Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Handling and Usage
2.2. Velocity Sedimentation of Mouse Spermatogenic Cells
2.3. Total RNA Extraction
2.4. Construction of cDNA Library from Mouse Round and Elongating Spermatids
2.5. Yeast Two-Hybrid Screen
2.6. cDNA Cloning and DNA Sequencing
2.7. Database Search and Sequence Comparison
2.8. Western Blotting
3. Results and Discussion
3.1. Construction of cDNA Library from Round and Elongating Mouse Spermatids
3.2. Yeast Two-Hybrid Screen of PKA-RIα Interacting Proteins
3.3. Putative PKA-RIα Interacting Proteins during Mouse Spermatogenesis
3.4. Interaction between PKA-RIα and a Short Isoform of MENA Expressed in Mouse Spermatoids
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oakberg, E.F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am. J. Anat. 1956, 99, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Hermo, L.; Pelletier, R.-M.; Cyr, D.G.; Smith, C.E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc. Res. Tech. 2010, 73, 241–278. [Google Scholar] [CrossRef] [PubMed]
- Sassone-Corsi, P. Unique Chromatin Remodeling and Transcriptional Regulation in Spermatogenesis. Science 2002, 296, 2176–2178. [Google Scholar] [CrossRef] [PubMed]
- Kleene, K.C. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet. Genome Res. 2003, 103, 217–224. [Google Scholar]
- Aitken, R.J.; Baker, M.A. The role of proteomics in understanding sperm cell biology. Int. J. Androl. 2008, 31, 295–302. [Google Scholar] [CrossRef]
- Vicens, A.; Borziak, K.; Karr, T.L.; Roldan, E.R.; Dorus, S. Comparative Sperm Proteomics in Mouse Species with Divergent Mating Systems. Mol. Biol. Evol. 2017, 34, 1403–1416. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yang, L.; Zhang, L.; Qi, H. Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility. Development 2020, 147, dev181057. [Google Scholar] [CrossRef]
- Matzuk, M.M.; Lamb, D.J. The biology of infertility: Research advances and clinical challenges. Nat. Med. 2008, 14, 1197–1213. [Google Scholar] [CrossRef]
- Krausz, C.; Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef]
- Bracke, A.; Peeters, K.; Punjabi, U.; Hoogewijs, D.; Dewilde, S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online 2018, 36, 327–339. [Google Scholar] [CrossRef] [Green Version]
- De Braekeleer, M.; Nguyen, M.H.; Morel, F.; Perrin, A. Genetic aspects of monomorphic teratozoospermia: A review. J. Assist. Reprod. Genet. 2015, 32, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, J.; Liao, C.; Ni, Z.; Zheng, J.; Yu, F. System analysis of teratozoospermia mRNA profile based on integrated bioinformatics tools. Mol. Med. Rep. 2018, 18, 1297–1304. [Google Scholar] [CrossRef]
- Colpi, G.M.; Francavilla, S.; Haidl, G.; Link, K.; Behre, H.M.; Goulis, D.G.; Krausz, C.; Giwercman, A. European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology 2018, 6, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Macho, B.; Brancorsini, S.; Fimia, G.M.; Setou, M.; Hirokawa, N.; Sassone-Corsi, P. CREM-Dependent Transcription in Male Germ Cells Controlled by a Kinesin. Science 2002, 298, 2388–2390. [Google Scholar] [CrossRef]
- Martianov, I.; Fimia, G.M.; Dierich, A.; Parvinen, M.; Sassone-Corsi, P.; Davidson, I. Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. Mol. Cell 2001, 7, 509–515. [Google Scholar] [CrossRef]
- Iguchi, N.; Tobias, J.W.; Hecht, N.B. Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proc. Natl. Acad. Sci. USA 2006, 103, 7712–7717. [Google Scholar] [CrossRef] [Green Version]
- Burton, K.A.; McKnight, G.S. PKA, Germ Cells, and Fertility. Physiology 2007, 22, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Torres-Quesada, O.; Mayrhofer, J.E.; Stefan, E. The many faces of compartmentalized PKA signalosomes. Cell. Signal. 2017, 37, 1–11. [Google Scholar] [CrossRef]
- Landmark, B.F.; Oyen, O.; Skålhegg, B.S.; Fauske, B.; Jahnsen, T.; Hansson, V. Cellular location and age-dependent changes of the regulatory subunits of cAMP-dependent protein kinase in rat testis. J. Reprod. Fertil. 1993, 99, 323–334. [Google Scholar] [CrossRef]
- Oyen, O.; Myklebust, F.; Scott, J.D.; Cadd, G.G.; McKnight, G.S.; Hansson, V.; Jahnsen, T. Subunits of cyclic adenosine 3′,5′-monophosphate-dependent protein kinase show differential and distinct expression patterns during germ cell differentiation: Alternative polyadenylation in germ cells gives rise to unique smaller-sized mRNA species. Biol. Reprod. 1990, 43, 46–54. [Google Scholar] [CrossRef]
- Burton, K.A.; Johnson, B.D.; Hausken, Z.E.; Westenbroek, R.E.; Idzerda, R.L.; Scheuer, T.; Scott, J.D.; Catterall, W.A.; McKnight, G.S. Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1997, 94, 11067–11072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amieux, P.S.; McKnight, G.S. The essential role of RI α in the maintenance of regulated PKA activity. Ann. N. Y. Acad. Sci. 2002, 968, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Scott, J.D. AKAP signalling complexes: Focal points in space and time. Nat. Rev. Mol. Cell Biol. 2004, 5, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.R.; Foster, J.A.; Haig-Ladewig, L.; Vanscoy, H.; Rubin, C.S.; Moss, S.B.; Gerton, G. Assembly of AKAP82, a Protein Kinase A Anchor Protein, into the Fibrous Sheath of Mouse Sperm. Dev. Biol. 1997, 192, 340–350. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Naaby-Hansen, S.; Wolkowicz, M.J.; Klotz, K.; Shetty, J.; Retief, J.D.; Coonrod, S.A.; Kinter, M.; Sherman, N.; Cesar, F.; et al. FSP95, A Testis-Specific 95-Kilodalton Fibrous Sheath Antigen That Undergoes Tyrosine Phosphorylation in Capacitated Human Spermatozoa1. Biol. Reprod. 1999, 61, 1184–1197. [Google Scholar] [CrossRef]
- Lin, R.-Y.; Moss, S.B.; Rubin, C.S. Characterization of S-AKAP84, a Novel Developmentally Regulated A Kinase Anchor Protein of Male Germ Cells. J. Biol. Chem. 1995, 270, 27804–27811. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, A.R.; Diener, D.R.; Rosenbaum, J.L.; Sale, W.S. Flagellar Radial Spoke Protein 3 Is an a-Kinase Anchoring Protein (Akap). J. Cell Biol. 2001, 153, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yang, L.; Zhao, D.; Wu, Y.; Qi, H. AKAP3 Synthesis Is Mediated by RNA Binding Proteins and PKA Signaling During Mouse Spermiogenesis. Biol. Reprod. 2014, 90, 119. [Google Scholar] [CrossRef]
- Miki, K.; Willis, W.D.; Brown, P.R.; Goulding, E.H.; Fulcher, K.D.; Eddy, E.M. Targeted Disruption of the Akap4 Gene Causes Defects in Sperm Flagellum and Motility. Dev. Biol. 2002, 248, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, L.S.; Carney, J.A.; Pack, S.; Taymans, S.E.; Giatzakis, C.; Cho, Y.S.; Cho-Chung, Y.S.; Stratakis, C.A. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 2000, 26, 89–92. [Google Scholar] [CrossRef]
- Rhayem, Y.; Le Stunff, C.; Khalek, W.A.; Auzan, C.; Bertherat, J.; Linglart, A.; Couvineau, A.; Silve, C.; Clauser, E. Functional Characterization of PRKAR1A Mutations Reveals a Unique Molecular Mechanism Causing Acrodysostosis but Multiple Mechanisms Causing Carney Complex. J. Biol. Chem. 2015, 290, 27816–27828. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-J.; Hwang, K.-C.; Park, J.-Y.; Park, K.-K.; Kim, J.-H.; Park, S.-B.; Hwang, S.; Park, H.; Park, C. Identification and characterization of a novel mouse and human MOPT gene containing MORN-motif protein in testis. Theriogenology 2010, 73, 273–281. [Google Scholar] [CrossRef]
- Tokuhiro, K.; Isotani, A.; Yokota, S.; Yano, Y.; Oshio, S.; Hirose, M.; Wada, M.; Fujita, K.; Ogawa, Y.; Okabe, M.; et al. OAZ-t/OAZ3 Is Essential for Rigid Connection of Sperm Tails to Heads in Mouse. PLoS Genet. 2009, 5, e1000712. [Google Scholar] [CrossRef] [Green Version]
- Nayernia, K.; Adham, I.M.; Burkhardt-Göttges, E.; Neesen, J.; Rieche, M.; Wolf, S.; Sancken, U.; Kleene, K.; Engel, W. Asthenozoospermia in Mice with Targeted Deletion of the Sperm Mitochondrion-Associated Cysteine-Rich Protein (Smcp) Gene. Mol. Cell. Biol. 2002, 22, 3046–3052. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Meinhardt, A.; Zhang, B.; Grzmil, P.; Adham, I.M.; Hoyer-Fender, S. The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol. Cell. Biol. 2012, 32, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, C.; Tam, R.; Clark, M.; Lee, H.; Sonenberg, N.; Lasko, P. Suppression of a temperature-sensitive cdc33 mutation of yeast by a multicopy plasmid expressing a Dro-sophila ribosomal protein. J. Biol. Chem. 1994, 269, 14625–14630. [Google Scholar] [CrossRef]
- Cullinane, D.L.; Chowdhury, T.A.; Kleene, K.C. Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction 2015, 149, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Cheng, M.; Ou, Y.; Oko, R.; van der Hoorn, F.A. Ornithine Decarboxylase Antizyme Oaz3 Modulates Protein Phosphatase Activity. J. Biol. Chem. 2011, 286, 29417–29427. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, K.E.; Chen, B.; Liu, K.; Hunter, O.V.; Xie, Y.; Tu, B.P.; Conrad, N.K. The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 2017, 169, 824–835.e14. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.; Clarke, S.G. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch. Biochem. Biophys. 2019, 665, 36–45. [Google Scholar] [CrossRef]
- Xu, K.; Qi, H. Sperm-specific AKAP3 is a dual-specificity anchoring protein that interacts with both protein kinase a regulatory subunits via conserved N-terminal amphipathic peptides. Mol. Reprod. Dev. 2014, 81, 595–607. [Google Scholar] [CrossRef]
- Girault, M.-S.; Dupuis, S.; Ialy-Radio, C.; Stouvenel, L.; Viollet, C.; Pierre, R.; Favier, M.; Ziyyat, A.; Barbaux, S. Deletion of the Spata3 Gene Induces Sperm Alterations and In Vitro Hypofertility in Mice. Int. J. Mol. Sci. 2021, 22, 1959. [Google Scholar] [CrossRef]
- Iida, H.; Yamashita, H.; Doiguchi, M.; Kaneko, T. Molecular Cloning of RatSpergen-3, a Spermatogenic Cell-Specific Gene-3, Encoding a Novel 75-kDa Protein Bearing EF-Hand Motifs. J. Androl. 2004, 25, 885–892. [Google Scholar] [CrossRef]
- Krause, M.; Dent, E.W.; Bear, J.E.; Loureiro, J.J.; Gertler, F.B. Ena/VASP Proteins: Regulators of the Actin Cytoskeleton and Cell Migration. Annu. Rev. Cell Dev. Biol. 2003, 19, 541–564. [Google Scholar] [CrossRef] [Green Version]
- Gertler, F.; Condeelis, J. Metastasis: Tumor cells becoming MENAcing. Trends Cell Biol. 2011, 21, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Vidaki, M.; Drees, F.; Saxena, T.; Lanslots, E.; Taliaferro, M.; Tatarakis, A.; Burge, C.B.; Wang, E.T.; Gertler, F.B. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons. Neuron 2017, 95, 608–622.e5. [Google Scholar] [CrossRef]
- Maiellaro, I.; Lohse, M.; Kittel, R.J.; Calebiro, D. cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons. Cell Rep. 2016, 17, 1238–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Acqua, M.L.; Smith, K.E.; Gorski, J.A.; Horne, E.A.; Gibson, E.S.; Gomez, L.L. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 2006, 85, 627–633. [Google Scholar] [CrossRef]
- Kurosu, T.; Hernández, A.I.; Wolk, J.; Liu, J.; Schwartz, J.H. α/β-tubulin are A kinase anchor proteins for type I PKA in neurons. Brain Res. 2009, 1251, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.R.; Ruppelt, A.; Taskén, K. A kinase anchoring protein (AKAP) interaction and dimerization of the RIalpha and RIbeta regu-latory subunits of protein kinase a in vivo by the yeast two hybrid system. J. Mol. Biol. 2003, 327, 609–618. [Google Scholar] [CrossRef]
- Sastri, M.; Barraclough, D.M.; Carmichael, P.T.; Taylor, S.S. A-kinase-interacting protein localizes protein kinase A in the nucleus. Proc. Natl. Acad. Sci. USA 2005, 102, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolobova, E.; Roland, J.T.; Lapierre, L.A.; Williams, J.A.; Mason, T.A.; Goldenring, J.R. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtu-bule-nucleation centers and interacts with pericentriolar proteins. J. Biol. Chem. 2017, 292, 20394–20409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Yang, L.; Zhuang, X.; Zhang, L.; Qi, H. Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes 2021, 12, 1941. https://doi.org/10.3390/genes12121941
Shi K, Yang L, Zhuang X, Zhang L, Qi H. Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes. 2021; 12(12):1941. https://doi.org/10.3390/genes12121941
Chicago/Turabian StyleShi, Kunyu, Lele Yang, Xueqing Zhuang, Lan Zhang, and Huayu Qi. 2021. "Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis" Genes 12, no. 12: 1941. https://doi.org/10.3390/genes12121941
APA StyleShi, K., Yang, L., Zhuang, X., Zhang, L., & Qi, H. (2021). Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes, 12(12), 1941. https://doi.org/10.3390/genes12121941