Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Single Nucleotide Variant (SNV) Selection
2.3. DNA Extraction and Genotyping
2.4. Quantitative Methylation Analysis
2.5. Data Analysis/Statistical Analysis
3. Results
3.1. Allelic and Genotype Frequencies and Association Analysis
3.2. Methylation Status: Cases vs. Controls
3.3. Methylation Status: Wild-Type vs. Risk Variant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corsello, G.; Giuffrè, M. Congenital malformations. J. Matern. Fetal. Neonatal. Med. 2012, 25 (Suppl. S1), 25–29. [Google Scholar] [CrossRef] [PubMed]
- Burn, J.; Goodship, J. Congenital heart disease. In Emery and Rimoin’s Principles and Practice of Medical Genetics, 5th ed.; Rimoin, D., Connor, J., Pyeritz, R., Korf, B., Eds.; Elsevier: Philadelphia, PA, USA, 2007; pp. 1083–1159. [Google Scholar]
- Mendieta-Alcántara, G.G.; Santiago-Alcántara, E.; Mendieta-Zerón, H.; Dorantes-Piña, R.; Zárate-Alarcón, O.d.G.; Otero-Ojeda, G.A. Incidencia de las cardiopatías congénitas y los factores asociados a la letalidad en niños nacidos en dos hospitales del Estado de México. Gac. Med. Mex. 2013, 149, 617–623. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Causas de Mortalidad. 2016. Available online: http://www.inegi.org.mx/est/contenidos/proyectos/registros/vitales/mortalidad/tabulados/ConsultaMortalidad.asp (accessed on 22 October 2020).
- Bahado-Singh, R.O.; Zaffra, R.; Albayarak, S.; Chelliah, A.; Bolinjkar, R.; Turkoglu, O.; Radhakrishna, U. Epigenetic markers for newborn congenital heart defect (CHD). J. Matern. Fetal. Neonatal. Med. 2016, 29, 1881–1887. [Google Scholar] [CrossRef]
- Davison, B.C. Concordance and discordance of congenital heart disease in 20 families. J. Med. Genet. 1967, 4, 245–250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kuo, C.-F.; Lin, Y.-S.; Chang, S.-H.; Chou, I.-J.; Luo, S.-F.; See, L.-C.; Yu, K.-H.; Huang, L.-S.; Chu, P.-H. Familial Aggregation and Heritability of Congenital Heart Defects. Circ. J. 2017, 82, 232–238. [Google Scholar] [CrossRef]
- Torres-Cosme, J.L.; Rolón-Porras, C.; Aguinaga-Ríos, M.; Acosta-Granado, P.M.; Reyes-Muñoz, E.; Murguía-Peniche, T. Mortality from Congenital Heart Disease in Mexico: A Problem on the Rise. PLoS ONE 2016, 11, e0150422. [Google Scholar] [CrossRef]
- Jarrell, D.K.; Lennon, M.L.; Jacot, J.G. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Dis. 2019, 7, 52. [Google Scholar] [CrossRef]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef]
- Yin, M.; Dong, L.; Zheng, J.; Zhang, H.; Liu, J.; Xu, Z. Meta analysis of the association between MTHFR C677T polymorphism and the risk of congenital heart defects. Ann. Hum. Genet. 2012, 76, 9–16. [Google Scholar] [CrossRef]
- Hernández-Almaguer, M.D.; Calvo-Anguiano, G.; Cerda-Flores, R.M.; Salinas-Torres, V.M.; Orozco-Galicia, F.; Glenn, E.; García-Guerra, J.; Sánchez-Cortés, G.; Lugo-Trampe, J.; Martínez-Garza, L.E. Genetic Variants at the rs4720169 Locus of TBX20 and the rs12921862 Locus of AXIN1 May Increase the Risk of Congenital Heart Defects in the Mexican Population: A Pilot Study. Genet. Test. Mol. Biomark. 2019, 23, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, U.; Albayrak, S.; Alpay-Savasan, Z.; Zeb, A.; Turkoglu, O.; Sobolewski, P.; Bahado-Singh, R.O. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS). PLoS ONE 2016, 11, e0154010. [Google Scholar] [CrossRef] [PubMed]
- Grunert, M.; Dorn, C.; Cui, H.; Dunkel, I.; Schulz, K.; Schoenhals, S.; Sun, W.; Berger, F.; Chen, W.; Sperling, S.R. Comparative DNA methylation and gene expression analysis identifies novel genes for structural congenital heart diseases. Cardiovasc. Res. 2016, 112, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Qian, Y.; Wang, H.; Ma, X.; Zhang, P.; Diao, L.; An, Q.; Chen, L.; Ma, D.; Huang, G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC Med. Genom. 2013, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Choi, S.-W.; Girelli, D.; Mason, J.B.; Dolnikowski, G.G.; Bagley, P.J.; Olivieri, O.; Jacques, P.F.; Rosenberg, I.H.; Corrocher, R.; et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA 2002, 99, 5606–5611. [Google Scholar] [CrossRef]
- Berry, R.J.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.-Y.C.; Gindler, J.; et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef]
- González-Peña, S.; Calvo-Anguiano, G.; Martínez-De-Villarreal, L.; Ancer-Rodríguez, P.; Lugo-Trampe, J.; Saldivar-Rodríguez, D.; Hernández-Almaguer, M.; Calzada-Dávila, M.; Guerrero-Orjuela, L.; Campos-Acevedo, L. Maternal Folic Acid Intake and Methylation Status of Genes Associated with Ventricular Septal Defects in Children: Case-Control Study. Nutrients 2021, 13, 2071. [Google Scholar] [CrossRef]
- Obeid, R.; Holzgreve, W.; Pietrzik, K. Folate suppleme.entation for prevention of congenital heart defects and low birth weight: An update. Cardiovasc. Diagn Ther. 2019, 9 (Suppl. S2), S424–S433. [Google Scholar] [CrossRef]
- Botto, L.D.; Mulinare, J.; Erickson, J.D. Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am. J. Epidemiol. 2000, 151, 878–884. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Mu, D.; Liu, Z.; Li, Y.; Lin, Y.; Chen, X.; You, F.; Li, N.; Deng, K.; et al. The association between periconceptional folic acid supplementation and congenital heart defects: A case-control study in China. Prev. Med. 2013, 56, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.E. Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am. J. Med. Genet. 1996, 62, 179–183. [Google Scholar] [CrossRef]
- Van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; Heijer, M.D.; Blom, H.J.; De Walle, H.E. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: A registry-based case-control study in the northern Netherlands. Eur. Heart J. 2010, 31, 464–471. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | p | |||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
Sex | 12 | 10 | 20 | 24 | |
Type of CHD | |||||
ASD | 5 | 2 | 0 | 0 | |
VSD | 10 | 5 | 0 | 0 | |
Weeks of gestation | |||||
<37 | 4 | 4 | 1 | 4 | 0.0122 |
38–41 | 10 | 4 | 19 | 20 | |
>42 | 0 | 0 | 0 | 0 | |
Weight | |||||
<2500 g | 2 | 3 | 0 | 0 | 0.023 |
2500–3500 g | 10 | 3 | 14 | 21 | |
>3500 g | 2 | 2 | 6 | 3 | |
Height | |||||
<48 cm | 6 | 6 | 2 | 1 | 0.0001 |
48–50 cm | 4 | 0 | 8 | 14 | |
>50 cm | 4 | 2 | 10 | 9 | |
Maternal folic acid intake | |||||
Preconceptional | 0 | 3 | 0 | 0 | 0.0071 |
During pregnancy | 10 | 7 | 20 | 24 | |
None | 2 | 0 | 0 | 0 | |
Origin | Northeastern Mexico |
Gene | Locus | Function | Forward Primer | Reverse Primer | SNV | Position | Ref. a | Frequency | MAF a | Frequency |
---|---|---|---|---|---|---|---|---|---|---|
AXIN1 | 16p13.3 | Cytoplasmic protein | ATGTCAGCCCCTT GTTTTTGCT | ATCTCGGGTAG CCGGTTTAGACT | rs370681 | Intron | C | 0.6295 | T | 0.3705 |
rs12921862 | Intron | C | 0.887 | A | 0.113 | |||||
rs1805105 | Exon 2 | A | 0.53508 | G | 0.4692 | |||||
TBX20 | 7p14.2 | Transcription factor | CTGTGCAGACT GTCGTCCTG | CACTGGCCTC TATTCCCCAC | rs4720169 | Intron | G | 0.3847 | A | 0.6153 |
TBX1 | 22q11.2 | Transcription factor | AATGGGCGTCTT GTCTTCGC | GGGTCGCAGGG TCTGATTCC | rs41260844 | Upstream | C | 0.791 | T | 0.238 |
MTHFR | 1p36 | Folate metabolism | GGGCCTGAGCT GACAGAGAT | AACATGCTCCT CGGTGACAG | rs1801133 | Exon 5 | G | 0.5473 | A | 0.4527 |
rs1801131 | Exon 8 | T | 0.808 | G | 0.192 |
Gene | MS Case Group | MS Control Group | p |
---|---|---|---|
AXIN1 | 73.81 (SD: ±35.60) | 96.5 (SD: ±39.8) | 0.036 |
TBX20 | 4.97 (SD: ±7.16) | 11.17 (SD: ±21.8) | 0.369 |
TBX1 | 4.1 (SD: ±5.67) | 5.71 (SD: ±10.85) | 0.523 |
MTHFR | 4.48 (SD: ±4.63) | 9.44 (SD: ±37.9) | 0.041 |
Gene | MS VSD (n = 15) | MSD ASD (n = 7) | p |
---|---|---|---|
AXIN1 | 57.79 (SD: ±29.2) | 108.14 (SD: ±20.74) | 0.001 |
TBX20 | 2.23 (SD: ±2.17) | 10.84 (SD: ±11.61) | 0.017 |
TBX1 | 1.69 (SD: ±1.94) | 9.56 (SD: ±7.47) | 0.001 |
MTHFR | 3.43 (SD: ±6.3) | 6.72 (SD: ±6.3) | 0.21 |
Case Group | Control Group | |||||
---|---|---|---|---|---|---|
Gene | SNV | MS Alternate Allele | MS Wild-Type | MS Alternate Allele | MS Wild-Type | p |
AXIN1 | rs370681 | 71.98 (SD: ±35.66) | 75. 64 (SD: ±37.19) | 98.19 (SD: ±49.09) | 94.81 (SD: ±28.77) | 0.651 |
rs12921862 | 74.95 (SD: ±35.26) | 66.58 (SD: ±21.52) | 70.26 (SD: ±27.03) | 101 (SD: ±41.64) | 0.093 | |
rs1805105 | 74.09 (SD: ±34.78) | 73.47 (SD: ±38.46) | 99.015 (SD: ±44.78) | 92.1 (SD: ±29.98) | 0.574 | |
TBX20 | rs4720169 | 5.23 (SD: ±7.99) | 2.37 (SD: ±0.43) | 10.46 (SD: ±22.41) | 12.10 (SD: ±21.71) | 0.354 |
TBX1 | rs41260844 | 5.97 (SD: ±4.1) | 3.88 (SD: ±5.97) | 4.84 (SD: ±7.2) | 6.2 (SD: ±12.53) | 0.064 |
MTHFR | rs1801133 | 4.85 (SD: ±6.63) | 4.34 (SD: ±4.90) | 37.34 (SD: ±85.9) | 3.245 (SD: ±8.8) | 0.004 |
rs1801131 | 4.48 (SD: ±5.88) | 4.46 (SD: ±2.68) | 10.89 (SD: ±43.18) | 4.52 (SD: ±4.76) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzada-Dávila, M.; Calvo-Anguiano, G.; Martínez-de-Villarreal, L.E.; Lugo-Trampe, J.J.; González-Peña, S.M.; Ancer-Rodríguez, P.R.; Hernández-Almaguer, M.D.; Campos-Acevedo, L.D. Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes 2022, 13, 2115. https://doi.org/10.3390/genes13112115
Calzada-Dávila M, Calvo-Anguiano G, Martínez-de-Villarreal LE, Lugo-Trampe JJ, González-Peña SM, Ancer-Rodríguez PR, Hernández-Almaguer MD, Campos-Acevedo LD. Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes. 2022; 13(11):2115. https://doi.org/10.3390/genes13112115
Chicago/Turabian StyleCalzada-Dávila, Melissa, Geovana Calvo-Anguiano, Laura E. Martínez-de-Villarreal, José J. Lugo-Trampe, Sandra M. González-Peña, Patricia R. Ancer-Rodríguez, María D. Hernández-Almaguer, and Luis D. Campos-Acevedo. 2022. "Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status" Genes 13, no. 11: 2115. https://doi.org/10.3390/genes13112115
APA StyleCalzada-Dávila, M., Calvo-Anguiano, G., Martínez-de-Villarreal, L. E., Lugo-Trampe, J. J., González-Peña, S. M., Ancer-Rodríguez, P. R., Hernández-Almaguer, M. D., & Campos-Acevedo, L. D. (2022). Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes, 13(11), 2115. https://doi.org/10.3390/genes13112115