Are Pain Polymorphisms Associated with the Risk and Phenotype of Post-COVID Pain in Previously Hospitalized COVID-19 Survivors?
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Defining Post-COVID Pain
2.3. DNA Collection and Genotyping
2.4. Post-COVID Pain Featuring
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. OPRM1 (rs1799971) Polymorphism
4.2. COMT (rs4680) Val158Met Polymorphism
4.3. BDNF (rs6265) Val66Met Polymorphism
4.4. HTR1B (rs6296) Val287 Polymorphism
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delanghe, J.R.; de Buyzere, M.L.; Speeckaert, M.M. Genetic Polymorphisms in the Host and COVID-19 Infection. Adv. Exp. Med. Biol. 2021, 1318, 109–118. [Google Scholar] [PubMed]
- Adli, A.; Rahimi, M.; Khodaie, R.; Hashemzaei, N.; Hosseini, S.M. Role of genetic variants and host polymorphisms on COVID-19: From viral entrance mechanisms to immunological reactions. J. Med. Virol. 2022, 94, 1846–1865. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C. Long COVID: Current definition. Infection 2022, 50, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Navarro-Santana, M.; Plaza-Manzano, G.; Palacios-Ceña Arendt-Nielsen, L. Time course prevalence of Post-COVID pain symptoms of musculoskeletal origin in patients who had survived to SARS-CoV-2 infection: A systematic review and meta-analysis. Pain 2022, 163, 1220–1231. [Google Scholar] [CrossRef]
- Foulkes, T.; Wood, J.N. Pain genes. PLoS Genet. 2008, 4, e1000086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossen, H.; Kenis, G.; Rutten, B.; van Os, J.; Hermens, H.; Lousberg, R. The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status. PLoS ONE 2010, 5, e13641. [Google Scholar] [CrossRef]
- Tour, J.; Löfgren, M.; Mannerkorpi, K.; Gerdle, B.; Larsson, A.; Palstam, A.; Bileviciute-Ljungar, I.; Bjersing, J.; Martin, I.; Ernberg, M.; et al. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes. Pain 2017, 158, 1194–1203. [Google Scholar] [CrossRef]
- Wei, S.Y.; Chao, H.T.; Tu, C.H.; Lin, M.W.; Li, W.C.; Low, I.; der Shen, H.; Chen, L.F.; Hsieh, J.C. The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci. Rep. 2016, 6, 23639. [Google Scholar] [CrossRef] [Green Version]
- Walter, C.; Doehring, A.; Oertel, B.G.; Lötsch, J. µ-opioid receptor gene variant OPRM1 118 A>G: A summary of its molecular and clinical consequences for pain. Pharmacogenomics 2013, 14, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Fillingim, R.B.; Kaplan, L.; Staud, R.; Ness, T.J.; Glover, T.L.; Campbell, C.M.; Mogil, J.S.; Wallace, M.R. The A118G single nucleotide polymorphism of the μ-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J. Pain 2005, 6, 159–167. [Google Scholar] [CrossRef]
- Kambur, O.; Männistö, P.T. Catechol-O-Methyltransferase and pain. Int. Rev. Neurobiol. 2010, 95, 227–279. [Google Scholar]
- Belfer, I.; Segall, S. COMT genetic variants and pain. Drugs Today 2011, 47, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Diatchenko, L.; Slade, G.D.; Nackley, A.G.; Bhalang, K.; Sigurdsson, A.; Belfer, I.; Goldman, D.; Xu, K.; Shabalina, S.A.; Shagin, D.; et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 2005, 14, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tammimäki, A.; Männistö, P.T. Catechol-O-methyltransferase gene polymorphism and chronic human pain: A systematic review and meta-analysis. Pharmacogenet. Genomics 2012, 22, 673–691. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.B.; Maixner, D.W.; Greenspan, J.D.; Dubner, R.; Fillingim, R.B.; Ohrbach, R.; Knott, C.; Slade, G.D.; Bair, E.; Gibson, D.G.; et al. Potential genetic risk factors for chronic TMD: Genetic associations from the OPPERA case control study. J. Pain 2011, 12, T92–T101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.J.; Jiang, J.R.; Jin, S.Q. The association between COMT Val158Met polymorphism and migraine risk: A meta-analysis. Cephalalgia 2017, 37, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; You, Y.; Joseph, C.; Mirzaei, M.; Klistorner, A.; Graham, S.L.; Gupta, V. BDNF polymorphism: A review of its diagnostic and clinical relevance in neurodegenerative disorders. Aging Dis. 2018, 9, 523–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottmann, K.; Mittmann, T.; Lessmann, V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res. 2009, 199, 203–234. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Minuzzi, L.G.; Seelaender, M.; Silva, B.S.A.; Cunha, E.D.B.B.; Deus, M.C.; Vasconcellos, F.T.F.; Marqueze, L.F.B.; Gadotti, A.C.; Baena, C.P.; Pereira, T.; et al. COVID-19 outcome relates with circulating BDNF, according to patient adiposity and age. Front. Nutr. 2021, 8, 784429. [Google Scholar] [CrossRef]
- Xia, X.; Ding, M.; Xuan, J.F.; Xing, J.X.; Pang, H.; Yao, J.; Wu, X.; Wang, B.J. Effects of HTR1B 3’ region polymorphisms and functional regions on gene expression regulation. BMC Genet. 2020, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.P. Warriors, Worriers, and COVID-19: An Exploratory Study of the Catechol O-Methyltransferase Val158Met Polymorphism Across Populations. Cureus 2020, 12, e10103. [Google Scholar] [CrossRef]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Majewski, P.; Rotter, I.; Kotfis, K. COVID-19: Pain management in patients with SARS-CoV-2 Infection: Molecular mechanisms, challenges, and perspectives. Brain Sci. 2020, 10, 465. [Google Scholar] [CrossRef]
- Cascella, M.; Del Gaudio, A.; Vittori, A.; Bimonte, S.; Del Prete, P.; Forte, C.A.; Cuomo, A.; De Blasio, E. COVID-Pain: Acute and late-onset painful clinical manifestations in COVID-19: Molecular mechanisms and research perspectives. J. Pain Res. 2021, 14, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019, 160, 77–82. [Google Scholar] [CrossRef]
- Mayer, T.G.; Neblett, R.; Cohen, H.; Howard, K.J.; Choi, Y.H.; Williams, M.J.; Perez, Y.; Gatchel, R.J. The development and psychometric validation of the central sensitization inventory. Pain Pract. 2012, 12, 276–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, M.I.; Smith, B.H.; Torrance, N.; Potter, J. The S-LANSS score for identifying pain of predominantly neuropathic origin: Validation for use in clinical and postal research. J. Pain 2005, 6, 149–158. [Google Scholar] [CrossRef] [PubMed]
- García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. Validation of the Spanish version of the Pain Catastrophizing Scale in fibromyalgia. Med. Clin. 2008, 131, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Woby, S.R.; Roach, N.K.; Urmston, M.; Watson, P.J. Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia. Pain 2005, 117, 137–144. [Google Scholar] [CrossRef]
- Herrmann-Lingen, C.; Buss, U.; Snaith, R.P. Hospital Anxiety and Depression Scale Deutsche Version (HADS-D); Verlag Hans Huber: Bern, Germany, 2011. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Yu, Z.; Wen, L.; Shen, X.; Zhang, H. Effects of the OPRM1 A118G polymorphism (rs1799971) on opioid analgesia in cancer pain: A Systematic review and meta-analysis. Clin. J. Pain 2019, 35, 77–86. [Google Scholar] [CrossRef]
- Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA 1998, 95, 9608–9613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannisto, P.T.; Kaakkola, S. Catechol-O-methyltransferase (COMT): Biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol. Rev. 1999, 51, 593–628. [Google Scholar] [PubMed]
- Watkins, L.R.; Mayer, D.J. Organization of endogenous opiate and non-opiate pain control systems. Science 1982, 216, 1185–1192. [Google Scholar] [CrossRef]
- Nicholl, B.I.; Holliday, K.L.; Macfarlane, G.J.; Thomson, W.; Davies, K.A.; O’Neill, T.W.; Bartfai, G.; Boonen, S.; Casanueva, F.; Finn, J.D.; et al. No evidence for a role of the catechol-O-methyltransferase pain sensitivity haplotypes in chronic widespread pain. Ann. Rheum. Dis. 2010, 69, 2009–2012. [Google Scholar] [CrossRef] [PubMed]
- Hagen, K.; Pettersen, E.; Stovner, L.J.; Skorpen, F.; Zwart, J.A. No association between chronic musculoskeletal complaints and Val158Met polymorphism in the Catechol-O-methyltransferase gene: The HUNT study. BMC Musculoskelet. Disord. 2006, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Candidate gene studies of fibromyalgia: A systematic review and meta-analysis. Rheumatol. Int. 2012, 32, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, N.; Soprun, L.; Lukashenko, M.; Ryabkova, V.; Fedotkina, T.V.; Churilov, L.P.; Shoenfeld, Y. New Clinical phenotype of the Post-COVID syndrome: Fibromyalgia and joint hypermobility condition. Pathophysiology 2022, 29, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Ambite-Quesada, S.; Gil-Crujera, A.; Cigarán-Méndez, M.; Peñacoba-Puente, C. Catechol-O-methyltransferase Val158Met polymorphism influences anxiety, depression, and disability, but not pressure pain sensitivity, in women with fibromyalgia syndrome. J. Pain 2012, 13, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.S.; Antunes, F.T.T.; Ferraz, C.; de Souza, A.H.; Simon, D. The genetic influence of the brain-derived neurotrophic factor Val66Met polymorphism in chronic low back pain. Adv. Rheumatol. 2021, 61, 24. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Yang, M.; Li, P.; Cao, D.; Gong, D.; Lv, J.; Pu, L.; Huang, S.; Liang, Y. A meta-analysis of 5-Hydroxytryptamine receptor 1B polymorphisms with risk of major depressive disorder and suicidal behavior. Front. Psychiatry 2021, 12, 696655. [Google Scholar] [CrossRef] [PubMed]
Post-COVID Pain (n = 117) | No Post-COVID Pain (n = 176) | |
---|---|---|
Age, mean (SD), years | 56.0 (12.5) | 57.5 (13.5) |
Gender, female n (%) * | 74 (63.2%) | 81 (46.1%) |
Weight, mean (SD), kg. | 80.8 (17.9) | 80.8 (15.8) |
Height, mean (SD), cm. | 168 (8.5) | 168 (9.5) |
Medical co-morbidities, n (%) | ||
Hypertension | 36 (30.7%) | 54 (30.6%) |
Diabetes | 13 (11.1%) | 16 (9.1%) |
Cardiovascular diseases | 6 (5.1%) | 12 (6.8%) |
Asthma | 12 (10.2%) | 17 (9.6%) |
Obesity | 30 (25.6%) | 40 (22.7%) |
Chronic obstructive pulmonary disease | 2 (1.7%) | 5 (2.8%) |
Rheumatological diseases | 4 (3.4%) | 6 (3.4%) |
Other (cancer, kidney disease) | 21 (17.9%) | 31 (17.6%) |
Post-COVID symptoms, n (%) | ||
Fatigue * | 92 (78.6%) | 92 (52.3%) |
Dyspnea | 19 (16.2%) | 22 (12.5%) |
Skin rashes | 35 (29.9%) | 43 (24.4%) |
Memory loss | 24 (20.5%) | 34 (19.3%) |
Concentration loss | 16 (13.7%) | 18 (10.2%) |
Cognitive blunting–brain fog | 15 (18.8%) | 20 (11.3%) |
Gastrointestinal disorders | 8 (6.8%) | 15 (8.5%) |
Ocular disorders | 7 (6.0%) | 10 (5.7%) |
Ageusia/hypogeusia | 5 (4.2%) | 7 (3.9%) |
Anosmia/hyposmia | 6 (5.1%) | 8 (4.5%) |
Post-COVID Pain | No Post-COVID Pain | p Value | |
---|---|---|---|
OPRM1 rs1799971 (n = 291) | |||
Asn/Asn (n = 202) | 78 (66.6%) | 124 (71.2%) | χ2 = 3.453; p = 0.178 |
Asn/Asp (n = 82) | 38 (32.5%) | 44 (25.3%) | |
Asp/Asp (n = 7) | 1 (0.09%) | 6 (3.5%) | |
COMT rs4680 (n = 289) | |||
Val/Val (n = 48) | 16 (13.6%) | 32 (18.6%) | χ2 = 1.352; p = 0.509 |
Val/Met (n = 144) | 59 (50.4%) | 85 (49.4%) | |
Met/Met (n = 97) | 42 (36.0%) | 55 (32.0%) | |
BDNF rs6265 (n = 290) | |||
C/C (n = 197) | 80 (68.9%) | 117 (67.2%) | χ2 = 0.145; p = 0.930 |
C/T (n = 81) | 31 (26.7%) | 50 (28.7%) | |
T/T (n = 12) | 5 (4.4%) | 7 (4.1%) | |
HTR1B rs6296 (n = 290) | |||
C/C (n = 157) | 57 (48.7%) | 100 (57.8%) | χ2 = 3.321; p = 0.190 |
C/G (n = 113) | 53 (45.3%) | 60 (34.7%) | |
G/G (n = 20) | 7 (6.0%) | 13 (7.5%) |
Asn/Asn (n = 78) | Asn/Asp (n = 38) | Asp/Asp (n = 1) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 54.7 ± 12.0 | 55.5 ± 12.8 | 62 |
Height (m) | 1.65 ± 0.1 | 1.64 ± 0.2 | 1.65 |
Weight (kg) | 80.5 ± 17.2 | 81.8 ± 19.5 | 80.0 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.5 ± 1.7 | 5.9 ± 1.75 | 5.2 |
Post-COVID Symptoms (months) | 17.6 ± 5.3 | 17.9 ± 4.5 | 18.0 |
Sensory-Related Variables | |||
Central Sensitization Inventory (0–100) | 35.5 ± 18.2 | 34.5 ± 18.7 | 42.0 |
S-LANSS (0–24) | 5.6 ± 5.7 | 10.2 ± 13.3 | 4.0 |
Cognitive Variables | |||
Pain Catastrophizing Scale (0–52) | 8.9 ± 10.1 | 7.0 ± 7.9 | 7.0 |
Tampa Scale for Kinesiophobia (0–44) | 23.4 ± 8.8 | 22.4 ± 8.6 | 30.0 |
Psychological Variables | |||
HADS-A (0–21) | 3.7 ± 3.9 | 3.5 ± 4.5 | 3.3 |
HADS-D (0–21) | 3.0 ± 3.8 | 2.9 ± 3.9 | 3.0 |
PSQI (0–21) | 6.5 ± 3.7 | 6.55 ± 4.1 | 6.4 |
Val/Val (n = 16) | Val/Met (n = 59) | Met/Met (n = 42) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 54.5 ± 11.5 | 56.0 ± 12.1 | 54.1 ± 13.2 |
Height (m) | 1.64 ± 0.09 | 1.69 ± 0.1 | 1.65 ± 0.08 |
Weight (kg) | 81.8 ± 12.9 | 82.9 ± 14.2 | 80.9 ± 13.9 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.1 ± 1.8 | 5.9 ± 1.7 | 5.5 ± 1.6 |
Post-COVID symptoms (months) | 17.5 ± 5.4 | 17.4 ± 5.2 | 18.1 ± 5.0 |
Sensory-Related Variables | |||
Central sensitization inventory (0–100) | 32.3 ± 19.9 | 35.9 ± 16.7 | 40.9 ± 19.3 |
S-LANSS (0–24) | 5.9 ± 7.5 | 6.6 ± 6.2 | 8.1 ± 12.7 |
Cognitive Variables | |||
Pain catastrophizing scale (0–52) | 7.9 ± 9.0 | 8.6 ± 8.7 | 8.0 ± 10.8 |
Tampa Scale for Kinesiophobia (0–44) | 23.7 ± 7.2 | 23.9 ± 8.2 | 22.9 ± 10.0 |
Psychological Variables | |||
HADS-A (0–21) | 3.5 ± 4.4 | 4.0 ± 4.1 | 4.2 ± 4.0 |
HADS-D (0–21) | 3.25 ± 4.9 | 3.2 ± 3.9 | 3.3 ± 3.1 |
PSQI (0–21) | 6.1 ± 4.4 | 6.9 ± 4.0 | 6.0 ± 3.8 |
C/C (n = 80) | C/T (n = 31) | T/T (n = 5) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 54.5 ± 12.7 | 57.0 ± 12.2 | 55.0 ± 9.3 |
Height (m) | 1.66 ± 0.08 | 1.67 ± 0.09 | 1.70 ± 0.12 |
Weight (kg) | 80.0 ± 18.8 | 80.1 ± 16.2 | 84.2 ± 13.8 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.6 ± 1.7 | 5.7 ± 1.6 | 5.5 ± 0.7 |
Post-COVID symptoms (months) | 17.5 ± 5.3 | 17.7 ± 5.1 | 19.0 ± 2.8 |
Sensory-Related Variables | |||
Central sensitization inventory (0–100) | 37.5 ± 18.6 | 31.4 ± 17.9 | 37.6. ± 14.0 |
S-LANSS (0–24) | 6.4 ± 5.8 | 9.2 ± 6.8 | 7.2 ± 5.7 |
Cognitive Variables | |||
Pain catastrophizing scale (0–52) | 9.4 ± 10.3 | 6.5 ± 6.9 | 9.4 ± 2.6 |
Tampa Scale for Kinesiophobia (0–44) | 23.9 ± 9.4 | 21.5 ± 7.0 | 23.0 ± 7.8 |
Psychological Variables | |||
HADS-A (0–21) | 3.9 ± 4.3 | 3.1 ± 3.5 | 3.6 ± 3.2 |
HADS-D (0–21) | 2.8 ± 3.9 | 3.3 ± 4.0 | 3.25 ± 2.0 |
PSQI (0–21) | 6.3 ± 3.9 | 6.9 ± 3.7 | 6.1 ± 3.2 |
C/C (n = 57) | C/G (n = 53) | G/G (n = 7) | |
---|---|---|---|
Demographic Features | |||
Age (years) | 56.1 ± 12.7 | 55.0 ± 12.3 | 52.9 ± 12.5 |
Height (m) | 1.66 ± 0.09 | 1.68 ± 0.16 | 1.67 ± 0.10 |
Weight (kg) | 81.1 ± 15.7 | 80.8 ± 16.0 | 78.5 ± 18.1 |
Clinical Features | |||
Pain intensity (NPRS, 0–10) | 5.4 ± 1.7 | 5.9 ± 1.5 | 5.2 ± 2.5 |
Post-COVID symptoms (months) | 18.0 ± 5.0 | 17.1 ± 5.5 | 19.0 ± 3.9 |
Sensory-Related Variables | |||
Central sensitization inventory (0–100) | 35.25 ± 19.3 | 35.0 ± 17.5 | 39.00 ± 18.5 |
S-LANSS (0–24) | 7.9 ± 11.4 | 6.0 ± 6.1 | 8.4 ± 7.7 |
Cognitive Variables | |||
Pain catastrophizing scale (0–52) | 7.8 ± 7.6 | 8.4 ± 10.8 | 10 ± 11.9 |
Tampa Scale for Kinesiophobia (0–44) | 23.9 ± 8.3 | 21.9 ± 9.4 | 26.6 ± 4.8 |
Psychological Variables | |||
HADS-A (0–21) | 3.5 ± 3.9 | 3.8 ± 4.2 | 4.0 ± 4.8 |
HADS-D (0–21) | 2.7 ± 3.5 | 3.1 ± 4.1 | 3.4 ± 4.2 |
PSQI (0–21) | 6.5 ± 3.7 | 6.3 ± 4.0 | 6.6 ± 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-de-las-Peñas, C.; Giordano, R.; Díaz-Gil, G.; Gil-Crujera, A.; Gómez-Sánchez, S.M.; Ambite-Quesada, S.; Arendt-Nielsen, L. Are Pain Polymorphisms Associated with the Risk and Phenotype of Post-COVID Pain in Previously Hospitalized COVID-19 Survivors? Genes 2022, 13, 1336. https://doi.org/10.3390/genes13081336
Fernández-de-las-Peñas C, Giordano R, Díaz-Gil G, Gil-Crujera A, Gómez-Sánchez SM, Ambite-Quesada S, Arendt-Nielsen L. Are Pain Polymorphisms Associated with the Risk and Phenotype of Post-COVID Pain in Previously Hospitalized COVID-19 Survivors? Genes. 2022; 13(8):1336. https://doi.org/10.3390/genes13081336
Chicago/Turabian StyleFernández-de-las-Peñas, César, Rocco Giordano, Gema Díaz-Gil, Antonio Gil-Crujera, Stella M. Gómez-Sánchez, Silvia Ambite-Quesada, and Lars Arendt-Nielsen. 2022. "Are Pain Polymorphisms Associated with the Risk and Phenotype of Post-COVID Pain in Previously Hospitalized COVID-19 Survivors?" Genes 13, no. 8: 1336. https://doi.org/10.3390/genes13081336
APA StyleFernández-de-las-Peñas, C., Giordano, R., Díaz-Gil, G., Gil-Crujera, A., Gómez-Sánchez, S. M., Ambite-Quesada, S., & Arendt-Nielsen, L. (2022). Are Pain Polymorphisms Associated with the Risk and Phenotype of Post-COVID Pain in Previously Hospitalized COVID-19 Survivors? Genes, 13(8), 1336. https://doi.org/10.3390/genes13081336