State of the Art for Microhaplotypes
Abstract
1. Introduction
2. Individualization
3. Ancestry Inference
4. Kinship Analysis
5. Mixture Deconvolution
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagace, R.; Chang, J.; Wootton, S.; Ihuegbu, N. Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e123–e124. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagace, R.; Chang, J.; Wootton, S.; Haigh, E.; Kidd, J.R. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci. Int. Genet. 2014, 12, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Sun, S.; Liu, Y.; Li, J.; Yang, Z.; Kureshi, A.; Fu, Y.; Li, H.; Jiang, B.; Jin, C.; et al. Considering the flanking region variants of nonbinary SNP and phenotype-informative SNP to constitute 30 microhaplotype loci for increasing the discriminative ability of forensic applications. Electrophoresis 2021, 42, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fan, Y.; Zeye, M.M.J.; He, W.; Wen, D.; Wang, C.; Li, J.; Hua, Z. A novel set of short microhaplotypes based on non-binary SNPs for forensic challenging samples. Int. J. Leg. Med. 2022, 136, 43–53. [Google Scholar] [CrossRef]
- Liu, J.; Hao, T.; Cheng, X.; Wang, J.; Li, W.; Liu, Z.; Shi, J.; Li, Z.; Ren, J.; Yun, K.; et al. DIP-microhaplotypes: New markers for detection of unbalanced DNA mixtures. Int. J. Leg. Med. 2021, 135, 13–21. [Google Scholar] [CrossRef]
- Jin, X.Y.; Liu, Y.F.; Cui, W.; Chen, C.; Zhang, X.R.; Huang, J.; Zhu, B.F. Development a multiplex panel of AISNPs, multi-allelic InDels, microhaplotypes, and Y-SNP/InDel loci for multiple forensic purposes via the NGS. Electrophoresis 2022, 43, 632–644. [Google Scholar] [CrossRef]
- Standage, D.S.; Mitchell, R.N. MicroHapDB: A Portable and Extensible Database of All published Microhaplotype Marker and Frequency Data. Front. Genet. 2020, 11, 781. [Google Scholar] [CrossRef]
- Xue, J.; Qu, S.; Tan, M.; Xiao, Y.; Zhang, R.; Chen, D.; Lv, M.; Zhang, Y.; Zhang, L.; Liang, W. An overview of SNP-SNP microhaplotypes in the 26 populations of the 1000 Genomes Project. Int. J. Leg. Med. 2022, 1–16. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C. Criteria for selecting microhaplotypes: Mixture detection and deconvolution. Investig. Genet. 2015, 6, 1. [Google Scholar] [CrossRef]
- Wu, R.; Li, H.; Li, R.; Peng, D.; Wang, N.; Shen, X.; Sun, H. Identification and sequencing of 59 highly polymorphic microhaplotypes for analysis of DNA mixtures. Int. J. Leg. Med. 2021, 135, 1137–1149. [Google Scholar] [CrossRef]
- Gandotra, N.; Speed, W.C.; Qin, W.; Tang, Y.; Pakstis, A.J.; Kidd, K.K.; Scharfe, C. Validation of novel forensic DNA markers using multiplex microhaplotype sequencing. Forensic Sci. Int. Genet. 2020, 47, 102275. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Xie, Q.; Wang, L.; Ru, K.; Tan, X.; Ding, J.; Wang, X.; Huang, J.; Wang, Z.; Li, Y.; et al. Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci. Int. Genet. 2022, 59, 102705. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.K.; Pakstis, A.J.; Gandotra, N.; Scharfe, C.; Podini, D. A multipurpose panel of microhaplotypes for use with STR markers in casework. Forensic Sci. Int. Genet. 2022, 60, 102729. [Google Scholar] [CrossRef]
- Pakstis, A.J.; Gandotra, N.; Speed, W.C.; Murtha, M.; Scharfe, C.; Kidd, K.K. The population genetics characteristics of a 90 locus panel of microhaplotypes. Hum. Genet. 2021, 140, 1753–1773. [Google Scholar] [CrossRef]
- Pakstis, A.J.; Gurkan, C.; Dogan, M.; Balkaya, H.E.; Dogan, S.; Neophytou, P.; Cherni, L.; Boussetta, S.; Khodjet-El-Khil, H.; Ben Ammar ElGaaied, A.; et al. Genetic relationships for European, Mediterranean and SW Asian Populations using a panel of 55 AISNPs. Eur. J. Hum. Genet. 2019, 27, 1885–1893. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Podini, D.S.; Lagace, R.; Chang, J.; Wootton, S.; Haigh, E.; Soundararajan, U. Evaluating 130 microhaplotypes across a global set of 83 populations. Forensic Sci. Int. Genet. 2017, 29, 29–37. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Ji, Q.; Yu, Y.; Li, K.; Kong, X.; Xie, S.; Zhan, W.; Mao, Z.; Yu, Y.; et al. A highly polymorphic panel of 40-plex microhaplotypes for the Chinese Han population and its application in estimating the number of contributors in DNA mixtures. Forensic Sci. Int. Genet. 2022, 56, 102600. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; He, G.; Liu, J.; Jiang, L.; Wang, M.; Chen, P.; Hou, Y.; Wang, Z. Screening and selection of 21 novel microhaplotype markers for ancestry inference in ten Chinese subpopulations. Forensic Sci. Int. Genet. 2022, 58, 102687. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.A.; Li, L.M.; Ward, R.; Pritchard, J.K. Informativeness of genetic markers for inference of ancestry. Am. J. Hum. Genet. 2003, 73, 1402–1422. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Lao, O.; Van Duijn, K.; Kersbergen, P.; De Knijff, P.; Kayser, M. Proportioning whole genome single nucleotide polymorphism diversity for the identification of geographic population structure and genetic ancestry. Am. J. Hum. Genet. 2006, 78, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Seldin, M.F.; Shigeta, R.; Villoslada, P.; Selmi, C.; Tuomilehto, J.; Silva, G.; Belmont, J.W.; Klareskog, L.; Gregersen, P.K. European population substructure: Clustering of northern and southern populations. PLoS Genet. 2006, 2, e143. [Google Scholar] [CrossRef]
- Tian, C.; Hinds, D.A.; Shigeta, R.; Kittles, R.; Ballinger, D.G.; Seldin, M.F. A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am. J. Hum. Genet. 2006, 79, 640–649. [Google Scholar] [CrossRef][Green Version]
- Pakstis, A.J.; Kang, L.; Liu, L.; Zhang, Z.; Jin, T.; Grigorenko, E.L.; Wendt, F.R.; Budowle, B.; Hadi, S.; Al Qahtani, M.S.; et al. Increasing the reference populations for the 55 AISNP panel: The need and benefits. Int. J. Leg. Med. 2017, 131, 913–917. [Google Scholar] [CrossRef]
- Kidd, K.K.; Bulbul, O.; Gurkan, C.; Dogan, M.; Dogan, S.; Neophytou, P.I.; Cherni, L.; Gurwitz, D.; Speed, W.C.; Murtha, M.; et al. Genetic relationships of Southwest Asian and Mediterranean populations. Forensic Sci. Int. Genet. 2021, 53, 102528. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.; McNevin, D.; Kidd, K.K.; Lagace, R.; Wootton, S.; De la Puente, M.; Freire-Aradas, A.; Mosquera-Miguel, A.; Eduardoff, M.; Gross, T.; et al. MAPlex—A massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations. Forensic Sci. Int. Genet. 2019, 42, 213–226. [Google Scholar] [CrossRef]
- De la Puente, M.; Phillips, C.; Xavier, C.; Amigo, J.; Carrecedo, A.; Parson, W.; Lareu, M.V. Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems. Forensic Sci. Int. Genet. 2020, 45, 102213. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Kidd, K.K.; Evsanaa, B.; Togtokh, A.; Brissenden, J.E.; Roscoe, J.M.; Dogan, M.; Neophytou, P.I.; Gurkan, C.; Bulbul, O.; Cherni, L.; et al. North Asian population relationships in a global context. Sci. Rep. 2022, 12, 7214. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, N.; Liu, J.; Ding, H.; Zhang, Y.; Wang, T.; Gao, J.; Ou, X. Identification of missing persons through kinship analysis by microhaplotype sequencing of single-source DNA and two-person DNA mixtures. Forensic Sci. Int. Genet. 2022, 8, 102689. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Chen, H.; Li, R.; Zang, Y.; Shen, X.; Hao, B.; Wang, Q.; Sun, H. Pairwise kinship testing with microhaplotypes: Can advancements be made in kinship inference with these markers? Forensic Sci. Int. 2021, 325, 110875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tan, Y.; Wang, L.; Jian, H.; Zhu, J.; Xiao, Y.; Tan, M.; Xue, J.; Yang, F.; Liang, W. Set of 15 SNP-SNP Markers for Detection of Unbalanced Degraded DNA Mixtures and Noninvasive Prenatal Paternity Testing. Front. Genet. 2022, 12, 800598. [Google Scholar] [CrossRef]
- Bennett, L.; Oldoni, F.; Long, K.; Cisana, S.; Madella, K.; Wootton, S.; Chang, J.; Hasegawa, R.; Lagacé, R.; Kidd, K.K.; et al. Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int. J. Leg. Med. 2019, 133, 719–729. [Google Scholar] [CrossRef]
- Oldoni, F.; Podini, D. Forensic molecular biomarkers for mixture analysis. Forensic Sci. Int. Genet. 2019, 41, 107–119. [Google Scholar] [CrossRef]
- Oldoni, F.; Bader, D.; Fantinato, C.; Wootton, S.C.; Lagacé, R.; Kidd, K.K.; Podini, D. A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci. Int. Genet. 2020, 49, 102367. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.K. Proposed nomenclature for microhaplotypes. Hum. Genom. 2016, 10, 16. [Google Scholar] [CrossRef]
- Coble, M.D.; Bright, J.-A. Probabilistic genotyping software: An overview. Forensic Sci. Int. Genet. 2019, 38, 219–224. [Google Scholar] [CrossRef]
Ae Interval | Probability of 4 Alleles Being Present at One Locus | Number of Loci (n) in Interval for 79 Populations | Probability 1−(1−prob) n |
---|---|---|---|
4 < Ae < 5 | 0.094 | 3 | 0.256 |
5 < Ae < 6 | 0.192 | 11 | 0.904 |
6 < Ae < 7 | 0.278 | 3 | 0.623 |
7 < Ae < 8 | 0.350 | 3 | 0.725 |
8 < Ae < 9 | 0.410 | 2 | 0.652 |
9 < Ae < 10 | 0.461 | 2 | 0.709 |
Cumulative Probability | 24 | 0.9992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kidd, K.K.; Pakstis, A.J. State of the Art for Microhaplotypes. Genes 2022, 13, 1322. https://doi.org/10.3390/genes13081322
Kidd KK, Pakstis AJ. State of the Art for Microhaplotypes. Genes. 2022; 13(8):1322. https://doi.org/10.3390/genes13081322
Chicago/Turabian StyleKidd, Kenneth K., and Andrew J. Pakstis. 2022. "State of the Art for Microhaplotypes" Genes 13, no. 8: 1322. https://doi.org/10.3390/genes13081322
APA StyleKidd, K. K., & Pakstis, A. J. (2022). State of the Art for Microhaplotypes. Genes, 13(8), 1322. https://doi.org/10.3390/genes13081322