Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case 1
3.2. Case 2 and Case 3
3.3. Case 4
3.4. Case 5
3.5. Case 6
3.6. Case 7
3.7. Case 8
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Coban Akdemir, Z.H.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.D.; Blanco, K.; Sajan, S.A.; Hunter, J.M.; Shinde, D.N.; Wayburn, B.; Rossi, M.; Huang, J.; Stevens, C.A.; Muss, C.; et al. A retrospective review of multiple findings in diagnostic exome sequencing: Half are distinct and half are overlapping diagnoses. Genet. Med. 2019, 21, 2199–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balci, T.B.; Hartley, T.; Xi, Y.; Dyment, D.A.; Beaulieu, C.L.; Bernier, F.P.; Dupuis, L.; Horvath, G.A.; Mendoza-Londono, R.; Prasad, C.; et al. Debunking Occam’s razor: Diagnosing multiple genetic diseases in families by whole-exome sequencing. Clin. Genet. 2017, 92, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Karaca, E.; Posey, J.E.; Coban Akdemir, Z.; Pehlivan, D.; Harel, T.; Jhangiani, S.N.; Bayram, Y.; Song, X.; Bahrambeigi, V.; Yuregir, O.O.; et al. Phenotypic expansion illuminates multilocus pathogenic variation. Genet. Med. 2018, 20, 1528–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianci, P.; Pezzoli, L.; Maitz, S.; Agosti, M.; Iascone, M.; Selicorni, A. Dual genetic diagnoses: Neurofibromatosis type 1 and KBG syndrome. Clin. Dysmorphol. 2020, 29, 101–103. [Google Scholar] [CrossRef]
- Kurolap, A.; Orenstein, N.; Kedar, I.; Weisz Hubshman, M.; Tiosano, D.; Mory, A.; Levi, Z.; Marom, D.; Cohen, L.; Ekhilevich, N.; et al. Is one diagnosis the whole story? Patients with double diagnoses. Am. J. Med. Genet. Part A 2016, 170, 2338–2348. [Google Scholar] [CrossRef]
- Pezzani, L.; Pezzoli, L.; Pansa, A.; Facchinetti, B.; Marchetti, D.; Scatigno, A.; Lincesso, A.R.; Perego, L.; Pingue, M.; Pellicioli, I.; et al. Double homozygosity in CEP57 and DYNC2H1 genes detected by WES: Composite or expanded phenotype? Mol. Genet. Genom. Med. 2020, 8, e1064. [Google Scholar] [CrossRef]
- Priolo, M.; Mancini, C.; Pizzi, S.; Chiriatti, L.; Radio, F.C.; Cordeddu, V.; Pintomalli, L.; Mammì, C.; Dallapiccola, B.; Tartaglia, M. Complex Presentation of Hao-Fountain Syndrome solved by Exome Sequencing Highlighting Co-Occurring Genomic Variants. Genes 2022, 13, 889. [Google Scholar] [CrossRef]
- Pezzani, L.; Marchetti, D.; Cereda, A.; Caffi, L.G.; Manara, O.; Mamoli, D.; Pezzoli, L.; Lincesso, A.R.; Perego, L.; Pellicioli, I.; et al. Atypical presentation of pediatric BRAF RASopathy with acute encephalopathy. Am. J. Med. Genet. Part A 2018, 176, 2867–2871. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Pezzoli, L.; Pezzani, L.; Bonanomi, E.; Marrone, C.; Scatigno, A.; Cereda, A.; Bedeschi, M.F.; Selicorni, A.; Gasperini, S.; Bini, P.; et al. Not Only Diagnostic Yield: Whole-Exome Sequencing in Infantile Cardiomyopathies Impacts on Clinical and Family Management. J. Cardiovasc. Dev. Dis. 2021, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballhausen, D.; Bonafé, L.; Terhal, P.; Unger, S.L.; Bellus, G.; Classen, M.; Hamel, B.C.; Spranger, J.; Zabel, B.; Cohn, D.H.; et al. Recessive multiple epiphyseal dysplasia (rMED): Phenotype delineation in eighteen homozygotes for DTDST mutation R279W. J. Med. Genet. 2003, 40, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldahmesh, M.A.; Li, Y.; Alhashem, A.; Anazi, S.; Alkuraya, H.; Hashem, M.; Awaji, A.A.; Sogaty, S.; Alkharashi, A.; Alzahrani, S.; et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum. Mol. Genet. 2014, 23, 3307–3315. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.; Delvallée, C.; Mary, L.; Stoetzel, C.; Geoffroy, V.; Marks-Delesalle, C.; Holder-Espinasse, M.; Ghoumid, J.; Dollfus, H.; Muller, J. Identification and Characterization of Known Biallelic Mutations in the IFT27 (BBS19) Gene in a Novel Family With Bardet-Biedl Syndrome. Front. Genet. 2019, 10, 21. [Google Scholar] [CrossRef]
- Le Deist, F.; Poinsignon, C.; Moshous, D.; Fischer, A.; de Villartay, J.P. Artemis sheds new light on V(D)J recombination. Immunol. Rev. 2004, 200, 142–155. [Google Scholar] [CrossRef]
- Felgentreff, K.; Lee, Y.N.; Frugoni, F.; Du, L.; van der Burg, M.; Giliani, S.; Tezcan, I.; Reisli, I.; Mejstrikova, E.; de Villartay, J.P.; et al. Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J. Allergy Clin. Immunol. 2015, 136, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Platzer, K.; Yuan, H.; Schütz, H.; Winschel, A.; Chen, W.; Hu, C.; Kusumoto, H.; Heyne, H.O.; Helbig, K.L.; Tang, S.; et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017, 54, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, T.; Akiyama, M. Inherited ichthyosis: Non-syndromic forms. J. Dermatol. 2016, 43, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.D.; Smith, W.R.; Cole, T.J.; Preece, M.A. New height, weight and head circumference charts for British children with Williams syndrome. Arch. Dis. Child. 2007, 92, 598–601. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.D.; Cope, H.; Nil, Z.; Ravenscroft, T.A.; Charng, W.L.; Lu, S.; Tien, A.C.; Pfundt, R.; Koolen, D.A.; Haaxma, C.A.; et al. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am. J. Hum. Genet. 2021, 108, 1669–1691. [Google Scholar] [CrossRef] [PubMed]
- Royer-Bertrand, B.; Cisarova, K.; Niel-Butschi, F.; Mittaz-Crettol, L.; Fodstad, H.; Superti-Furga, A. CNV Detection from Exome Sequencing Data in Routine Diagnostics of Rare Genetic Disorders: Opportunities and Limitations. Genes 2021, 12, 1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Y.; Chen, R.; Qi, Q.; Zhang, X.; Zhao, S.; Liu, C.; Wang, W.; Li, Y.; Sun, G.; et al. Clinical efficiency of simultaneous CNV-seq and whole-exome sequencing for testing fetal structural anomalies. J. Transl. Med. 2022, 20, 10. [Google Scholar] [CrossRef]
- Lowry, K.P.; Geuzinge, H.A.; Stout, N.K.; Alagoz, O.; Hampton, J.; Kerlikowske, K.; de Koning, H.J.; Miglioretti, D.L.; van Ravesteyn, N.T.; Schechter, C.; et al. Breast Cancer Screening Strategies for Women With ATM, CHEK2, and PALB2 Pathogenic Variants: A Comparative Modeling Analysis. JAMA Oncol. 2022, 8, 587–596. [Google Scholar] [CrossRef]
- Manickam, K.; McClain, M.R.; Demmer, L.A.; Biswas, S.; Kearney, H.M.; Malinowski, J.; Massingham, L.J.; Miller, D.; Yu, T.W.; Hisama, F.M.; et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. NDD Exome Scoping Review Work Group. Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef] [Green Version]
- Hästbacka, J.; Superti-Furga, A.; Wilcox, W.R.; Rimoin, D.L.; Cohn, D.H.; Lander, E.S. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 1996, 58, 255–262. [Google Scholar]
- Berkovic, S.F.; Oliver, K.L.; Canafoglia, L.; Krieger, P.; Damiano, J.A.; Hildebrand, M.S.; Morbin, M.; Vears, D.F.; Sofia, V.; Giuliano, L.; et al. Kufs disease due to mutation of CLN6: Clinical, pathological and molecular genetic features. Brain 2019, 142, 59–69. [Google Scholar] [CrossRef] [Green Version]
Case | Sex | Age at Diagnosis | Parental Consanguinity | 1st Diagnosis | 1st Molecular Mechanism | Features Caused by 1st Diagnosis | 2nd Diagnosis | 2nd Molecular Mechanism | Features Caused by 2nd Diagnosis | Phenotypic Overlap | Additional Features |
---|---|---|---|---|---|---|---|---|---|---|---|
CASE 1 | M | 20 years 1 month | Not known, probably “territorial” | Multiple epiphyseal dysplasia, type 4 OMIM #226900 AR | SLC26A2 hmz p.Arg279Trp, mat/pat | Cleft palate, bilateral osteonecrosis of femoral head, short limbs | Bardet-Biedl syndrome 19 OMIM #615996 AR | IFT27 hmz p.Gly117Asp, mat/pat | Relative macrocephaly, cerebellar hypoplasia, kidney disease, post-axial polydactyly, anal stenosis | Brachyclynodactyly, bilateral clubfeet | Shawl scrotum |
CASE 2 | F | 15 years 6 months | Yes (second cousins) | Ciliary dyskinesia, primary, 1, with or without situs inversus OMIM #244400 AR | DNAI1 hmz p.Gly651Glu, mat/pat | Complete situs viscerum inversus | Cholestasis, progressive familial intrahepatic 4 OMIM #615878 AR | TJP2 hmz p.Gly532Arg, mat/pat | Progressive cholestasis, liver cirrhosis, poor growth | / | Pubertal delay |
CASE 3 | F | 2 years 8 months | Not reported | Ciliary dyskinesia, primary, 1, with or without situs inversus OMIM #244400 AR | DNAI1 hmz p.Gly651Glu, mat/pat | Complete situs viscerum inversus and polysplenia | Cholestasis, progressive familial intrahepatic 4 OMIM #615878 AR | TJP2 hmz p.Gly532Arg, mat/pat | Persistent pruritus, hepatosplenomegaly, increased serum bile acids, hypertransaminasemia | / | Mild psychomotor delay and minor facial anomalies |
CASE 4 | F | 7 months | Yes (first cousins) | Severe combined immunodeficiency, Athabascan type OMIM #602450 AR | DCLRE1C hmz p.Ser32Cys, mat/pat | Failure to thrive, decreased numbers of B cells, agammaglobulinemia | Ataxia-teleangectasia OMIM #208900 AR | ATM hmz p.Met2158fs, mat/pat | Cafè-au-lait spots, hypo-/hyperpigmented macules | Immunodeficiency | / |
CASE 5 | F | 14 years 4 months | No | Intellectual developmental disorder, with or without seizures OMIM #613970 #616139 AD | GRIN2B htz p.Phe416Leu, de novo | Dyskinetic movement disorder, autistic features and feeding difficulties | Developmental and epileptic encephalopathy OMIM #612949 AR | SLC25A12 htz p.Arg586Gln, pat htz p.Phe39fs, de novo | Lack of brain myelination, decreased N-acetyl aspartate on MR spectroscopy | Intellectual disability, epilepsy, hypotonia | Aspecific minor facial anomalies |
CASE 6 | M | 4 years 9 months | Yes (first cousins) | Deafness, autosomal recessive 22 OMIM #607039 AR | OTOA htz p.Arg202Gln, pat htz p.Thr322Ile, mat | Sensorineural severe deafness | Ichthyosis OMIM #308100 X-linked recessive | STS Xp22.31 deletion, mat | Ichthyosis | / | / |
CASE 7 | F | Right after birth (1st) and 5 years 9 months (2nd) | No | Prader-Willi syndrome OMIM #176270 Imprinting disorder | Maternal UPD of 15q11.2-23 region * | Severe hypotonia, feeding difficulties, global developmental delay | Ceroid lipofuscinosis, neuronal, type 6A OMIM #601708 AR | CLN6 hmz p.Tyr142fs, mat | Progressive cognitive decline, loss of motor and language skills, cerebral and cerebellar atrophy, hypomyelination, EEG anomalies | / | / |
CASE 8 | M | 2 months (1st) and 16 years old (2nd) | No | Williams-Beuren syndrome OMIM #194050 Genomic disorder | 7q11.23 microdeletion, de novo * | Perimembranous VSD, supravalvular aortic stenosis, distinctive facies, hypothyroidism, scoliosis | Intellectual developmental disorder with hypotonia, impaired speech, and dysmorphic facies OMIM #619556 AD | TNPO2 htz p.Arg105ter, de novo | Epilepsy, EEG abnormalities, developmental regression, important speech impairment, MRI brain abnormalities | Intellectual disability, feeding difficulties, poor overall growth, myopia | Hypoplasia of the olfactory tracts |
Cianci et al., 2019 [5] | F | 2 years and 6 months (1st) and 4 years and 7 months (2nd) | No | Neurofibromatosis, type 1 OMIM #162200 AD | NF1 htz p.Lys2401fs, mat * | Café-au-lait spots, groin and axillary freckling, UBOs at brain MRI | KBG syndrome OMIM #148050 AD | ANKRD11 htz p.Phe904fs, de novo | Postnatal short stature, moderate intellectual disability, facial dysmorphisms, macrodontia of upper central incisors | / | / |
Pezzani et al., 2019 [7] | M | 4 months | Yes (first cousins) | Mosaic variegated aneuploidy syndrome 2 OMIM #614114 AR | CEP57 hmz p.Leu309Profs*9, mat/pat | IUGR, congenital hypothyroidism, congenital heart defects | Short-rib thoracic dysplasia 3 with or without polydactyly OMIM #613091 AR | DYNC2H1 hmz p.Met3762Val, mat/pat | Polydactyly, brachydactyly, cystic liver, recurrent respiratory infections | Rhizomelic shortening of the limbs and bell-shaped thorax | Butterfly vertebra, supernumerary rib, recurrent infections and immunodeficiency, vascular malformations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosina, E.; Pezzani, L.; Pezzoli, L.; Marchetti, D.; Bellini, M.; Pilotta, A.; Calabrese, O.; Nicastro, E.; Cirillo, F.; Cereda, A.; et al. Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes 2022, 13, 1275. https://doi.org/10.3390/genes13071275
Rosina E, Pezzani L, Pezzoli L, Marchetti D, Bellini M, Pilotta A, Calabrese O, Nicastro E, Cirillo F, Cereda A, et al. Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes. 2022; 13(7):1275. https://doi.org/10.3390/genes13071275
Chicago/Turabian StyleRosina, Erica, Lidia Pezzani, Laura Pezzoli, Daniela Marchetti, Matteo Bellini, Alba Pilotta, Olga Calabrese, Emanuele Nicastro, Francesco Cirillo, Anna Cereda, and et al. 2022. "Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients" Genes 13, no. 7: 1275. https://doi.org/10.3390/genes13071275
APA StyleRosina, E., Pezzani, L., Pezzoli, L., Marchetti, D., Bellini, M., Pilotta, A., Calabrese, O., Nicastro, E., Cirillo, F., Cereda, A., Scatigno, A., Milani, D., & Iascone, M. (2022). Atypical, Composite, or Blended Phenotypes: How Different Molecular Mechanisms Could Associate in Double-Diagnosed Patients. Genes, 13(7), 1275. https://doi.org/10.3390/genes13071275