Novel Structural Variation and Evolutionary Characteristics of Chloroplast tRNA in Gossypium Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of tRNAs
2.2. Structural Analysis of tRNAs
2.3. Sequence Alignment
2.4. Phylogenetic Tree Construction
2.5. Analysis of Disparity Index
2.6. Transition/Transversion Analysis
2.7. Evolutionary Analysis of Single Nucleotide Polymorphisms
2.8. Calculation of Mutation Rate
2.9. Duplication/Loss Analysis of tRNA Genes
3. Results
3.1. Basic Characteristics of Cotton Chloroplast tRNAs
3.2. Diversification of tRNA Structure
3.3. Chloroplast tRNA Contained Introns
3.4. Chloroplast tRNAs with Non-Typical Features
3.5. Cotton Chloroplast tRNAs Were Derived from Several Evolutionary Ancestors
3.6. Transition/Transversion of tRNAs
3.7. Evolutionary Characteristics of Single Nucleotide Polymorphisms
3.8. Mutation Rate of Chloroplast Genome
3.9. tRNA Duplication/Loss Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arnon, D.I. The chloroplast as a complete photosynthetic unit. Science 1955, 122, 9–16. [Google Scholar] [CrossRef]
- Roughan, P.G.; Holland, R.; Slack, C.R. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts. Biochem. J. 1979, 184, 193–202. [Google Scholar] [CrossRef]
- Neuhaus, H.E.; Emes, M.J. Nonphotosyntheticmetabolism inplastids. Annu. Rev. Plant Biol. 2000, 51, 111–140. [Google Scholar] [CrossRef] [PubMed]
- Spetea, C.; Hundal, T.; Lundin, B.; Heddad, M.; Adamska, I.; Andersson, B. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc. Natl. Acad. Sci. USA 2004, 101, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Holsinger, K.E.; Soltis, P.S.; Soltis, D.E.; Doyle, J.J. Molecular systematics of plants. Syst. Bot. 1993, 18, 539. [Google Scholar] [CrossRef]
- Gross, J.; Meurer, J.; Bhattacharya, D. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol. Biol. 2008, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-P.; Wu, C.-S.; Huang, Y.-Y.; Chaw, S.-M. The complete chloroplast genome of ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol. Evol. 2012, 4, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.A.T.; Kim, J.S.; Kim, J.-H. The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta 2015, 242, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Ruf, S.; Karcher, D.; Bock, R. Determining the transgene containment level provided by chloroplast transformation. Proc. Natl. Acad. Sci. USA 2007, 104, 6998–7002. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.-Y.; Tang, T.-Y.; Li, F.-W.; Su, H.-J.; Chiou, W.-L.; Huang, Y.-M.; Wang, C.-N. Organelle genome inheritance in Deparia Ferns (Athyriaceae, Aspleniineae, Polypodiales). Front. Plant Sci. 2018, 9, 486. [Google Scholar] [CrossRef]
- Wang, R.-J.; Cheng, C.-L.; Chang, C.-C.; Wu, C.-L.; Su, T.-M.; Chaw, S.-M. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Fish, L.E.; Jagendorf, A.T. High rates of potein synthesis by isolated chloroplasts. Plant Physiol. 1982, 70, 1107–1114. [Google Scholar] [CrossRef]
- Shinozaki, K.; Hayashida, N.; Sugiura, M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynth. Res. 1988, 18, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, S.; Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 2014, 16, 98–112. [Google Scholar] [CrossRef]
- Brumfield, R.T.; Beerli, P.; Nickerson, D.A.; Edwards, S.V. Single nucleotide polymorphisms (SNPs) as markers in phylogeography. Trends Ecol. Evol. 2003, 18, 249–256. [Google Scholar] [CrossRef]
- Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 2002, 5, 94–100. [Google Scholar] [CrossRef]
- Holley, R.W.; Apgar, J.; Everett, G.A.; Madison, J.T.; Marquisee, M.; Merrill, S.H.; Penswick, J.R.; Zamir, A. Structure of a ribonucleic acid. Science 1965, 147, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Nicoghosian, K.; Bigras, M.; Sankoff, D.; Cedergren, R. Archetypical features in tRNA families. J. Mol. Evol. 1987, 26, 341–346. [Google Scholar] [CrossRef]
- Giegé, R.; Puglisi, J.D.; Florentz, C. tRNA structure and aminoacylation efficiency. Prog. Nucleic Acid Res. Mol. Biol. 1993, 45, 129–206. [Google Scholar] [CrossRef] [PubMed]
- De Pouplana, L.R.; Dedon, P.C. More than an adaptor molecule: The emerging role of tRNA in cell signaling and disease. FEBS Lett. 2014, 588, 4267. [Google Scholar] [CrossRef] [PubMed]
- Blee, E.; Joyard, J. Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol. 1996, 110, 445–454. [Google Scholar] [CrossRef]
- Kanai, A. Disrupted tRNA genes and tRNA fragments: A perspective on tRNA gene evolution. Life 2015, 5, 321–331. [Google Scholar] [CrossRef]
- Anderson, P.; Ivanov, P. tRNA fragments in human health and disease. FEBS Lett. 2014, 588, 4297–4304. [Google Scholar] [CrossRef]
- Kashdan, M.A.; Dudock, B.S. The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J. Biol. Chem. 1982, 257, 11191–11194. [Google Scholar] [CrossRef]
- Yasukawa, T.; Kirino, Y.; Ishii, N.; Holt, I.; Jacobs, H.T.; Makifuchi, T.; Fukuhara, N.; Ohta, S.; Suzuki, T.; Watanabe, K. Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett. 2005, 579, 2948–2952. [Google Scholar] [CrossRef] [PubMed]
- Morscher, R.J.; Ducker, G.S.; Li, S.H.-J.; Mayer, J.A.; Gitai, Z.; Sperl, W.; Rabinowitz, J.D. Mitochondrial translation requires folate-dependent tRNA methylation. Nat. Cell Biol. 2018, 554, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Syed, A.S.; Ameen, F.; Bae, H. Novel genomic and evolutionary perspective of cyanobacterial tRNAs. Front. Genet. 2017, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Bae, H. Analyses of genomic tRNA reveal presence of novel tRNAs in Oryza sativa. Front. Genet. 2017, 8, 90. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Khan, A.L.; Hashem, A.; Allah, E.F.A.; Yadav, D.; Al-Harrasi, A. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC Plant Biol. 2019, 19, 39. [Google Scholar] [CrossRef]
- Fryxell, P.A. A classification of Gossypium L. (Malvaceae). Taxon 1969, 18, 585–591. [Google Scholar] [CrossRef]
- Beasley, J.O. The origin of American Tetraploid Gossypium species. Am. Nat. 1940, 74, 285–286. [Google Scholar] [CrossRef]
- Li, F.; Fan, G.; Lu, C.; Xiao, G.; Zou, C.; Kohel, R.J.; Ma, Z.; Shang, H.; Ma, X.; Wu, J.; et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 2015, 33, 524–530. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.; A Saski, C.; E Scheffler, B.; Stelly, D.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef]
- Sun, R.; Wang, K.; Guo, T.; Jones, D.C.; Cobb, J.; Zhang, B.; Wang, Q. Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Funct. Integr. Genom. 2015, 15, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Tang, Z.; Wang, M.; Gao, W.; Tu, L.; Jin, X.; Chen, L.; He, Y.; Zhang, L.; Zhu, L.; et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci. Rep. 2016, 5, 17662. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Jones, D.C.; Li, W.; Xie, F.; Ma, J.; Sun, R.; Wang, Q.; Zhu, S.; Zhang, B. Genome-wide identification of R2R3-MYB genes and expression analyses during abiotic stress in Gossypium raimondii. Sci. Rep. 2016, 6, 22980. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-F.; Li, Y.; Chen, Y.; Li, X.-B. Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene. Plant Cell Tissue Organ Cult. 2016, 124, 583–598. [Google Scholar] [CrossRef]
- Salih, H.; Gong, W.; He, S.; Sun, G.; Sun, J.; Du, X. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. BMC Genet. 2016, 17, 1–12. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, G.; Zhang, X.; Zhang, X.; Qiao, P.; Long, L.; Yuan, Y.; Cai, Y. Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. Sci. Rep. 2017, 7, 42418. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Yang, D.-G.; Li, W.; Zhou, X.-J.; Pei, X.-Y.; Liu, Y.-G.; He, K.-L.; Zhang, W.-S.; Ren, Z.-Y.; et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front. Plant Sci. 2018, 9, 376. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 0955–0964. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Mitchell, C. MultAlin–multiple sequence alignment. Bioinformatics 1993, 9, 614. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Arora, P.K.; Mohanta, N.; Parida, P.; Bae, H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom. 2015, 16, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Mohanta, N.; Parida, P.; Panda, S.K.; Ponpandian, L.N.; Bae, H. Genome-wide identification of mitogen-activated protein kinase gene family across fungal lineage shows presence of novel and diverse activation loop motifs. PLoS ONE 2016, 11, e0149861. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Saitou, N.; Ueda, S. Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol. Biol. Evol. 1994, 11, 504–512. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, K.; Grover, C.E.; Li, P.; Liu, F.; Wang, Y.; Xu, Q.; Shang, M.; Zhou, Z.; Cai, X.; et al. Chloroplast DNA structural variation, phylogeny, and age of divergence among Diploid Cotton species. PLoS ONE 2016, 11, e0157183. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.E.; Gallagher, J.P.; Jareczek, J.J.; Page, J.T.; Udall, J.A.; Gore, M.; Wendel, J.F. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol. Phylogenet. Evol. 2015, 92, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Durand, D.; Farach-Colton, M. NOTUNG: A program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 2000, 7, 429–447. [Google Scholar] [CrossRef]
- Vernot, B.; Stolzer, M.; Goldman, A.; Durand, D. Reconciliation with non-binary species trees. J. Comput. Biol. 2008, 15, 981–1006. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, Y.; Nishida, M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 1993, 37, 380–398. [Google Scholar] [CrossRef]
- Shepotinovskaya, I.; Uhlenbeck, O.C. tRNA residues evolved to promote translational accuracy. RNA 2013, 19, 510–516. [Google Scholar] [CrossRef]
- Zhong, Q.; Fu, X.; Zhang, T.; Zhou, T.; Yue, M.; Liu, J.; Li, Z. Phylogeny and evolution of chloroplast tRNAs in Adoxaceae. Ecol. Evol. 2021, 11, 1294–1309. [Google Scholar] [CrossRef]
- Tong, K.-L.; Wong, J.-F. Anticodon and wobble evolution. Gene 2004, 333, 169–177. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Aziz, N.; Saeed, N.A.; Zafar, Y.; Malik, K.A. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 1997, 94, 139–144. [Google Scholar] [CrossRef]
- Kumar, P.; Anaya, J.; Mudunuri, S.B.; Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014, 12, 1–14. [Google Scholar] [CrossRef]
- Charette, M.W.G.M. Pseudouridine in RNA: What, where, how, and why. IUBMB Life 2000, 49, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-T.; Hou, Y.-K.; Yang, T.; Zhang, S.-Y.; Yue, M.; Liu, J.; Li, Z. Evolutionary analysis of chloroplast tRNA of Gymnosperm revealed the novel structural variation and evolutionary aspect. PeerJ 2020, 8, e10312. [Google Scholar] [CrossRef]
- Nardi, F.; Carapelli, A.; Fanciulli, P.P.; Dallai, R.; Frati, F. The complete mitochondrial DNA sequence of the basal Hexapod Tetrodontophora bielanensis: Evidence for Heteroplasmy and tRNA translocations. Mol. Biol. Evol. 2001, 18, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Jühling, T.; Duchardt-Ferner, E.; Bonin, S.; Wöhnert, J.; Pütz, J.; Florentz, C.; Betat, H.; Sauter, C.; Mörl, M. Small but large enough: Structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res. 2018, 46, 9170–9180. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Wolin, S.L.; Xiong, Y. Structural basis for tRNA mimicry by a bacterial Y RNA. Structure 2018, 26, 1635–1644. [Google Scholar] [CrossRef]
- Yoshihisa, T. Handling tRNA introns, archaeal way and eukaryotic way. Front. Genet. 2014, 5, 213. [Google Scholar] [CrossRef]
- Kawach, O.; Voß, C.; Wolff, J.; Hadfi, K.; Maier, U.-G.; Zauner, S. Unique tRNA introns of an enslaved algal cell. Mol. Biol. Evol. 2005, 22, 1694–1701. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hoser, S.M.; Hoffmann, A.; Meindl, A.; Gamper, M.; Fallmann, J.; Bernhart, S.H.; Müller, L.; Ploner, M.; Misslinger, M.; Kremser, L.; et al. Intronic tRNAs of mitochondrial origin regulate constitutive and alternative splicing. Genome Biol. 2020, 21, 1–35. [Google Scholar] [CrossRef]
- Adams, P.L.; Stahley, M.R.; Kosek, A.B.; Wang, J.; Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nat. Cell Biol. 2004, 430, 45–50. [Google Scholar] [CrossRef]
- Wilusz, J.E. Controlling translation via modulation of tRNA levels. Wiley Interdiscip. Rev. RNA 2015, 6, 453–470. [Google Scholar] [CrossRef]
- Köhrer, C.; Mandal, D.; Gaston, K.W.; Grosjean, H.; Limbach, P.A.; Rajbhandary, U.L. Life without tRNAIle-lysidine synthetase: Translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile. Nucleic Acids Res. 2013, 42, 1904–1915. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, K.D.; Tewari, R. Conformational Preferences of Hypermodified Nucleoside Lysidine (k2C) Occurring at “Wobble” position in Anticodon Loop of tRNAIle. Nucleosides Nucleotides Nucleic Acids 2008, 27, 1158–1174. [Google Scholar] [CrossRef]
- Weber, F.; Dietrich, A.; Weil, J.-H.; Maréchal-Drouard, L. A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res. 1990, 18, 5027–5030. [Google Scholar] [CrossRef] [PubMed]
- Soma, A.; Ikeuchi, Y.; Kanemasa, S.; Kobayashi, K.; Ogasawara, N.; Ote, T.; Kato, J.-I.; Watanabe, K.; Sekine, Y.; Suzuki, T. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell 2003, 12, 689–698. [Google Scholar] [CrossRef]
- Shrestha, B.; Weng, M.-L.; Theriot, E.C.; Gilbert, L.E.; Ruhlman, T.A.; Krosnick, S.E.; Jansen, R.K. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol. Phylogenet. Evol. 2019, 138, 53–64. [Google Scholar] [CrossRef]
- Zhao, Z.; Fu, Y.-X.; Hewett-Emmett, D.; Boerwinkle, E. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 2003, 312, 207–213. [Google Scholar] [CrossRef]
- Yarham, J.W.; McFarland, R.; Taylor, R.W.; Elson, J.L. A proposed consensus panel of organisms for determining evolutionary conservation of mt-tRNA point mutations. Mitochondrion 2012, 12, 533–538. [Google Scholar] [CrossRef]
- Jelesko, J.G.; Harper, R.; Furuya, M.; Gruissem, W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 1999, 96, 10302–10307. [Google Scholar] [CrossRef]
- Xiao, H.; Jiang, N.; Schaffner, E.; Stockinger, E.J.; Van Der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 2008, 319, 1527–1530. [Google Scholar] [CrossRef]
- Rensing, S.A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 2014, 17, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [PubMed]
Karyotype | Species | Accession Number | Wild/Cultivars |
---|---|---|---|
A2 | Gossypium arboreum | NC_016712 | cultivars |
B1 | G. anomalum | NC_023213 | wild |
C2 | G. robinsonii | NC_018113 | wild |
D3-k | G. klotzschianum | NC_033394 | wild |
E2 | G. somalense | NC_018110 | wild |
F1 | G. longicalyx | NC_023216 | wild |
G1 | G. bickii | NC_023214 | wild |
K2 | G. populifolium | NC_033398 | wild |
AD1 | G. hirsutum | HQ901196 | cultivars |
AD2 | G. barbadense | HQ901199 | cultivars |
tRNA Isotype | Number of tRNAs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A2 1 | B1 2 | C2 3 | D3-K 4 | E2 5 | F1 6 | AD1 7 | AD2 8 | G1 9 | K2 10 | |
Alanine | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Glycine | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Proline | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Threonine | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Valine | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Serine | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Arginine | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Leucine | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Phenylalanine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Asparagine | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Lysine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Aspartate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Glutamate | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Histidine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Glutamine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Isoleucine | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Methionine | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 |
Tyrosine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Cysteine | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tryptophan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Selenocysteine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Suppressor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 36 | 37 |
tRNA Isotype | AC-Arm | D-Arm | D-Loop | ANC-Arm | ANC-Loop | Variable Region | Ψ-Arm | Ψ-Loop |
---|---|---|---|---|---|---|---|---|
Alanine | GGGGAUA | GCUC | AGUUGGUA | CCGCU | CUUGCAU | AUGUC | AGCGG | UUCGAGU |
Arginine | GXGXCX2 | Gx3 | AX2GGAUA | ***** | CUXCXAA | GU | GG | UUCGAAU |
Asparagine | GUCGGGA | GCUC | AGUUGGUA | GUCGG | CUGUUAA | UGGUC | GUAGG | UUCGAAU |
Aspartate | GGGAUUG | GUUC | AAUUGGUCA | CCGCC | CUGUCAA | AAGCU | GCGGG | UUCGAGC |
Cysteine | GGCGACA | GCC | GAGCGGUAA | GGGGA | CUGCAAA | UAUUC | CCCAG | UUCAAAU |
Glutamate | GX2CX3 | GX3 | AGXGGUX1–3 | CX2CX | CUUUCAX | X2GX1–2 | X3GX | UUCXAXU |
Glutamine | UGGGGCG | GCC | AAGUGGUAA | CGGG | UUUUGGU | CUAUGC | GGAGG | UUCGAAU |
Glycine | GCGGAUA | GU | CGAAUGGUAAA | UCUCU | UUGCCAA | AGAC | GCGGG | UUCGAUU |
Histidine | GCGGAUG | GCC | AAGUGGAUCAA | GUGGA | UUGUGAA | CAUGC | GCGGG | UUCAAUU |
Isoleucine | GCAUCCA | GCU | GAAUGGUUAA | CCCAA | CUCAUAA | AAUUC | GUAGG | UUCAAUU |
Leucine | GX6 | GXG | AAAUXGX3–4A | X3GX | CUX4A | XGX9–12 | X3GG | UUCXAGU |
Lysine | GGGUUGC | ACUC | AACGGUA | UCGG | CUUUUAA | CUAGUU | CCGGG | UUCGAGU |
Methionine | XCX5–6 | X3G | AGUX5–6 | ***** | XUCAUAX | X2GUC | AUXGG | UUCAAAU |
Phenylalanine | GUCGGGA | GCUC | AGUUGGUA | GAGGA | CUGAAAA | GUGUC | ACCAG | UUCAAAU |
Proline | AGGGAUG | GCGC | AGCUUGGUA | UUUGU | UUUGGGU | AUGUC | ACGGG | UUCAAAU |
Serine | GGAGAGA | GCX1–2 | X4GX3–4A | X2GX1–2 | XUXGXAX | X4GX15–19 | GAGGG | UUCGAAU |
Threonine | XGCCX0–4 | XCUC | AGXGGUA | XCGCX | X3GUAA | X2GUC | AUCGG | UUCX3U |
Tryptophan | GCGCUCU | GUUC | AGUUCGGUA | UGGGU | CUCCAAA | AUGUC | GUAGG | UUCAAAU |
Tyrosine | GGGUCGA | CCCG | AGCGGUUAA | ACGGA | CUGUAAA | GGCA | GCUGG | UUCAAAU |
Valine | AGGGAUA | ACUC | AGCGGUA | UCACC | UUGACGU | AAGUC | AUCAG | UUCGAGC |
Integrated Clades | Types of tRNAs |
---|---|
clade I | tRNASer, tRNALeu, tRNAArg, tRNAMet, tRNAAla, tRNAGly, tRNAAsp, tRNALys, tRNAVal, tRNAIle, tRNAThr, tRNAPro, tRNAGln, tRNACys, tRNAPhe |
clade II | tRNAIle, tRNALeu, tRNAGln, tRNATyr, tRNAHis, tRNAAsn, tRNAPhe, tRNAGlu, tRNATrp, tRNAArg |
clade III | tRNAThr, tRNASer, tRNAVal, tRNAMet, tRNAIle |
Genome Region | Length (bp) | Value | % |
---|---|---|---|
Total substitutions | 162,231 | 2709 | 1.67 |
Coding regions | 79,244 | 906 | 1.14 |
Non-synonymous | / | 681.58 | 0.86 |
Synonymous | / | 224.42 | 0.28 |
dN/dS | / | 3.04 | / |
Intron | 21,443 | 299 | 1.39 |
Intergenic spacer | 51,920 | 1504 | 2.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.-T.; Yang, Y.; Song, X.-Y.; Gao, X.-Y.; Zhang, X.-L.; Zhao, J.-J.; Zhou, K.-H.; Zhao, C.-B.; Li, W.; Yang, D.-G.; et al. Novel Structural Variation and Evolutionary Characteristics of Chloroplast tRNA in Gossypium Plants. Genes 2021, 12, 822. https://doi.org/10.3390/genes12060822
Zhang T-T, Yang Y, Song X-Y, Gao X-Y, Zhang X-L, Zhao J-J, Zhou K-H, Zhao C-B, Li W, Yang D-G, et al. Novel Structural Variation and Evolutionary Characteristics of Chloroplast tRNA in Gossypium Plants. Genes. 2021; 12(6):822. https://doi.org/10.3390/genes12060822
Chicago/Turabian StyleZhang, Ting-Ting, Yang Yang, Xiao-Yu Song, Xin-Yu Gao, Xian-Liang Zhang, Jun-Jie Zhao, Ke-Hai Zhou, Chang-Bao Zhao, Wei Li, Dai-Gang Yang, and et al. 2021. "Novel Structural Variation and Evolutionary Characteristics of Chloroplast tRNA in Gossypium Plants" Genes 12, no. 6: 822. https://doi.org/10.3390/genes12060822
APA StyleZhang, T.-T., Yang, Y., Song, X.-Y., Gao, X.-Y., Zhang, X.-L., Zhao, J.-J., Zhou, K.-H., Zhao, C.-B., Li, W., Yang, D.-G., Ma, X.-F., & Li, Z.-H. (2021). Novel Structural Variation and Evolutionary Characteristics of Chloroplast tRNA in Gossypium Plants. Genes, 12(6), 822. https://doi.org/10.3390/genes12060822