Evaluation of WNT Signaling Pathway Gene Variants WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 in Patients with Dupuytren’s Contracture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Distributions of WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 Genotypes between Patients with Dupuytren’s Contracture and Control Subjects
3.2. WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 Genotypes and Positive Family History
3.3. Other Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabbiani, G.; Majno, G. Dupuytren’s contracture: Fibroblast contraction? An ultrastructural study. Am. J. Pathol. 1972, 66, 131. [Google Scholar] [PubMed]
- Zhang, A.Y.; Kargel, J.S. The basic science of Dupuytren disease. Hand Clin. 2018, 34, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, M.; Cordova, A.; Moschella, F. Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease. J. Cell Commun. Signal. 2016, 10, 315–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolmans, G.H.; Werker, P.M.; Hennies, H.C.; Furniss, D.; Festen, E.A.; Franke, L.; Becker, K.; Van Der Vlies, P.; Wolffenbuttel, B.H.; Tinschert, S.; et al. Wnt signaling and Dupuytren’s disease. New Engl. J. Med. 2011, 365, 307–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Siegert, S.; Toliat, M.R.; Du, J.; Casper, R.; Dolmans, G.H.; Werker, P.M.; Tinschert, S.; Franke, A.; Gieger, C.; et al. Meta-analysis of genome-wide association studies and network analysis-based integration with gene expression data identify new suggestive loci and unravel a wnt-centric network associated with Dupuytren’s disease. PLoS ONE 2016, 11, e0158101. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Tinschert, S.; Lienert, A.; Bleuler, P.; Staub, F.; Meinel, A.; Rößler, J.; Wach, W.; Hoffmann, R.; Kühnel, F.; et al. The importance of genetic susceptibility in Dupuytren’s disease. Clin. Genet. 2015, 87, 483–487. [Google Scholar] [CrossRef]
- Hindocha, S. Risk Factors, Disease Associations, and Dupuytren Diathesis. Hand Clin. 2018, 34, 307–314. [Google Scholar] [CrossRef]
- DiBenedetti, D.B.; Nguyen, D.; Zografos, L.; Ziemiecki, R.; Zhou, X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: Results from a population-based study. Hand 2010, 6, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Mosakhani, N.; Guled, M.; Lahti, L.; Borze, I.; Forsman, M.; Pääkkönen, V.; Ryhänen, J.; Knuutila, S. Unique microRNA profile in Dupuytren’s contracture supports deregulation of β-catenin pathway. Mod. Pathol. 2010, 23, 1544–1552. [Google Scholar] [CrossRef] [Green Version]
- Al-Qattan, M.M. Factors in the Pathogenesis of Dupuytren’s Contracture. J. Hand Surg. 2006, 31, 1527–1534. [Google Scholar] [CrossRef]
- Varallo, V.M.; Gan, B.S.; Seney, S.; Ross, D.C.; Roth, J.H.; Richards, R.S.; McFarlane, R.M.; Alman, B.; Howard, J.C. Beta-catenin expression in Dupuytren’s disease: Potential role for cell—matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene 2003, 22, 3680–3684. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.T.; Kohn, A.D.; De Ferrari, G.V.; Kaykas, A. WNT and β-catenin signalling: Diseases and therapies. Nat. Rev. Genet. 2004, 5, 691–701. [Google Scholar] [CrossRef]
- Nunn, A.; Schreuder, F.B. Dupuytren’s contracture: Emerging insight into a viking disease. Hand Surg. 2014, 19, 481–490. [Google Scholar] [CrossRef]
- Shih, B.; Tassabehji, M.; Watson, J.S.; Bayat, A. DNA copy number variations at chromosome 7p14.1 and chromosome 14q11.2 are associated with Dupuytren’s disease. Plast. Reconstr. Surg. 2012, 129, 921–932. [Google Scholar] [CrossRef]
- Anderson, E.R.; Ye, Z.; Caldwell, M.D.; Burmester, J.K. SNPs Previously associated with Dupuytren’s disease replicated in a North American cohort. Clin. Med. Res. 2014, 12, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Van Beuge, M.M.; Dam, E.-J.P.T.; Werker, P.M.; Bank, R.A. Wnt pathway in Dupuytren disease: Connecting profibrotic signals. Transl. Res. 2015, 166, 762–771. [Google Scholar] [CrossRef]
- Dam, E.-J.P.M.T.; Van Beuge, M.M.; Bank, R.A.; Werker, P.M.N. Further evidence of the involvement of the Wnt signaling pathway in Dupuytren’s disease. J. Cell Commun. Signal. 2016, 10, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Cui, W.; Zhou, W.; Li, D.; Li, L.-C.; Zhao, P.; Mo, X.; Zhang, Z.; Gao, J. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J. Cell. Mol. Med. 2017, 21, 1545–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdmann, M.; Quaba, A.; Sommerlad, B. Epithelioid sarcoma masquerading as Dupuytren’s disease. Br. J. Plast. Surg. 1995, 48, 39–42. [Google Scholar] [CrossRef]
- Yang, K.; Gehring, M.; Eddine, S.B.Z.; Hettinger, P. Association between stenosing tenosynovitis and Dupuytren’s contracture in the hand. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2088. [Google Scholar] [CrossRef]
- Lv, Z.-D.; Yang, Z.-C.; Liu, X.-P.; Jin, L.-Y.; Dong, Q.; Qu, H.-L.; Li, F.-N.; Kong, B.; Sun, J.; Zhao, J.-J.; et al. Silencing of Prrx1b suppresses cellular proliferation, migration, invasion and epithelial-mesenchymal transition in triple-negative breast cancer. J. Cell. Mol. Med. 2016, 20, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Thakkar, D.; Southam, L.; Werker, P.; Ophoff, R.; Becker, K.; Nothnagel, M.; Franke, A.; Nürnberg, P.; Espirito-Santo, A.I.; et al. A genome-wide association study of Dupuytren disease reveals 17 additional variants implicated in fibrosis. Am. J. Hum. Genet. 2017, 101, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Rao, T.P.; Kühl, M. An updated overview on Wnt signaling pathways. Circ. Res. 2010, 106, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- An, H.S.; Southworth, S.R.; Jackson, W.T.; Russ, B. Cigarette smoking and Dupuytren’s contracture of the hand. J. Hand Surg. 1988, 13, 872–874. [Google Scholar] [CrossRef]
- Burge, P.; Hoy, G.; Regan, P.; Milne, R. Smoking, alcohol and the risk of Dupuytren’s contracture. J. Bone Jt. Surgery. Br. Vol. 1997, 79, 206–210. [Google Scholar] [CrossRef]
- Descatha, A.; Carton, M.; Mediouni, Z.; Dumontier, C.; Roquelaure, Y.; Goldberg, M.; Zins, M.; Leclerc, A. Association among work exposure, alcohol intake, smoking and Dupuytren’s disease in a large cohort study (GAZEL). BMJ Open 2014, 4, e004214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Kim, G.W.; Lee, B.; Joo, J.W.J.; Jang, W. Integrative genomic and transcriptomic analysis of genetic markers in Dupuytren’s disease. BMC Med. Genom. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Huisstede, B.M.A.; Hoogvliet, P.; Coert, J.H.; Fridén, J. Dupuytren disease. Plast. Reconstr. Surg. 2013, 132, 964e–976e. [Google Scholar] [CrossRef] [Green Version]
- Mandel, D.R.; Demarco, P.J. Overview of the pathogenesis, diagnosis and treatment of Dupuytren’s disease. Int. J. Clin. Rheumatol. 2014, 9, 217–225. [Google Scholar] [CrossRef]
- Verjee, L.S.; Verhoekx, J.S.N.; Chan, J.K.K.; Krausgruber, T.; Nicolaidou, V.; Izadi, D.; Davidson, D.; Feldmann, M.; Midwood, K.S.; Nanchahal, J. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc. Natl. Acad. Sci. USA 2013, 110, E928–E937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dupuytren’s Contracture | Control Group | p-Value | |
---|---|---|---|
Gender: | p < 0.05 * | ||
Male | 97 (85.8%) | 68 (66%) | |
Female | 16 (14.2%) | 35 (34%) | |
Total | 113 (100%) | 103 (100%) | |
Age (years) | |||
Male | 59.57 (SD 10.82) | 59.22 (SD 14.26) | p > 0.05 |
Female | 64.13 (SD 8.59) | 57.6 (SD 12.66) | p < 0.05 |
Total | 60.21 (SD 10.62) | 58.67 (SD 13.69) | p > 0.05 |
SNP | Genotype | DC Group n = 113 | Control Group n = 103 | p-Value |
---|---|---|---|---|
WNT7B rs6519955 | GG | 24 (21.2%) | 32 (31.1%) | p = 0.003 |
GT | 58 (51.3%) | 61 (59.2%) | ||
TT | 31 (27.4%) | 10 (9.7%) | ||
GG + GT | 82 (72.6%) | 93 (90.3%) | p = 0.001 | |
TT | 31 (27.4%) | 10 (9.7%) | ||
SFRP4 rs17171229 | CC | 7 (6.2%) | 5 (4.9%) | p > 0.05 |
CT | 41 (36.3%) | 23 (22.3%) | ||
TT | 65 (57.5%) | 75 (72.8%) | ||
CT + TT | 106 (93.8%) | 98 (95.1%) | p > 0.05 | |
CC | 7 (6.2%) | 5 (4.9%) | ||
RSPO2 rs611744 | AA | 39 (34.5%) | 20 (19.4%) | p = 0.015 |
AG | 53 (46.9%) | 50 (48.5%) | ||
GG | 21 (18.6%) | 33 (32%) | ||
AA + AG | 92 (81.4%) | 70 (68%) | p = 0.023 | |
GG | 21 (18.6%) | 33 (32%) |
SNP | Genotype | OR (95% CI) | p-Value |
---|---|---|---|
WNT7B rs6519955 | TT vs. GT | 4.133 (1.701–10.043) | 0.002 |
TT vs. GG | 3.260 (1.467–7.244) | 0.004 | |
TT vs. GT + GG | 3.516 (1.624–7.610) | 0.001 | |
SFRP4 rs17171229 | CC vs. CT | 1.615 (0.489–5.335) | 0.431 |
CC vs. TT | 0.785 (0.224–2.758) | 0.706 | |
CC vs. CT + TT | 1.294 (0.398–4.212) | 0.668 | |
RSPO2 rs611744 | GG vs. AG | 0.326 (0.151–0.703) | 0.004 |
GG vs. AA | 0.600 (0.307–1.173) | 0.135 | |
GG vs. AG + AA | 0.484 (0.258–0.908) | 0.024 |
SNP | Genotype | Positive Family History | Negative Family History | p-Value |
---|---|---|---|---|
WNT7B rs6519955 | GG | 5 | 19 | p > 0.05 |
GT | 19 | 39 | ||
TT | 10 | 21 | ||
Total | 34 | 79 | ||
SFRP4 rs17171229 | CC | 2 | 5 | p = 0.05 |
CT | 18 | 23 | ||
TT | 14 | 51 | ||
Total | 34 | 79 | ||
RSPO2 rs611744 | AA | 13 | 26 | p > 0.05 |
AG | 12 | 41 | ||
GG | 9 | 12 | ||
Total | 34 | 79 |
DC Group | Control Group | ||
---|---|---|---|
Smokers | 39 | 21 | p = 0.021 |
Non-smokers | 74 | 82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samulėnas, G.; Smalinskienė, A.; Rimdeika, R.; Braziulis, K.; Fomkinas, M.; Paškevičius, R. Evaluation of WNT Signaling Pathway Gene Variants WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 in Patients with Dupuytren’s Contracture. Genes 2021, 12, 1293. https://doi.org/10.3390/genes12091293
Samulėnas G, Smalinskienė A, Rimdeika R, Braziulis K, Fomkinas M, Paškevičius R. Evaluation of WNT Signaling Pathway Gene Variants WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 in Patients with Dupuytren’s Contracture. Genes. 2021; 12(9):1293. https://doi.org/10.3390/genes12091293
Chicago/Turabian StyleSamulėnas, Gediminas, Alina Smalinskienė, Rytis Rimdeika, Kęstutis Braziulis, Mantas Fomkinas, and Rokas Paškevičius. 2021. "Evaluation of WNT Signaling Pathway Gene Variants WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 in Patients with Dupuytren’s Contracture" Genes 12, no. 9: 1293. https://doi.org/10.3390/genes12091293
APA StyleSamulėnas, G., Smalinskienė, A., Rimdeika, R., Braziulis, K., Fomkinas, M., & Paškevičius, R. (2021). Evaluation of WNT Signaling Pathway Gene Variants WNT7B rs6519955, SFRP4 rs17171229 and RSPO2 rs611744 in Patients with Dupuytren’s Contracture. Genes, 12(9), 1293. https://doi.org/10.3390/genes12091293