Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chloroplast Genome Sequencing and Annotation
2.3. Sequence Variation Analysis
2.4. Phylogenetic Analysis
2.5. Gene Regulatory Network Construction
3. Results
3.1. Comparison of Chloroplast Genomic Features of C. argyrophylla
3.2. Comparison of C. argyrophylla Chloroplast Genome Sequence Variations
3.3. Phylogenetic Analysis of the C. argyrophylla Populations in Different Locations
3.4. Gene Regulatory Network Analysis of the Polymorphic Chloroplast Genes
4. Discussion
4.1. Location Differences Lead to Differences in Chloroplast Genomes in C. argyrophylla
4.2. Gene Regulatory Network Revealed Potential Physiological Differences among C. argyrophylla Populations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, H.; Wang, C.; Zhang, Z. Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nat. Conserv. 2018, 25, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Cai, L.; Liu, D.; Chen, G.; Gratzfeld, J.; Sun, W. China’s conservation program on Plant Species with Extremely Small Populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Qian, S.; Yang, Y.; Tang, C.Q.; Momohara, A.; Yi, S.; Ohsawa, M. Effective conservation measures are needed for wild Cathaya argyrophylla populations in China: Insights from the population structure and regeneration characteristics. For. Ecol. Manag. 2016, 361, 358–367. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Friedman, C.R.; López-Pujol, J. Conservation of the Cathay silver fir, Cathaya argyrophylla: A Chinese evergreen ‘living fossil’. In Evergreens: Types, Ecology and Conservation; Bezerra Adriano, D., Ferreira, T.S., Eds.; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Xie, Z. Gap-regeneration of Cathaya argyrophylla forests. Acta Ecol. Sin. 1999, 19, 775–779. [Google Scholar]
- Zhang, X.; Wang, Y.; Wang, Y.; Guo, P.; Liu, C.; Zheng, P. Characteristics of photosynthetic and transpiration of Cathaya argyrophylla Chun et Kuang leaves. Acta Agric. Boreali-Occident. Sin. 2011, 26, 75–79. [Google Scholar]
- Fan, D.; Wang, X.; Zhang, W.; Zhang, X.; Zhang, S.; Xie, Z. Does Cathaya argyrophylla, an ancient and threatened Pinaceae species endemic to China, show eco-physiological outliers to its Pinaceae relatives? Conserv. Physiol. 2020, 8, coaa094. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, D.; Xie, Z. The seasonal photosynthetic responses of seedlings of the endangered plant Cathaya argyrophylla to different growth light environments. Biodivers. Sci. 2005, 13, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Brum, G.; McKane, L.; Karp, G. Biology: Exploring Life; John Wiley & Son, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monde, R.A.; Zito, F.; Olive, J.; Wollman, F.; Stern, D.B. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J. Cell Mol. Biol. 2000, 21, 61–72. [Google Scholar] [CrossRef]
- Schwenkert, S.; Legen, J.; Takami, T.; Shikanai, T.; Herrmann, R.G.; Meurer, J. Role of the low-molecular-weight subunits PetL, PetG, and PetN in assembly, stability, and dimerization of the cytochrome b6f complex in tobacco. Plant Physiol. 2007, 144, 1924–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Chen, W.; Bian, J.; Xie, H.; Li, Y.; Xu, C.; Ma, J.; Guo, S.; Chen, J.; Cai, X.; et al. Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front. Plant Sci. 2018, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.P.; Huang, J.P.; Wu, C.S.; Hsu, C.Y.; Chaw, S.M. Comparative chloroplast genomics reveals the evolution of Pinaceae Genera and subfamilies. Genome Biol. Evol. 2010, 2, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; Depamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Qu, X.J.; Moore, M.J.; Li, D.Z.; Yi, T.S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 50. [Google Scholar] [CrossRef] [Green Version]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Lagree, S.; Hou, Z.; Thomson, J.A.; Stewart, R.; Gasch, A.P. Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput. Biol. 2013, 9, e1003252. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xiao, H.; Deng, C.; Xiong, L.; Yang, J.; Peng, C. The complete chloroplast genome sequences of the medicinal plant Pogostemon cablin. Int. J. Mol. Sci. 2016, 17, 820. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wu, M.; Liao, B.; Liu, Z.; Bai, R.; Xiao, S.; Li, X.; Zhang, B.; Xu, J.; Chen, S. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 2017, 22, 1330. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, N. Comparative analysis of Thalassionema chloroplast genomes revealed hidden biodiversity. BMC Genom. 2022, 23, 327. [Google Scholar] [CrossRef]
- Park, J.; Xi, H.; Kim, Y. The complete chloroplast genome of Arabidopsis thaliana isolated in Korea (Brassicaceae): An investigation of intraspecific variations of the chloroplast genome of Korean A. thaliana. Int. J. Genom. 2020, 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Muraguri, S.; Xu, W.; Chapman, M.; Muchugi, A.; Oluwaniyi, A.; Oyebanji, O.; Liu, A. Intraspecific variation within castor bean (Ricinus communis L.) based on chloroplast genomes. Ind. Crops Prod. 2020, 155, 112779. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate information based on human thermal perception in Taiwan and eastern China. Tour. Manag. 2011, 32, 492–500. [Google Scholar] [CrossRef]
- Li, M.-H.; Tien, W.; Tung, C.-P. Assessing the impact of climate change on the land hydrology in Taiwan. Paddy Water Environ. 2009, 7, 283–292. [Google Scholar] [CrossRef]
- Wang, H.W.; Ge, S. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol. Ecol. 2006, 15, 4109–4122. [Google Scholar] [CrossRef]
- Marx, H.; Minogue, C.E.; Jayaraman, D.; Richards, A.L.; Kwiecien, N.W.; Siahpirani, A.F.; Rajasekar, S.; Maeda, J.; Garcia, K.; del Valle-Echevarria, A.R.; et al. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 2016, 34, 1198–1205. [Google Scholar] [CrossRef]
- Taniguchi, M.; Miyake, H. Redox-shuttling between chloroplast and cytosol: Integration of intra-chloroplast and extra-chloroplast metabolism. Curr. Opin. Plant Biol. 2012, 15, 252–260. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, H.; Zhou, J.M.; Smith, S.M.; Li, J. Malate circulation: Linking chloroplast metabolism to mitochondrial ROS. Trends Plant Sci. 2020, 25, 446–454. [Google Scholar] [CrossRef] [Green Version]
- George, E.; Horst, W.J.; Chapter, N.E. Adaptation of plants to adverse chemical soil conditions. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 409–472. [Google Scholar]
- Delgado, A.; Gómez, J.A. The soil. Physical, chemical and biological properties. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 15–26. [Google Scholar]
- Saini, R.K.; Keum, Y.S. Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: A review. J. Agric. Food Chem. 2018, 66, 5310–5324. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, L.; Xu, J.; Xin, P.; Guo, H.; Wu, J.; Bai, L.; Wang, G.; Chu, J.; Zuo, J.; et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res. 2018, 28, 448–461. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Han, Y.; Lee, J.E.; Yenari, M.A. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin. Ther. Targets 2018, 22, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2010, 2, a004390. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Kahng, S.E.; Akkaynak, D.; Shlesinger, T.; Hochberg, E.J.; Wiedenmann, J.; Tamir, R.; Tchernov, D. Light, temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In Mesophotic Coral Ecosystems; Loya, Y., Puglise, K.A., Bridge, T.C.L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 801–828. [Google Scholar]
Category | CBTY1 | CBTY2 | CBRY2 | JPL | SMP | TW | |
---|---|---|---|---|---|---|---|
total genome | length (bp) | 118,538 | 118,886 | 120,328 | 118,724 | 119,080 | 107,122 |
GC content (%) | 39 | 39 | 39 | 39 | 39 | 39 | |
LSC | length (bp) | 65,454 | 648,39 | 66,969 | 64,935 | 65,069 | 64,283 |
GC content (%) | 38 | 38 | 38 | 38 | 38 | 38 | |
SSC | length (bp) | 52,203 | 53,193 | 52,488 | 52,947 | 53,131 | 42,143 |
GC content (%) | 39 | 39 | 39 | 39 | 39 | 40 | |
IR | length (bp) | 882 | 854 | 872 | 842 | 880 | 782 |
GC content (%) | 34 | 39 | 35 | 38 | 39 | 36 | |
number of total genes | 112 | 108 | 112 | 109 | 109 | 110 | |
number of CDS | 73 | 70 | 73 | 71 | 70 | 70 | |
number of tRNA genes | 35 | 34 | 35 | 34 | 35 | 32 | |
number of rRNA genes | 4 | 4 | 4 | 4 | 4 | 4 | |
Accession number | OL790355 | OL753660 | OL790356 | OL790353 | OL790354 | NC014589 |
Gene Name | Description | Location | Polymorphism Type | Group |
---|---|---|---|---|
psbA | Photosystem II protein D1 2 | All locations | CBRY2, JPL, SMP, TW, CBTY2|CBTY1 | ELSE |
psaI | Photosystem I reaction centre subunit VIII | All locations | TW, CBTY2|JPL, CBRY2, CBTY1, SMP | ELSE |
petL | Cytochrome b6/f complex subunit 6 | All locations | TW, CBTY2|JPL, CBRY2, CBTY1, SMP | ELSE |
chlN | Light-independent protochlorophyllide reductase subunit | All locations | CBTY1|TW, CBTY2, JPL, CBRY2, SMP | ELSE |
psbD | Photosystem II D2 protein | All locations | JPL, SMP|TW, CBTY2, CBRY2, CBTY1 | CZ |
rpoA | DNA-directed RNA polymerase subunit α | All locations | JPL, SMP|TW, CBTY2, CBRY2, CBTY1 | CZ |
ycf2 | Probable ATPase of unknown function | Only in hinterland | CBRY2|JPL, SMP|CBTY2, CBTY1 | CZ |
cemA | Chloroplast envelope membrane protein | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
rpl16 | 60S ribosomal protein L16-A | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
chlB | Light-independent protochlorophyllide reductase subunit B | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
pafI | Photosystem I assembly protein Ycf3 | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
psbK | Photosystem II reaction centre protein K | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
matK | Chloroplast Maturase K | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
rpl2 | 50S ribosomal protein L2, chloroplastic | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
atpF | ATP synthase subunit b, chloroplastic | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
petB | Component of the cytochrome b6-f complex | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
rbcL | Ribulose bisphosphate carboxylase large chain | All locations | TW|JPL, CBTY2, CBRY2, CBTY1, SMP | TW |
psbI | Photosystem II reaction centre protein I | All locations | TW|JPL, CBTY2|CBRY2, CBTY1, SMP | TW2 |
petD | Cytochrome b6-f complex subunit 4 | All locations | TW|JPL, CBTY2|CBRY2, CBTY1, SMP | TW2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Mo, P.; Deng, A.; Xie, P.; Wang, Y. Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China. Genes 2022, 13, 1963. https://doi.org/10.3390/genes13111963
Huang K, Mo P, Deng A, Xie P, Wang Y. Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China. Genes. 2022; 13(11):1963. https://doi.org/10.3390/genes13111963
Chicago/Turabian StyleHuang, Kerui, Ping Mo, Aihua Deng, Peng Xie, and Yun Wang. 2022. "Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China" Genes 13, no. 11: 1963. https://doi.org/10.3390/genes13111963
APA StyleHuang, K., Mo, P., Deng, A., Xie, P., & Wang, Y. (2022). Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla Populations from Different Locations in China. Genes, 13(11), 1963. https://doi.org/10.3390/genes13111963