115.65 | 0.02 | < | 0.19 | |
Dubia cockroach | 6/3 | 395.8 | 1.86 | 0.52 | 385.5 | 1.86 | 0.51 | 1.007 | 10.30 | < | 118.74 | 0.00 | < | 0.19 | |
Madagascar cockroach | 3/5 | 184.7 | 1.79 | 0.47 | 210.3 | 1.85 | 0.54 | 1.009 | 25.60 | < | 63.09 | 0.06 | < | 0.19 | |
Madagascar cockroach | 6/7 | 162.7 | 1.82 | 0.53 | 154.8 | 1.78 | 0.53 | 1.051 | 7.90 | < | 48.81 | 0.04 | < | 0.18 | |
mealworm larva | 5/1 | 75.0 | 1.72 | 0.55 | 60.3 | 1.74 | 0.45 | 1.018 | 14.70 | < | 22.50 | 0.02 | < | 0.17 | |
mealworm larva | 6/7 | 52.8 | 1.78 | 0.48 | 74.6 | 1.88 | 0.52 | 0.767 | 21.80 | < | 22.38 | 0.10 | < | 0.38 | |
mealworm larva | 6/9 | 85.2 | 1.86 | 0.45 | 117.6 | 1.94 | 0.50 | 0.805 | 32.40 | < | 35.28 | 0.08 | < | 0.19 | |
superworm larva | 5/2 | 185.3 | 1.82 | 0.49 | 141.8 | 1.76 | 0.45 | 1.200 | 43.50 | < | 55.59 | 0.06 | < | 0.18 | |
superworm larva | 6/8 | 422.1 | 1.84 | 0.54 | 352.4 | 1.82 | 0.48 | 1.065 | 69.70 | < | 126.63 | 0.02 | < | 0.18 | |
p | dried mealworm larvae | 2/1 | 175.4 | 1.85 | 0.45 | 590.8 | 1.90 | 0.55 | 0.363 | 415.42 | > | 177.23 | 0.05 | < | 0.38 |
mealworm larvae 20%, dried crickets 10% | 2/2 | 463.6 | 1.77 | 0.45 | 655.9 | 1.80 | 0.52 | 0.817 | 192.26 | < | 196.76 | 0.03 | < | 0.36 | |
dried mealworm larvae | 2/3 | 329.5 | 1.93 | 0.55 | 243.8 | 1.80 | 0.48 | 1.180 | 85.71 | < | 98.86 | 0.13 | < | 0.39 | |
mealworm larvae 4% | 2/4 | 287.3 | 1.88 | 0.55 | 271.9 | 1.80 | 0.45 | 0.864 | 15.390 | < | 86.18 | 0.08 | < | 0.38 | |
mealworm 10% | 2/5 | 129.8 | 1.80 | 0.45 | 231.0 | 1.80 | 0.54 | 0.674 | 101.180 | > | 69.29 | 0.00 | < | 0.36 | |
dried cricket | 2/6 | 110.5 | 1.72 | 0.51 | 91.7 | 1.80 | 0.50 | 1.181 | 18.791 | < | 33.14 | 0.08 | < | 0.36 | |
dipterans/crustaceans | 2/7 | 460.0 | 1.78 | 0.48 | 538.6 | 1.90 | 0.45 | 0.801 | 78.600 | < | 161.57 | 0.12 | < | 0.38 | |
cricket 0.3%, mealworm 0.2% | 2/8 | 211.6 | 1.78 | 0.46 | 363.5 | 1.80 | 0.55 | 0.696 | 151.850 | > | 109.04 | 0.02 | < | 0.36 | |
crustaceans/no insects | 2/9 | 408.9 | 1.81 | 0.48 | 420.5 | 1.84 | 0.51 | 1.033 | 11.586 | < | 126.14 | 0.03 | < | 0.37 | |
no insects/crustaceans | 4/1 | 281.9 | 1.70 | 0.54 | 307.8 | 1.80 | 0.48 | 0.814 | 25.950 | < | 92.34 | 0.10 | < | 0.36 | |
dried mealworm larvae | 4/2 | 110.3 | 1.79 | 0.48 | 214.8 | 1.88 | 0.51 | 0.546 | 104.500 | > | 64.45 | 0.09 | < | 0.38 | |
dipterans/crustaceans | 4/3 | 100.7 | 1.73 | 0.52 | 70.9 | 1.79 | 0.49 | 1.338 | 29.770 | < | 30.20 | 0.06 | < | 0.36 | |
no insects/crustaceans | 4/4 | 171.6 | 1.77 | 0.55 | 89.4 | 1.70 | 0.48 | 1.675 | 82.220 | < | 51.48 | 0.07 | < | 0.35 |
Type of Sample | Sample Composition | No. of Sample | cT of DNA Isolation Repeats | SD | RSD% | Interpretation of the Result | |||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||
R | field cricket | 1/1 | NR | NR | NR | NR | − | ||
R | field cricket | 3/3 | NR | NR | NR | NR | − | ||
R | superworm | 1/2 | NR | NR | NR | NR | − | ||
R | superworm | 3/2 | NR | NR | NR | NR | − | ||
R | Dubia cockroach | 1/3 | NR | NR | NR | NR | − | ||
R | Dubia cockroach | 6/3 | NR | NR | NR | NR | − | ||
R | Madagascar cockroach | 3/5 | NR | NR | NR | NR | − | ||
R | Madagascar cockroach | 6/7 | NR | NR | NR | NR | − | ||
R | yellow mealworm | 1/4 | 36.38 | 33.92 | 32.91 | 35.25 | 1.52 | 4.39% | + |
R | yellow mealworm | 3/1 | 31.25 | 35.74 | 31.80 | 32.31 | 2.02 | 6.17% | + |
R | yellow mealworm | 6/4 | 30.22 | 26.29 | 30.69 | 27.17 | 2.19 | 7.65% | + |
R | migratory locust | 1/5 | NR | NR | NR | NR | − | ||
R | migratory locust | 3/4 | NR | NR | NR | NR | − | ||
R | banded cricket | 1/6 | NR | NR | NR | NR | − | ||
R | banded cricket | 6/6 | NR | NR | NR | NR | − | ||
R | mealworm larva | 5/1 | 33.35 | 28.20 | 31.34 | 33.08 | 2.37 | 7.52% | + |
R | mealworm larva | 6/7 | 28.65 | 30.09 | 31.31 | 33.47 | 2.04 | 6.61% | + |
R | mealworm larva | 6/9 | 31.82 | 29.44 | 32.64 | 35.96 | 2.70 | 8.31% | + |
R | superworm larva | 5/2 | NR | NR | NR | NR | − | ||
lacewing | NR | NR | NR | NR | − | ||||
house fly | NR | NR | NR | NR | − | ||||
lemon | NR | NR | NR | NR | − | ||||
banana | NR | NR | NR | NR | − | ||||
tomato | NR | NR | NR | NR | − | ||||
wheat/oat grain | NR | NR | NR | NR | − | ||||
cattle | NR | NR | NR | NR | − | ||||
pig | NR | NR | NR | NR | − | ||||
turkey | NR | NR | NR | NR | − | ||||
chicken | NR | NR | NR | NR | − | ||||
fish | NR | NR | NR | NR | − |
Template | No. of Analysed Sample Repeat | F | p | Fcrit | Interpretation |
---|---|---|---|---|---|
Mealworm larvae, sample 1 | 4 | 0.449 | 0.652 | 4.256 | |
Mealworm larvae, sample 2 | 4 | ||||
Mealworm larvae, sample 3 | 4 | ||||
Yellow mealworm, sample 1 | 4 | 10.218 | 0.005 | 4.256 | * |
Yellow mealworm, sample 2 | 4 | ||||
Yellow mealworm, sample 3 | 4 | ||||
Between both groups/templates | 3.493 | 0.022 | 2.773 | * |
Actual Concentration [%] in the Reference Sample | cT of Yellow Mealworms Samples Repeat | Biological Form | ||
---|---|---|---|---|
1 | 2 | 3 | ||
100 | 27.98 | 28.58 | 27.56 | Adult (sample 6/4) |
10 | 31.28 | 31.92 | 30.80 | |
1 | 34.91 | 34.95 | 35.70 | |
0.1 | 37.82 | 37.75 | 36.99 | |
100 | 29.32 | 28.37 | 32.57 | Larva (sample 5/1) |
10 | 32.94 | 31.70 | 35.51 | |
1 | 36.60 | 35.06 | 38.82 | |
0.1 | 39.26 | 38.43 | 40.13 |
Parameters of Real-Time PCR | Yellow Mealworm Sample Repeat | Biological Form | F | Fcrit | Interpretation | ||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||
E | 103.51 | 108.664 | 100.173 | Adult (sample 6/4) | 2.17 | 19 | ** I |
R2 | 0.986 | 0.987 | 0.998 | ||||
Slope | −3.241 | −3.13 | −3.318 | ||||
Y-Inter | 34.183 | 35.051 | 34.668 | ||||
E | 98.221 | 87.519 | 100.475 | Larva (sample 5/1) | 1.70 | 19 | ** |
R2 | 1 | 1 | 0.986 | ||||
Slope | −3.365 | −3.662 | −3.311 | ||||
Y-Inter | 35.062 | 36.0599 | 38.824 |
Type of Sample | c and cT of the References Samples of Yellow Mealworm | AC [%] | |||||
---|---|---|---|---|---|---|---|
Actual | Determined According to Curve | ||||||
1 | 2 | 1 | 2 | ||||
c [%] | ct | c [%] | ct | c [%] | |||
Adult | 100 | 27.85 | 90.22 | 28.33 | 81.16 | 9.78% | 18.84% |
10 | 30.09 | 18.50 | 30.63 | 16.53 | 85.03% | 65.30% | |
1 | 31.60 | 6.25 | 32.11 | 5.89 | 525.02% | 489.00% | |
Larva | 100 | 31.83 | 9.13 | 28.95 | 959.91 | 90.87% | 859.91% |
10 | 35.52 | 0.73 | 32.61 | 75.23 | 92.71% | 652.34% | |
1 | 38.43 | 0.06 | 36.27 | 5.90 | 94.18% | 489.66% |
Type of Sample | No. of Sample | cT of Samples Repeat | cT Mean | SD | RSD % | Interpretation of the Result | |||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||
P | 2/1 | 26.65 | 24.35 | 27.04 | 24.52 | 25.64 | 1.40 | 5.47% | + |
P | 2/2 | 31.32 | 27.26 | 30.99 | 27.44 | 29.25 | 2.20 | 7.53% | + |
P | 2/3 | 31.87 | 31.88 | 31.62 | 31.04 | 31.60 | 0.39 | 1.25% | + |
P | 2/4 | 32.52 | 32.39 | 32.28 | 32.55 | 32.44 | 0.12 | 0.38% | + |
P | 2/5 | 27.21 | 26.38 | 26.95 | 26.56 | 26.78 | 0.38 | 1.40% | + |
P | 2/6 | NR | NR | NR | NR | - | |||
P | 2/7 | NR | NR | NR | NR | - | |||
P | 2/8 | 35.98 | 35.33 | 35.73 | 35.48 | 35.63 | 0.29 | 0.80% | + |
P | 2/9 | NR | NR | NR | NR | - | |||
P | 4/1 | NR | NR | NR | 42.55 | - | |||
P | 4/2 | 27.17 | 25.88 | 26.92 | 26.00 | 26.49 | 0.65 | 2.45% | + |
P | 4/3 | NR | NR | NR | NR | - | |||
P | 4/4 | NR | NR | NR | NR | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natonek-Wiśniewska, M.; Krzyścin, P.; Koseniuk, A. Qualitative and Quantitative Detection of Mealworm DNA in Raw and Commercial Food Products Using Real-Time PCR. Genes 2022, 13, 1400. https://doi.org/10.3390/genes13081400
Natonek-Wiśniewska M, Krzyścin P, Koseniuk A. Qualitative and Quantitative Detection of Mealworm DNA in Raw and Commercial Food Products Using Real-Time PCR. Genes. 2022; 13(8):1400. https://doi.org/10.3390/genes13081400
Chicago/Turabian StyleNatonek-Wiśniewska, Małgorzata, Piotr Krzyścin, and Anna Koseniuk. 2022. "Qualitative and Quantitative Detection of Mealworm DNA in Raw and Commercial Food Products Using Real-Time PCR" Genes 13, no. 8: 1400. https://doi.org/10.3390/genes13081400
APA StyleNatonek-Wiśniewska, M., Krzyścin, P., & Koseniuk, A. (2022). Qualitative and Quantitative Detection of Mealworm DNA in Raw and Commercial Food Products Using Real-Time PCR. Genes, 13(8), 1400. https://doi.org/10.3390/genes13081400