GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease
Abstract
1. Introduction
2. Methods
2.1. Patients and Genetics
2.2. Literature Search
2.3. Bone Marrow Analysis
2.4. Ethics
3. Results
3.1. Hematological Characteristics of Two Novel DBA-Like Patients with GATA1 Defects
3.2. Comparative Analysis with Previously Reported Cases Illustrates Distinct DBA-Like Disease Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, L.; Blackfan, K. Hypoplastic anemia. Am. J. Dis. Child 1938, 56, 464–467. [Google Scholar]
- Lipton, J.M.; Ellis, S.R. Diamond-Blackfan Anemia: Diagnosis, Treatment, and Molecular Pathogenesis. Hematol. Clin. N. Am. 2009, 23, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, A.; Ball, S.; Dahl, N.; Alter, B.P.; Sheth, S.; Ramenghi, U.; Meerpohl, J.; Karlsson, S.; Liu, J.M.; Leblanc, T.; et al. Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. Br. J. Haematol. 2008, 142, 859–876. [Google Scholar] [CrossRef] [PubMed]
- Draptchinskaia, N.; Gustavsson, P.; Andersson, B.; Pettersson, M.; Willig, T.-N.; Dianzani, I.; Ball, S.; Tchernia, G.; Klar, J.; Matsson, H.; et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 1999, 21, 169–175. [Google Scholar] [CrossRef]
- Ulirsch, J.C.; Verboon, J.M.; Kazerounian, S.; Guo, M.H.; Yuan, D.; Ludwig, L.S.; Handsaker, R.E.; Abdulhay, N.J.; Fiorini, C.; Genovese, G.; et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am. J. Hum. Genet. 2018, 103, 930–947. [Google Scholar] [CrossRef]
- Lezzerini, M.; Penzo, M.; O’Donohue, M.-F.; Vieira, C.M.D.S.; Saby, M.; Elfrink, H.L.; Diets, I.J.; Hesse, A.-M.; Couté, Y.; Gastou, M.; et al. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. Nucleic Acids Res. 2019, 48, 770–787. [Google Scholar] [CrossRef]
- Choesmel, V.; Bacqueville, D.; Rouquette, J.; Noaillac-Depeyre, J.; Fribourg, S.; Crétien, A.; Leblanc, T.; Tchernia, G.; Da Costa, L.; Gleizes, P.-E. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2007, 109, 1275–1283. [Google Scholar] [CrossRef]
- Fumagalli, S.; Thomas, G. The Role of p53 in Ribosomopathies. Semin. Hematol. 2011, 48, 97–105. [Google Scholar] [CrossRef]
- Dutt, S.; Narla, A.; Lin, K.; Mullally, A.; Abayasekara, N.; Megerdichian, C.; Wilson, F.H.; Currie, T.; Khanna-Gupta, A.; Berliner, N.; et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011, 117, 2567–2576. [Google Scholar] [CrossRef]
- Horos, R.; Von Lindern, M. Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. Br. J. Haematol. 2012, 159, 514–527. [Google Scholar] [CrossRef]
- Yang, Z.; Keel, S.B.; Shimamura, A.; Liu, L.; Gerds, A.T.; Li, H.Y.; Wood, B.L.; Scott, B.L.; Abkowitz, J.L. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl. Med. 2016, 8, 338ra67. [Google Scholar] [CrossRef] [PubMed]
- Moniz, H.; DBA Group of Société d’Hématologie et d’Immunologie Pédiatrique (SHIP); Gastou, M.; Leblanc, T.; Hurtaud, C.; Crétien, A.; Lécluse, Y.; Raslova, H.; Larghero, J.; Croisille, L.; et al. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis. 2012, 3, e356. [Google Scholar] [CrossRef] [PubMed]
- Rio, S.; Gastou, M.; Karboul, N.; Derman, R.; Suriyun, T.; Manceau, H.; Leblanc, T.; El Benna, J.; Schmitt, C.; Azouzi, S.; et al. Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood 2019, 133, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.; Yan, X.; Lausted, C.; Munday, A.D.; Yang, Z.; Yi, D.; Jabbari, N.; Liu, L.; Keel, S.B.; Tian, Q.; et al. Single-cell analyses demonstrate that a heme–GATA1 feedback loop regulates red cell differentiation. Blood 2019, 133, 457–469. [Google Scholar] [CrossRef]
- Le Goff, S.; Boussaid, I.; Floquet, C.; Raimbault, A.; Hatin, I.; Andrieu-Soler, C.; Salma, M.; LeDuc, M.; Gautier, E.-F.; Guyot, B.; et al. p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 2020, 137, 89–102. [Google Scholar] [CrossRef]
- Sankaran, V.G.; Ghazvinian, R.; Do, R.; Thiru, P.; Vergilio, J.-A.; Beggs, A.; Sieff, C.A.; Orkin, S.H.; Nathan, D.G.; Lander, E.S.; et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J. Clin. Investig. 2012, 122, 2439–2443. [Google Scholar] [CrossRef]
- Klar, J.; Khalfallah, A.; Arzoo, P.S.; Gazda, H.T.; Dahl, N. RecurrentGATA1mutations in Diamond-Blackfan anaemia. Br. J. Haematol. 2014, 166, 949–951. [Google Scholar] [CrossRef]
- Parrella, S.; Aspesi, A.; Quarello, P.; Garelli, E.; Pavesi, E.; Carando, A.; Nardi, M.; Ellis, S.R.; Ramenghi, U.; Dianzani, I. Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype. Pediatr. Blood Cancer 2014, 61, 1319–1321. [Google Scholar] [CrossRef]
- Ludwig, L.S.; Gazda, H.T.; Eng, J.C.; Eichhorn, S.W.; Thiru, P.; Ghazvinian, R.; George, T.; Gotlib, J.R.; Beggs, A.H.; Sieff, C.A.; et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014, 20, 748–753. [Google Scholar] [CrossRef]
- Khajuria, R.K.; Munschauer, M.; Ulirsch, J.; Fiorini, C.; Ludwig, L.S.; McFarland, S.K.; Abdulhay, N.J.; Specht, H.; Keshishian, H.; Mani, D.R.; et al. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell 2018, 173, 90–103.e19. [Google Scholar] [CrossRef]
- Boussaid, I.; Le Goff, S.; Floquet, C.; Gautier, E.-F.; Raimbault, A.; Viailly, P.-J.; Al Dulaimi, D.; Burroni, B.; Dusanter-Fourt, I.; Hatin, I.; et al. Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14-deficient cells. Haematologica 2021, 106, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, L.; Caballero, N.; Fernández-Calleja, L.; Karkoulia, E.; Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019, 72, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Byrska-Bishop, M.; VanDorn, D.; Campbell, A.E.; Betensky, M.; Arca, P.R.; Yao, Y.; Gadue, P.; Costa, F.F.; Nemiroff, R.L.; Blobel, G.A.; et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J. Clin. Investig. 2015, 125, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Chlon, T.M.; McNulty, M.; Goldenson, B.; Rosinski, A.; Crispino, J.D. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression. Haematologica 2015, 100, 575–584. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nichols, K.E.; Crispino, J.; Poncz, M.; White, J.G.; Orkin, S.H.; Maris, J.M.; Weiss, M. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat. Genet. 2000, 24, 266–270. [Google Scholar] [CrossRef]
- Russo, R.; Andolfo, I.; Gambale, A.; De Rosa, G.; Manna, F.; Arillo, A.; Wandroo, F.; Bisconte, M.G.; Iolascon, A. GATA1 erythroid-specific regulation of SEC23B expression and its implication in the pathogenesis of congenital dyserythropoietic anemia type II. Haematologica 2017, 102, e371–e374. [Google Scholar] [CrossRef]
- Bouchghoul, H.; Quelin, C.; Loget, P.; Encha-Razavi, F.; Senat, M.-V.; Maheut, L.; Galimand, J.; Collardeau-Frachon, S.; Da Costa, L.; Martinovic, J. Fetal cerebral hemorrhage due to X-linkedGATA1gene mutation. Prenat. Diagn. 2018, 38, 772–778. [Google Scholar] [CrossRef]
- Mehaffey, M.G.; Newton, A.L.; Gandhi, M.J.; Crossley, M.; Drachman, J.G. X-linked thrombocytopenia caused by a novel mutation ofGATA-1. Blood 2001, 98, 2681–2688. [Google Scholar] [CrossRef]
- Freson, K.; Wijgaerts, A.; Van Geet, C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017, 28, 731–734. [Google Scholar] [CrossRef]
- Freson, K.; Matthijs, G.; Thys, C.; Mariën, P.; Hoylaerts, M.F.; Vermylen, J.; Van Geet, C. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum. Mol. Genet. 2002, 11, 147–152. [Google Scholar] [CrossRef][Green Version]
- Yu, C.; Niakan, K.; Matsushita, M.; Stamatoyannopoulos, G.; Orkin, S.H.; Raskind, W.H. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002, 100, 2040–2045. [Google Scholar] [CrossRef]
- Hollanda, L.M.; Lima, C.S.P.; Cunha, A.F.; Albuquerque, D.M.; Vassallo, J.; Ozelo, M.C.; Joazeiro, P.P.; Saad, S.T.O.; Costa, F.F. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat. Genet. 2006, 38, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.D.; Steensma, D.P.; Pulsipher, M.A.; Spangrude, G.J.; Kushner, J.P. Congenital erythropoietic porphyria due to a mutation in GATA1: The first trans-acting mutation causative for a human porphyria. Blood 2007, 109, 2618–2621. [Google Scholar] [CrossRef] [PubMed]
- Mundschau, G.; Gurbuxani, S.; Gamis, A.S.; Greene, M.E.; Arceci, R.J.; Crispino, J.D. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 2003, 101, 4298–4300. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, J.; Greene, M.E.; McDevitt, M.A.; Anastasi, J.; Karp, J.E.; Le Beau, M.M.; Crispino, J. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 2002, 32, 148–152. [Google Scholar] [CrossRef]
- Yoshida, K.; Toki, T.; Okuno, Y.; Kanezaki, R.; Shiraishi, Y.; Sato-Otsubo, A.; Sanada, M.; Park, M.-J.; Terui, K.; Suzuki, H.; et al. The landscape of somatic mutations in Down syndrome–related myeloid disorders. Nat. Genet. 2013, 45, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.E.; Mundschau, G.; Wechsler, J.; McDevitt, M.; Gamis, A.; Karp, J.; Gurbuxani, S.; Arceci, R.; Crispino, J.D. Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cells Mol. Dis. 2003, 31, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, L.M.; Leblanc, T.M.; Mohandas, N. Diamond-Blackfan anemia. Blood 2020, 136, 1262–1273. [Google Scholar] [CrossRef]
- Barcellini, W.; Fattizzo, B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis. Mark. 2015, 2015, 635670. [Google Scholar] [CrossRef]
- Ling, T.; Crispino, J.D. GATA1 mutations in red cell disorders. IUBMB Life 2019, 72, 106–118. [Google Scholar] [CrossRef]
- Crispino, J.D.; Horwitz, M.S. GATA factor mutations in hematologic disease. Blood 2017, 129, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, L.; Tsukamoto, S.; Suzuki, M.; Yamamoto-Mukai, H.; Yamamoto, M.; Philipsen, S.; Ohneda, K. Ablation of Gata in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 2008, 111, 4375–4385. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Onodera, K.; Motohashi, H.; Suwabe, N.; Hayashi, N.; Yanai, N.; Nabesima, Y.; Yamamoto, M. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J. Biol. Chem. 1997, 272, 12611–12615. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.T.; Khandros, E.; Bailey, L.C.; Nichols, K.E.; Vakoc, C.R.; Yao, Y.; Huang, Z.; Crispino, J.D.; Hardison, R.C.; Blobel, G.A.; et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 2009, 114, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.T.; O’Donohue, M.-F.; Wu, Y.; Lohi, H.; Scherer, S.; Paterson, A.D.; Ellonen, P.; Abdel-Rahman, W.M.; Valo, S.; Mecklin, J.-P.; et al. Germline Mutation of RPS20, Encoding a Ribosomal Protein, Causes Predisposition to Hereditary Nonpolyposis Colorectal Carcinoma without DNA Mismatch Repair Deficiency. Gastroenterology 2014, 147, 595–598.e5. [Google Scholar] [CrossRef]
- Sulima, S.O.; Hofman, I.J.F.; De Keersmaecker, K.; Dinman, J.D. How Ribosomes Translate Cancer. Cancer Discov. 2017, 7, 1069–1087. [Google Scholar] [CrossRef]
- Fancello, L.; Kampen, K.R.; Hofman, I.J.; Verbeeck, J.; De Keersmaecker, K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 2017, 8, 14462–14478. [Google Scholar] [CrossRef]
- Iskander, D.; Roberts, I.; Rees, C.; Szydlo, R.; Alikian, M.; Neale, M.; Harrington, Y.; Kelleher, P.; Karadimitris, A.; De La Fuente, J. Impaired cellular and humoral immunity is a feature of Diamond-Blackfan anaemia; experience of 107 unselected cases in the United Kingdom. Br. J. Haematol. 2019, 186, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Gianferante, D.M.; Wlodarski, M.W.; Atsidaftos, E.; Da Costa, L.; Delaporta, P.; Farrar, J.E.; Goldman, F.D.; Hussain, M.; Kattamis, A.; Leblanc, T.; et al. Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in RPL35A. Haematologica 2020, 106, 1303–1310. [Google Scholar] [CrossRef]
- Fargo, J.H.; Kratz, C.P.; Giri, N.; Savage, S.A.; Wong, C.; Backer, K.; Alter, B.P.; Glader, B. Erythrocyte adenosine deaminase: Diagnostic value for Diamond-Blackfan anaemia. Br. J. Haematol. 2013, 160, 547–554. [Google Scholar] [CrossRef]



| Index# | Reported | Molecular Defect | Type | Age Diagnosis | Hgb (g/dL) | HbF (%) | MCV (fL) | Retics (×109/L) | WBC (×109/L) | ANC (×109/L) | PLts (×109/L) | eADA | Steroid Responsive | Current Treatment | Bone Marrow |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| I-I | Hollanda et al. 2006 | c.220G>C | missense | 40 years | 10.9 | NA | 100.6 | NA | 5.9 | 2.8 | 352 | NA | NA | none | Moderate hypercellularity in 3 lineages. Moderate reduction in relationship between G/E. Retardation of maturation of the granulocytic and erythroblast series. Moderate number of micromegakaryocytes. Neutrophils with pseudo Pelger–Hüet anomaly. |
| I-II | c.220G>C | missense | 24 years | 7.7 | NA | 99.0 | 56 | 3.7 | 1.2 | 161 | NA | NA | deceased (severe pneumonia) | Hypocellularity with normal number of megakaryocytes and frequent micromegakaryocytes. | |
| I-III | c.220G>C | missense | 35 years | 11.8 | NA | 100.8 | 139 | 5.2 | 2.0 | 190 | NA | NA | none | NA | |
| I-IV | c.220G>C | missense | 12 years | 5.2 | ↑ | 94 | 108 | 2 | 0.6 | 135 | NA | NA | remission after allogeneic BMT | Moderate hypocellularity with multinucleation and nuclear karyorrhexis in erythroblasts. Neutrophils with pseudo Pelger–Hüet anomaly and moderate number of micromegakaryocytes. No ringed sideroblasts were seen. | |
| I-V | c.220G>C | missense | 20 years | 3.8 | ↑ | 101 | 108 | 1.6 | 0.5 | 144 | NA | NA | remission after allogeneic BMT | Moderate hypocellularity with multinucleation and nuclear karyorrhexis in erythroblasts. Neutrophils with pseudo Pelger–Hüet anomaly and moderate number of micromegakaryocytes. No ringed sideroblasts were seen. | |
| I-VI | c.220G>C | missense | 2 months | 6.1 | NA | 93 | NA | 7.5 | NP | 345 | NA | NA | regular transfusions | Normocellularity with moderate reduction in the relationship between G/E. Maturation preserved and moderate number of megakaryocytes, with micromegakaryocytes. | |
| I-VII | c.220G>C | missense | 4 years | 5.3 | ↑ | 88.1 | 44.2 | 2.2 | 0.6 | 294 | NA | NA | regular transfusions | Moderate hypocellularity with multinucleation and nuclear karyorrhexis in erythroblasts. Neutrophils with pseudo Pelger–Hüet anomaly and moderate number of micromegakaryocytes. No ringed sideroblasts were seen. | |
| I-VIII | c.220G>C | missense | 17 years | 9.6 | ↑ | 102.8 | 58.1 | 3.7 | 1 | 400 | NA | NA | deceased (‘unrelated cause’) | Moderate hypocellularity with multinucleation and nuclear karyorrhexis in erythroblasts. Neutrophils with pseudo Pelger–Hüet anomaly and moderate number of micromegakaryocytes. No ringed sideroblasts were seen. | |
| II-I | Sankaran et al. 2012 | c.220G>C | missense | birth | (lab 23y) 8.4 | ↑ | NA | 21 | 3.1 | 0.83 | 71 | normal | YES (temporarily) | regular transfusions | Erythroid hypoplasia without abnormalities of the other hematopoietic lineages. |
| II-II | c.220G>C | missense | 1.6 months | (lab 19y) 8.3 | NA | 100 | 68 | 4.5 | 2.1 | 201 | NA | YES (temporarily) | regular transfusions | Erythroid hypoplasia without abnormalities of the other hematopoietic lineages. | |
| II-III | c.220delG | frameshift | 6 weeks | 3.5 | ↑ * | not reported | unknown | 6.8 | 1.6 (?) | 362 (?) | normal | YES | glucocorticoids | Not documented. | |
| III-I | Ludwig et al. 2014 | c.2T>C | not reported | 9.7 | NA | 101.8 | 73.2 | 6.2 | 3.9 | 239 | NP | NA | regular transfusions | Not documented. | |
| IV-I | Parrella et al. 2014 | c.2T>C | 9 months | 5.5 | NA | 93 | 40 | normal range | normal range | normal range | ↑ | partial response | remission after allogeneic BMT | Selective deficiency in erythroid precursors without abnormalities in the other hematopoietic lineages --> 4 yrs: severe hypocellular bone marrow with a 45XY, −7 clone (65%) and a further 50XXY, +3, +8, +21 clone (MDS). | |
| V-I | Klar et al. 2014 | c.220G>C | missense | <3 months | 5.0–9.0 | ↑ | 104–108 | “low” | normal range | normal range | normal range | ↑ | YES (temporarily) | regular transfusions | Erythroid hypoplasia with otherwise normal cellularity. |
| V-II | c.220G>C | missense | <3 months | 5.0–9.0 | ↑ | 104–108 | “low” | normal range | normal range | normal range | ↑ | YES (temporarily) | regular transfusions | Erythroid hypoplasia with otherwise normal cellularity. | |
| V-III | c.220G>C | missense | <3 months | 5.0–9.0 | ↑ | 104–108 | “low” | normal range | normal range | normal range | unknown | NA | none | Erythroid hypoplasia with otherwise normal cellularity. | |
| VI-I | this paper, patient 1 | c.220+2T>C | missense | 7 months | 9.5 | ↑ | 100 | 75.4 | 5.5 | 4.1 | 525 | normal | YES | glucocorticoids | Mildly decreased erthropoiesis, dyserythropoiesis, increased megakaryopoiesis. |
| VII-I | this paper, patient 2 | c.2T>C | missense | 5 years | 8.2 | ↑ | 97 | NA | 4.8 | 3.1 | 652 | NA | YES,(partial) | glucocorticoids | Normal cellularity and erythroid activity with megaloblastic changes, no significant dysplastic features. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Dooijeweert, B.; Kia, S.K.; Dahl, N.; Fenneteau, O.; Leguit, R.; Nieuwenhuis, E.; van Solinge, W.; van Wijk, R.; Da Costa, L.; Bartels, M. GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease. Genes 2022, 13, 447. https://doi.org/10.3390/genes13030447
van Dooijeweert B, Kia SK, Dahl N, Fenneteau O, Leguit R, Nieuwenhuis E, van Solinge W, van Wijk R, Da Costa L, Bartels M. GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease. Genes. 2022; 13(3):447. https://doi.org/10.3390/genes13030447
Chicago/Turabian Stylevan Dooijeweert, Birgit, Sima Kheradmand Kia, Niklas Dahl, Odile Fenneteau, Roos Leguit, Edward Nieuwenhuis, Wouter van Solinge, Richard van Wijk, Lydie Da Costa, and Marije Bartels. 2022. "GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease" Genes 13, no. 3: 447. https://doi.org/10.3390/genes13030447
APA Stylevan Dooijeweert, B., Kia, S. K., Dahl, N., Fenneteau, O., Leguit, R., Nieuwenhuis, E., van Solinge, W., van Wijk, R., Da Costa, L., & Bartels, M. (2022). GATA-1 Defects in Diamond–Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease. Genes, 13(3), 447. https://doi.org/10.3390/genes13030447

