The Contribution of Genetics to Muscle Disuse, Retraining, and Aging
Abstract
1. Skeletal Muscle Plasticity and Genetic Variants
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Böcker, J.; Schmitz, M.T.; Mittag, U.; Jordan, J.; Rittweger, J. Between-Subject and Within-Subject Variaton of Muscle Atrophy and Bone Loss in Response to Experimental Bed Rest. Front. Physiol. 2022, 12, 743876. [Google Scholar] [CrossRef]
- Erskine, R.M.; Jones, D.A.; Williams, A.G.; Stewart, C.E.; Degens, H. Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur. J. Appl. Physiol. 2010, 110, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Baehr, L.M.; Hughes, D.C.; Waddell, D.S.; Bodine, S.C. SnapShot: Skeletal muscle atrophy. Cell 2022, 185, 1618–1618.e1. [Google Scholar] [CrossRef]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 3, 51–60. [Google Scholar] [CrossRef]
- Arentson-Lantz, E.J.; English, K.L.; Paddon-Jones, D.; Fry, C.S. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J. Appl. Physiol. 2016, 120, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Demangel, R.; Treffel, L.; Py, G.; Brioche, T.; Pagano, A.F.; Bareille, M.P.; Beck, A.; Pessemesse, L.; Candau, R.; Gharib, C.; et al. Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J. Physiol. 2017, 595, 4301–4315. [Google Scholar] [CrossRef]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef]
- Zaripova, K.A.; Kalashnikova, E.P.; Belova, S.P.; Kostrominova, T.Y.; Shenkman, B.S.; Nemirovskaya, T.L. Role of pannexin 1 ATP-permeable channels in the regulation of signaling pathways during skeletal muscle unloading. Int. J. Mol. Sci. 2021, 22, 10444. [Google Scholar] [CrossRef]
- Stevenson, E.J.; Giresi, P.G.; Koncarevic, A.; Kandarian, S.C. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J. Physiol. 2003, 551, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Judex, S.; Zhang, W.; Donahue, L.R.; Ozcivici, E. Genetic and tissue level muscle-bone interactions during unloading and reambulation. J. Musculoskelet. Neuronal Interact. 2016, 16, 174–182. [Google Scholar] [PubMed]
- Maroni, C.R.; Friedman, M.A.; Zhang, Y.; McClure, M.J.; Fulle, S.; Farber, C.R.; Donahue, H.J. Genetic variability affects the response of skeletal muscle to disuse. J. Musculoskelet. Neuronal Interact. 2021, 21, 387–396. [Google Scholar] [PubMed]
- Mahmassani, Z.S.; Reidy, P.T.; McKenzie, A.I.; Stubben, C.; Howard, M.T.; Drummond, M.J. Disuse-induced insulin resistance susceptibility coincides with a dysregulated skeletal muscle metabolic transcriptome. J. Appl. Physiol. 2019, 126, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Ruiz, J.R.; Rodríguez-Romo, G.; Fiuza-Luces, C.; Yvert, T.; Gonzalez-Freire, M.; Gómez-Gallego, F.; Morán, M.; Lucia, A. The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men. PLoS ONE 2011, 6, e16323. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014, 32, 883–891. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Zmuda, J.M.; Taylor, B.C.; Cauley, J.A.; Harris, T.B.; Manini, T.M.; Schwartz, A.; Li, R.; Roth, S.M.; Hurley, B.F.; et al. Association of the ACTN3 genotype and physical functioning with age in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1227–1234. [Google Scholar] [CrossRef]
- De Mars, G.; Windelinckx, A.; Beunen, G.; Delecluse, C.; Lefevre, J.; Thomis, M.A.I. Polymorphisms in the CNTF and CNTF receptor genes are associated with muscle strength in men and women. J. Appl. Physiol. 2007, 102, 1824–1831. [Google Scholar] [CrossRef]
- Walsh, S.; Metter, E.J.; Ferrucci, L.; Roth, S.M. Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans. J. Appl. Physiol. 2007, 102, 2142–2148. [Google Scholar] [CrossRef][Green Version]
- Kostek, M.A.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.; Zoeller, R.F.; Price, T.B.; Seip, R.L.; Thompson, P.D.; et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med. Sci. Sports Exerc. 2009, 41, 1063–1071. [Google Scholar] [CrossRef]
- Geusens, P.; Vandevyver, C.; Vanhoof, J.; Cassiman, J.J.; Boonen, S.; Raus, J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J. Bone Miner. Res. 1997, 12, 2082–2088. [Google Scholar] [CrossRef]
- Heckerman, D.; Traynor, B.J.; Picca, A.; Calvani, R.; Marzetti, E.; Hernandez, D.; Nalls, M.; Arepali, S.; Ferrucci, L.; Landi, F. Genetic variants associated with physical performance and anthropometry in old age: A genome-wide association study in the ilSIRENTE cohort. Sci. Rep. 2017, 7, 15879. [Google Scholar] [CrossRef] [PubMed]
Genetic Variant | Variability | Species | Reference |
---|---|---|---|
QTL on Chr 5 | Loss in CSA upon disuse | Mouse | Judex et al., 2016 [11] |
QTL on Chr 2 & 19 | Gain in CSA upon retraining | Mouse | Judex et al., 2016 [11] |
129S1/SvlmJ strain | Resistance to muscle loss | Mouse | Maroni et al., 2021 [12] |
NOD/ShiLtJ & NZO/HILtJ strains | Susceptibility to muscle loss | Mouse | Maroni et al., 2021 [12] |
CAST/EiJ strain | Compensation between MPB and MPS upon disuse | Mouse | Maroni et al., 2021 [12] |
PFKFB3, FASN & SLC43A1 | Insulin resistance upon disuse | Human | Mahmassani et al., 2019 [13] |
A55T & K153R MSTN | Muscle power and hypertrophy in non-athletes | Human | Santiago et al., 2011 [14]; Li et al., 2014 [15] |
ACTN3 R577X | Muscle power with aging | Human | Delmonico et al., 2008 [16] |
CNTFR C1703T & T1069A | Muscle strength with aging | Human | De Mars et al., 2007 [17] |
ACVR2B and FSTL | Muscle mass and strength with aging | Human | Walsh et al., 2007 [18] |
MSTN A2379G & FST A5003T | Muscle strength and size in young African Americans | Human | Kostek et al., 2009 [19] |
bb VDR | Quadriceps strength in non-obese women | Human | Geusens et al., 1997 [20] |
ZNF295 & C2CD2 | Muscle function in aging | Human | Heckerman et al., 2017 [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirago, G.; Picca, A.; Giacomello, E.; Marzetti, E.; Toniolo, L. The Contribution of Genetics to Muscle Disuse, Retraining, and Aging. Genes 2022, 13, 1378. https://doi.org/10.3390/genes13081378
Sirago G, Picca A, Giacomello E, Marzetti E, Toniolo L. The Contribution of Genetics to Muscle Disuse, Retraining, and Aging. Genes. 2022; 13(8):1378. https://doi.org/10.3390/genes13081378
Chicago/Turabian StyleSirago, Giuseppe, Anna Picca, Emiliana Giacomello, Emanuele Marzetti, and Luana Toniolo. 2022. "The Contribution of Genetics to Muscle Disuse, Retraining, and Aging" Genes 13, no. 8: 1378. https://doi.org/10.3390/genes13081378
APA StyleSirago, G., Picca, A., Giacomello, E., Marzetti, E., & Toniolo, L. (2022). The Contribution of Genetics to Muscle Disuse, Retraining, and Aging. Genes, 13(8), 1378. https://doi.org/10.3390/genes13081378