Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Preparation of Gynostemma Pentaphyllum
2.3. Animals and Experimental Design
2.4. Analysis of Body Weight and Feed Intake
2.5. Determination of Egg Quality and Egg Physical Index
2.6. Serum Biochemical Analysis
2.7. RNA Sequencing of Liver Tissue
2.7.1. RNA Isolation and RNA Sequencing Library Construction
2.7.2. RNA Sequencing and Data Analysis
2.7.3. Differential Expression Analysis
2.7.4. Analysis of GO and KEGG Functional Enrichment
2.8. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Egg Quality and Egg Physical Index
3.3. Serum Biochemical Indexes
3.4. Overview of RNA Sequencing
3.5. Analysis of Differentially Expressed Genes (DEGs)
3.6. GO Terms and KEGG Pathway Analysis of DEGs
3.7. Verification of mRNA Expression Profiles Using qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, E.K.; Won, Y.H.; Kim, S.Y.; Noh, S.O.; Park, S.H.; Jung, S.J.; Lee, C.K.; Hwang, B.Y.; Lee, M.K.; Ha, K.C.; et al. Supplementation with extract of Gynostemma pentaphyllum leaves reduces anxiety in healthy subjects with chronic psychological stress: A randomized, double-blind, placebo-controlled clinical trial. Phytomed. Int. J. Phytother. Phytopharm. 2019, 52, 198. [Google Scholar] [CrossRef]
- Razmovski-Naumovski, V.; Huang, H.W.; Tran, V.H.; Li, G.Q.; Duke, C.; Roufogalis, B. Chemistry and Pharmacology of Gynostemma pentaphyllum. Phytochem. Rev. 2005, 4, 197–219. [Google Scholar] [CrossRef]
- Schild, L.; Chen, B.H.; Makarov, P.; Kattengell, K.; Heinitz, K.; Keilhoff, G. Selective induction of apoptosis in glioma tumour cells by a Gynostemma pentaphyllum extract. Phytomed. Int. J. Phytother. Phytopharm. 2010, 17, 589–597. [Google Scholar] [CrossRef]
- Müller, C.; Gardemann, A.; Keilhoff, G.; Peter, D.; Wiswedel, I.; Schild, L. Prevention of free fatty acid-induced lipid accumulation, oxidative stress, and cell death in primary hepatocyte cultures by a Gynostemma pentaphyllum extract. Phytomed. Int. J. Phytother. Phytopharm. 2012, 19, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, W.; Huang, H.; Slavin, M.; Zhao, Y.; Whent, M.; Blackford, J.; Lutterodt, H.; Zhou, H.; Chen, P.; et al. Chemical composition of five commercial gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties. J. Agric. Food Chem. 2010, 58, 11243–11249. [Google Scholar] [CrossRef]
- Yeo, J.; Kang, Y.-J.; Jeon, S.-M.; Jung, U.J.; Lee, M.-K.; Song, H.; Choi, M.-S. Potential Hypoglycemic Effect of an Ethanol Extract of Gynostemma pentaphyllumin C57BL/KsJ-db/dbMice. J. Med. Food 2008, 11, 709–716. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Y.; Guo, X. Isolation, structures, and bioactivities of the polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino: A review. BioMed Res. Int. 2018, 2018, 6285134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, K.-C.; Chiang, T.-H.; Wang, J.-S.; Lin, L.-J.; Chao, W.-C.; Chen, B.-H.; Lu, J.-F. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells. Molecules 2014, 19, 17663–17681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lin, W.; Huang, J.; Xie, Y.; Ma, W. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan). Chin. Med. 2016, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Phu, H.T.; Thuan, D.T.B.; Nguyen, T.H.D.; Posadino, A.M.; Eid, A.H.; Pintus, G. Herbal medicine for slowing aging and aging-associated conditions: Efficacy, mechanisms and safety. Curr. Vasc. Pharmacol. 2020, 18, 369–393. [Google Scholar] [CrossRef] [PubMed]
- Naber, E.C. The cholesterol problem, the egg and lipid metabolism in the laying hen. Poult. Sci. 1976, 55, 14–30. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Song, W.-L. Egg yolk, source of bad cholesterol and good lipids? Am. J. Clin. Nutr. 2019, 110, 548–549. [Google Scholar] [CrossRef] [PubMed]
- Suresh, G.; Das, R.K.; Kaur Brar, S.; Rouissi, T.; Avalos Ramirez, A.; Chorfi, Y.; Godbout, S. Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef]
- Koárová, I.; Juáková, D.; Šimková, J.; Milkoviová, M.; Koár, M. Effective screening of antibiotic and coccidiostat residues in food of animal origin by reliable broad-spectrum residue screening tests. Ital. J. Anim. Sci. 2020, 19, 487–501. [Google Scholar] [CrossRef]
- Donoghue, D. Antibiotic residues in poultry tissues and eggs: Human health concerns? Poult. Sci. 2003, 82, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Neveling, D.P.; van Emmenes, L.; Ahire, J.J.; Pieterse, E.; Smith, C.; Dicks, L.M.T. Safety assessment of antibiotic and probiotic feed additives for Gallus gallus domesticus. Sci. Rep. 2017, 7, 12767. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Li, H.; Li, S.; Li, C.; Li, J.; Ma, Y. The presence of tetracyclines and sulfonamides in swine feeds and feces: Dependence on the antibiotic type and swine growth stages. Environ. Sci. Pollut. Res. 2020, 27, 43093–43102. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Nisha, A.R. Antibiotic residues—A global health hazard. Vet. World 2008, 2, 375–377. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, D.; Abula, S.; Hu, Y.; Zhao, X.; Huang, Y.; Liu, J.; Wu, Y.; Wang, D.; Tao, Y.; et al. The immunological adjuvant activity of gypenosides liposome against Newcastle disease vaccine. Int. J. Biol. Macromol. 2013, 60, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Bai, J.; Wang, J.; He, M.; Xiong, W.; Yuan, W.; Qiao, M.; Ming, K.; Wu, Y.; Wang, D.; et al. Assessment of the hepatocyte protective effects of gypenoside and its phosphorylated derivative against DHAV-1 infection on duck embryonic hepatocytes. BMC Vet. Res. 2019, 15, 134. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhang, J.; Wang, S.; Wang, J.; Wang, J.; Zhu, Y.; Wang, J. Gypenoside inhibits bovine viral diarrhea virus replication by interfering with viral attachment and internalization and activating apoptosis of infected cells. Viruses 2021, 13, 1810. [Google Scholar] [CrossRef]
- Liu, F.; Dai, X.; Duan, J.; Yin, P. Natural Plant Feed Ingredients and Applications; China Agricultural University Press: Beijing, China, 2021; pp. 127–129. [Google Scholar]
- Pesti, G.M. Nutrient Requirements of Poultry: Ninth Revised Edition, Subcommittee on Poultry Nutrition, Committee on Animal Nutrition, Board on Agriculture, National Research Council; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Kostaman, T.; Sopiyana, S. The differences in egg quality of white leghorn and naked neck chicken. In Proceedings of the International Seminar on Livestock Production and Veterinary Technology, Denpasar, Indonesia, 10–12 August 2016; pp. 365–369. [Google Scholar]
- Luo, Y.; Xiong, R.; Hou, L.; Li, J.; Chen, J. Process for coproduction of crude immunoglobulin y and high-density lipoproteins from hen egg yolk. J. Agric. Food Chem. 2010, 58, 11420–11427. [Google Scholar] [CrossRef]
- Tarchalski, J.; Guzik, P.; Wysocki, H. Correlation between the extent of coronary atherosclerosis and lipid profile. Mol. Cell. Biochem. 2003, 246, 25–30. [Google Scholar] [CrossRef]
- Drygin, Y.F.; Butenko, K.O.; Gasanova, T.V. Environmentally friendly method of RNA isolation. Anal. Biochem. 2021, 620, 114113. [Google Scholar] [CrossRef]
- Jensen, P.S.H.; Johansen, M.; Bak, L.K.; Jensen, L.J.; Kjær, C. Yield and integrity of RNA from brain samples are largely unaffected by pre-analytical procedures. Neurochem. Res. 2021, 46, 447–454. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Elkin, R.G.; Yan, Z.; Zhong, Y.; Donkin, S.S.; Buhman, K.K.; Story, J.A.; Turek, J.J.; Porter, R.E.; Anderson, M.; Homan, R. Select 3-Hydroxy-3-Methylglutaryl-Coenzyme a reductase inhibitors vary in their ability to reduce egg yolk cholesterol levels in laying hens through alteration of hepatic cholesterol biosynthesis and plasma VLDL composition. J. Nutr. 1999, 129, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Yang, J.; Jiang, Q.H. Hypolipidemic effect of gypenosides in experimentally induced hypercholesterolemic rats. Lipids Health Dis. 2013, 12, 154. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H.; Ha, T.K.Q.; Yang, J.L.; Pham, H.T.T.; Oh, W.K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. J. Ethnopharmacol. 2021, 268, 113574. [Google Scholar] [CrossRef]
- Megalli, S.; Aktan, F.; Davies, N.M.; Roufogalis, B.D. Phytopreventative anti-hyperlipidemic effects of Gynostemma pentaphyllum in rats. J. Pharm. Pharm. Sci. 2005, 8, 507–515. [Google Scholar]
- Qin, R.; Zhang, J.; Li, C.; Zhang, X.; Xiong, A.; Huang, F.; Yin, Z.; Li, K.; Qin, W.; Chen, M.; et al. Protective effects of gypenosides against fatty liver disease induced by high fat and cholesterol diet and alcohol in rats. Arch. Pharmacal Res. 2012, 35, 1241–1250. [Google Scholar] [CrossRef]
- Megalli, S.; Davies, N.M.; Roufogalis, B.D. Anti-hyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. J. Pharm. Pharm. Sci. 2006, 9, 281–291. [Google Scholar]
- Francis, G.A.; Annicotte, J.-S.; Auwerx, J. PPAR-alpha effects on the heart and other vascular tissues. Am. J. Physiol. Circ. Physiol. 2003, 285, H1–H9. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.H.; Li, Y.; Razmovski-Naumovski, V.; Tran, V.H.; Li, G.Q.; Duke, C.C.; Roufogalis, B.D. Gypenoside XLIX isolated from Gynostemma pentaphyllum inhibits nuclear factor-kappaB activation via a PPAR-alpha-dependent pathway. J. Biomed. Sci. 2006, 13, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Malek, M.A.; Hoang, M.H.; Jia, Y.; Lee, J.H.; Jun, H.J.; Lee, D.-H.; Lee, H.J.; Lee, C.; Lee, M.K.; Hwang, B.Y.; et al. Ombuin-3-O-β-D-glucopyranoside from Gynostemma pentaphyllum is a dual agonistic ligand of peroxisome proliferator-activated receptors α and δ/β. Biochem. Biophys. Res. Commun. 2013, 430, 1322–1328. [Google Scholar] [CrossRef]
- Ge, M.X.; Shao, R.G.; He, H.W. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem. Pharmacol. 2019, 164, 152–164. [Google Scholar] [CrossRef]
- Ramakrishna, R.; Kumar, D.; Bhateria, M.; Gaikwad, A.N.; Bhatta, R.S. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. J. Steroid Biochem. Mol. Biol. 2017, 168, 110–117. [Google Scholar] [CrossRef]
- Kobayashi, M.; Harada, T.; Takagi, N.; Tsuzuki, K.; Sugawara, M.; Fukuda, M. Effects of lactic acid-fermented soymilk on lipid metabolism-related gene expression in rat liver. Biosci. Biotechnol. Biochem. 2012, 76, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Glatz, J.F.; van der Vusse, G.J. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res. 1996, 35, 243–282. [Google Scholar] [CrossRef]
- Lücke, C.; Gutiérrez-González, L.; Hamilton, J.A. Intracellular lipid binding proteins: Evolution, structure, and ligand binding. In Cellular Proteins and Their Fatty Acids in Health and Disease; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Wang, Z.; Yue, Y.X.; Liu, Z.M.; Yang, L.Y.; Li, H.; Li, Z.J.; Li, G.X.; Wang, Y.B.; Tian, Y.D.; Kang, X.T.; et al. Genome-wide analysis of the FABP gene family in liver of chicken (Gallus gallus): Identification, dynamic expression profile, and regulatory mechanism. Int. J. Mol. Sci. 2019, 20, 5948. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Luo, J.; Zhang, Z.; Wu, J.; Zhang, T.; Busato, S.; Huang, L.; Song, N.; Bionaz, M. CRISPR/Cas9-mediated Stearoyl-CoA Desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells. J. Agric. Food Chem. 2018, 66, 10041–10052. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, H.; Gong, Y.; Zhang, B.; Chen, W. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression. Bosn. J. Basic Med. Sci. 2020, 21, 294–304. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Zhang, T.; Liu, Z.; Zhao, Y. Identification of a nine-gene signature and establishment of a prognostic nomogram predicting overall survival of pancreatic cancer. Front. Oncol. 2019, 9, 996. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Liu, J.; Xu, S.; Yu, Q.; Wang, H.; Sun, H.; Wu, J.; Zhu, Y.; Zhou, J.; Zhu, Y. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics 2020, 10, 516–536. [Google Scholar] [CrossRef]
Nutritional Composition | Content | Active Compounds | Content |
---|---|---|---|
Carbohydrate | 7 g | Saponin | 2–10% |
Protein | 4.7 g | Polysaccharide | 3–10% |
Fat | 0.3 g | Flavonoids | 3–5% |
Dietary fiber | 32 g | ||
Vitamin B1 | 0.09 mg | Saponins have the effects of lowering blood lipid, sedation, and hypnosis | |
Vitamin B2 | 0.27 mg | Polysaccharides can regulate immunity, reduce blood sugar, and have antioxidation and antitumor effects | |
Vitamin C | 12 mg | Flavonoids and saponins have antioxidant and antitumor effects together | |
Vitamin E | 46 mg | ||
Vitamin A | 2.95 mg | ||
Threonine | 0.1425 mg | ||
Methionine | 0.3289 mg | ||
Leucine | 0.0549 mg | ||
Isoleucine | 0.2127 mg | ||
Phenylalanine | 0.9758 mg | ||
Lysine | 1.5563 mg | ||
Niacin | 1.1 mg |
Composition | Growth Stage | |||
---|---|---|---|---|
0–8 Weeks | 9–14 Weeks | 15 Weeks—Age at First Eggs | Age at First Eggs—60 Weeks | |
Corn (%) | 62.5 | 61.5 | 60.0 | 62.5 |
Wheat bran (%) | 4.0 | 13.0 | 19.5 | - |
Soybean meal (%) | 28.0 | 20.0 | 15.0 | 24.0 |
Soybean oil (%) | 0.5 | 0.5 | 0.5 | 0.5 |
Coarse stone powder (%) | - | - | - | 8 |
Premix 1 (%) | 5 | 5 | 5 | 5 |
Total (%) | 100 | 100 | 100 | 100 |
Dry matter content (%) | 87.51 | 87.36 | 87.27 | 88.31 |
Crude protein (%) | 18.31 | 16.26 | 15.03 | 15.93 |
Calcium (%) | 0.87 | 0.86 | 0.85 | 3.83 |
Total phosphorus (%) | 0.59 | 0.62 | 0.65 | 0.52 |
Available phosphorus (%) | 0.35 | 0.35 | 0.36 | 0.32 |
Salt (%) | 0.36 | 0.37 | 0.38 | 0.35 |
Lysine (%) | 0.98 | 0.85 | 0.76 | 0.86 |
Methionine (%) | 0.41 | 0.36 | 0.34 | 0.39 |
Week | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control Group | LA Group | HA Group | |||
Initial weight (g) | 75.40 | 73.99 | 74.50 | 1.61 | 0.4390 |
Final weight (g) | 1376.19 | 1342.00 | 1394.21 | 25.15 | 0.6511 |
ADG (g/d) | 10.32 | 10.06 | 10.47 | 0.47 | 0.5845 |
ADFI (g/d) | 52.87 | 50.01 | 51.76 | 1.21 | 0.4397 |
FCR | 5.12 | 4.97 | 4.94 | 0.11 | 0.5173 |
Project | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control Group | LA Group | HA Group | |||
ESI | 1.29 | 1.28 | 1.29 | 0.03 | 0.0974 |
EW(g) | 53.87 B | 55.82 A | 55.23 A | 0.55 | 0.0100 |
EST of blunt end (mm) | 0.40 | 0.41 | 0.42 | 0.02 | 0.3086 |
EST of middle part (mm) | 0.40 | 0.42 | 0.41 | 0.03 | 0.3511 |
EST of sharp end (mm) | 0.40 | 0.42 | 0.42 | 0.02 | 0.1298 |
The average EST (mm) | 0.40 | 0.42 | 0.42 | 0.02 | 0.1254 |
Project | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control Group | LA Group | HA Group | |||
HU | 73.18 b | 76.04 a | 76.89 a | 1.03 | 0.0421 |
The cholesterol in the yolk (mmol/L) | 3.69 A | 4.02 A | 1.83 B | 0.23 | 0.0078 |
EYP (%) | 24.93 | 24.87 | 25.11 | 0.31 | 0.2553 |
Color of yolk (L*—lightness) | 69.33 | 69.47 | 69.01 | 0.29 | 0.3845 |
Color of yolk (a*—redness) | 16.36 B | 16.54 B | 17.23 A | 0.15 | 0.0043 |
Color of yolk (b*—yellowness) | 60.87 | 60.74 | 61.24 | 0.64 | 0.1294 |
Index | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control Group | LA Group | HA Group | |||
TC (mmol/L) | 2.43 A | 1.80 B | 1.87 B | 0.09 | 0.0038 |
TG (mmol/L) | 5.72 A | 3.38 B | 3.56 B | 0.35 | 0.0065 |
TP (g/L) | 40.41 | 37.78 | 39.01 | 0.10 | 0.0783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, S.; Zhang, J.; Song, Y.; Bao, X.; Xu, F.; Zhang, J. Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder. Genes 2021, 12, 1942. https://doi.org/10.3390/genes12121942
Li T, Zhang S, Zhang J, Song Y, Bao X, Xu F, Zhang J. Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder. Genes. 2021; 12(12):1942. https://doi.org/10.3390/genes12121942
Chicago/Turabian StyleLi, Tao, Shuya Zhang, Jiqiao Zhang, Yiping Song, Xiuyu Bao, Fengwen Xu, and Jianqin Zhang. 2021. "Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder" Genes 12, no. 12: 1942. https://doi.org/10.3390/genes12121942
APA StyleLi, T., Zhang, S., Zhang, J., Song, Y., Bao, X., Xu, F., & Zhang, J. (2021). Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder. Genes, 12(12), 1942. https://doi.org/10.3390/genes12121942