A Detailed Gene Expression Map of Giardia Encystation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Differentiation
2.2. RNA Extraction and RNA Sequencing
2.3. Analysis of mRNA Sequencing Data
2.4. DNA Motif Analyses
2.5. Analyses of Double-Stranded DNA Breaks
3. Results
3.1. Overall Gene Expression Changes during Encystation
3.2. Gene Expression Changes in Early Stages of Encystation (3.5 and 7 h)
3.3. Gene Expression Changes in Early to Mid Stages of Encystation (10.5 and 14 h)
3.4. Gene Expression Changes in Mid Stages of Encystation (17.5 and 21 h)
3.5. Gene Expression Changes Late in Encystation (24.5 to 31.5 h)
3.6. Gene Expression Changes in Cysts and Excysted Cells (C and T2)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, R.D. Giardia Duodenalis: Biology and Pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00024-19. [Google Scholar] [CrossRef]
- Lanata, C.F.; Fischer-Walker, C.L.; Olascoaga, A.C.; Torres, C.X.; Aryee, M.J.; Black, R.E. Global Causes of Diarrheal Disease Mortality in Children <5 Years of Age: A Systematic Review. PLoS ONE 2013, 8, e72788. [Google Scholar] [CrossRef] [Green Version]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- WHO. World Health Statistics 2015: Indicator Compendium; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Ankarklev, J.; Jerlström-Hultqvist, J.; Ringqvist, E.; Troell, K.; Svärd, S.G. Behind the Smile: Cell Biology and Disease Mechanisms of Giardia Species. Nat. Rev. Microbiol. 2010, 8, 413–422. [Google Scholar] [CrossRef]
- Einarsson, E.; Svärd, S.G. Encystation of Giardia Intestinalis—a Journey from the Duodenum to the Colon. Curr. Trop. Med. Rep. 2015, 2, 101–109. [Google Scholar] [CrossRef]
- Erlandsen, S.L.; Macechko, P.T.; van Keulen, H.; Jarroll, E.L. Formation of the Giardia Cyst Wall: Studies on Extracellular Assembly Using Immunogold Labeling and High Resolution Field Emission SEM. J. Eukaryot. Microbiol. 1996, 43, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Palm, D.; Weiland, M.; McArthur, A.G.; Winiecka-Krusnell, J.; Cipriano, M.J.; Birkeland, S.R.; Pacocha, S.E.; Davids, B.; Gillin, F.; Linder, E.; et al. Developmental Changes in the Adhesive Disk during Giardia Differentiation. Mol. Biochem. Parasitol. 2005, 141, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Faso, C.; Hehl, A.B. Membrane Trafficking and Organelle Biogenesis in Giardia Lamblia: Use It or Lose It. Int. J. Parasitol. 2011, 41, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Jarroll, E.L.; Macechko, P.T.; Steimle, P.A.; Bulik, D.; Karr, C.D.; Keulen, H.; Paget, T.A.; Gerwig, G.; Kamerling, J.; Vliegenthart, J.; et al. Regulation of Carbohydrate Metabolism During Giardia Encystment1. J. Eukaryot. Microbiol. 2001, 48, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernander, R.; Palm, J.E.D.; Svard, S.G. Genome Ploidy in Different Stages of the Giardia Lamblia Life Cycle. Cell. Microbiol. 2001, 3, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, S.R.; Preheim, S.P.; Davids, B.J.; Cipriano, M.J.; Palm, D.; Reiner, D.S.; Svärd, S.G.; Gillin, F.D.; McArthur, A.G. Transcriptome Analyses of the Giardia Lamblia Life Cycle. Mol. Biochem. Parasitol. 2010, 174, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Morf, L.; Spycher, C.; Rehrauer, H.; Fournier, C.A.; Morrison, H.G.; Hehl, A.B. The Transcriptional Response to Encystation Stimuli in Giardia Lamblia Is Restricted to a Small Set of Genes. Eukaryot. Cell 2010, 9, 1566–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faso, C.; Bischof, S.; Hehl, A.B. The Proteome Landscape of Giardia Lamblia Encystation. PLoS ONE 2013, 8, e83207. [Google Scholar] [CrossRef] [Green Version]
- Einarsson, E.; Troell, K.; Hoeppner, M.P.; Grabherr, M.; Ribacke, U.; Svärd, S.G. Coordinated Changes in Gene Expression Throughout Encystation of Giardia Intestinalis. PLoS Negl. Trop. Dis. 2016, 10, e0004571. [Google Scholar] [CrossRef]
- Balan, B.; Emery-Corbin, S.J.; Sandow, J.J.; Ansell, B.R.E.; Tichkule, S.; Webb, A.I.; Svärd, S.G.; Jex, A.R. Multimodal Regulation of Encystation in Giardia Duodenalis Revealed by Deep Proteomics. Int. J. Parasitol. 2021, 51, 809–824. [Google Scholar] [CrossRef]
- Emery, S.J.; Pascovi, D.; Lacey, E.; Haynes, P.A. The Generation Gap: Proteome Changes and Strain Variation during Encystation in Giardia Duodenalis. Mol. Biochem. Parasitol. 2015, 201, 47–56. [Google Scholar] [CrossRef]
- Pham, J.K.; Nosala, C.; Scott, E.Y.; Nguyen, K.F.; Hagen, K.D.; Starcevich, H.N.; Dawson, S.C. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front. Cell. Infect. Microbiol. 2017, 7, 227. [Google Scholar] [CrossRef] [Green Version]
- Faghiri, Z.; Widmer, G. A Comparison of the Giardia Lamblia Trophozoite and Cyst Transcriptome Using Microarrays. BMC Microbiol. 2011, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Keister, D.B. Axenic Culture of Giardia Lamblia in TYI-S-33 Medium Supplemented with Bile. Trans. R. Soc. Trop. Med. Hyg. 1983, 7, 487–488. [Google Scholar] [CrossRef]
- Franzén, O.; Jerlström-Hultqvist, J.; Einarsson, E.; Ankarklev, J.; Ferella, M.; Andersson, B.; Svärd, S.G. Transcriptome Profiling of Giardia Intestinalis Using Strand-Specific RNA-Seq. PLoS Comput. Biol. 2013, 9, e1003000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Jex, A.; Svärd, S.G. A Chromosome-Scale Reference Genome for Giardia Intestinalis WB. Sci. Data 2020, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.E.; Bailey, T.L. XSTREME: Comprehensive Motif Analysis of Biological Sequence Datasets. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bailey, T.L.; Machanick, P. Inferring Direct DNA Binding from ChIP-Seq. Nucleic Acids Res. 2012, 40, e128. [Google Scholar] [CrossRef] [Green Version]
- Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Carlton, J.M.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; et al. GiardiaDB and TrichDB: Integrated Genomic Resources for the Eukaryotic Protist Pathogens Giardia Lamblia and Trichomonas Vaginalis. Nucleic Acids Res. 2009, 3, D526–D530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics 2011, 27, 1017–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofštetrová, K.; Uzlíková, M.; Tůmová, P.; Troell, K.; Svärd, S.G.; Nohýnková, E. Giardia Intestinalis: Aphidicolin Influence on the Trophozoite Cell Cycle. Exp. Parasitol. 2010, 124, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jerlström-Hultqvist, J.; Stadelmann, B.; Birkestedt, S.; Hellman, U.; Svärd, S.G. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome. Eukaryot. Cell 2012, 11, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Mendez, T.L.; De Chatterjee, A.; Duarte, T.; De Leon, J.; Robles-Martinez, L.; Das, S. Sphingolipids, Lipid Rafts, and Giardial Encystation: The Show Must Go On. Curr. Trop. Med. Rep. 2015, 2, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-H.; Palm, D.; McArthur, A.G.; Svärd, S.G.; Gillin, F.D. A Novel Myb-Related Protein Involved in Transcriptional Activation of Encystation Genes in Giardia Lamblia. Mol. Microbiol. 2002, 46, 971–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luján, H.D.; Mowatt, M.R.; Conrad, J.T.; Bowers, B.; Nash, T.E. Identification of a Novel Giardia Lamblia Cyst Wall Protein with Leucine-Rich Repeats. J. Biol. Chem. 1995, 270, 29307–29313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowatt, M.R.; Luján, H.D.; Cotten, D.B.; Bowers, B.; Yee, J.; Nash, T.E.; Stibbs, H.H. Developmentally Regulated Expression of a Giardia Lamblia Cyst Wall Protein Gene. Mol. Microbiol. 1995, 15, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; McCaffery, J.M.; Reiner, D.S.; Gillin, F.D. Mining the Giardia Lamblia Genome for New Cyst Wall Proteins. J. Biol. Chem. 2003, 278, 21701–21708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.-C.; Su, L.-H.; Huang, Y.-C.; Pan, Y.-J.; Sun, C.-H. Regulation of a Myb Transcription Factor by Cyclin-Dependent Kinase 2 in Giardia Lamblia. J. Biol. Chem. 2012, 287, 3733–3750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman-Smith, A.; Cronan, J.E. The Enzymatic Biotinylation of Proteins: A Post-Translational Modification of Exceptional Specificity. Trends Biochem. Sci. 1999, 24, 359–363. [Google Scholar] [CrossRef]
- King Jordan, I.; Henze, K.; Fedorova, N.D.; Koonin, E.V.; Galperin, M.Y. Phylogenomic Analysis of the Giardia Intestinalis Transcarboxylase Reveals Multiple Instances of Domain Fusion and Fission in the Evolution of Biotin-Dependent Enzymes. J. Mol. Microbiol. Biotechnol. 2003, 5, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Merino, M.C.; Zamponi, N.; Vranych, C.V.; Touz, M.C.; Rópolo, A.S. Identification of Giardia Lamblia DHHC Proteins and the Role of Protein S-Palmitoylation in the Encystation Process. PLoS Negl. Trop. Dis. 2014, 8, e2997. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Jiménez-González, A.; Einarsson, E.; Ástvaldsson, Á.; Peirasmaki, D.; Eckmann, L.; Andersson, J.O.; Svärd, S.G.; Jerlström-Hultqvist, J. The Compact Genome of Giardia Muris Reveals Important Steps in the Evolution of Intestinal Protozoan Parasites. Microb. Genom. 2020, 6, mgen000402. [Google Scholar] [CrossRef] [PubMed]
- Robles-Martinez, L.; Mendez, T.L.; Apodaca, J.; Das, S. Glucosylceramide Transferase in Giardia Preferentially Catalyzes the Synthesis of Galactosylceramide during Encystation. Mol. Biochem. Parasitol. 2017, 211, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.A.; Malik, S.-B.; Logsdon, J.M. A Phylogenomic Inventory of Meiotic Genes. Curr. Biol. 2005, 15, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Poxleitner, M.K.; Carpenter, M.L.; Mancuso, J.J.; Wang, C.-J.R.; Dawson, S.C.; Cande, W.Z. Evidence for Karyogamy and Exchange of Genetic Material in the Binucleate Intestinal Parasite Giardia Intestinalis. Science 2008, 319, 1530–1533. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.L.; Assaf, Z.J.; Gourguechon, S.; Cande, W.Z. Nuclear Inheritance and Genetic Exchange without Meiosis in the Binucleate Parasite Giardia Intestinalis. J. Cell Sci. 2012, 125, 2523–2532. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-W.; Yong, T.-S.; Lee, J.-H.; Im, K.; Park, S.-J. Characterization of Two Glyceraldehyde 3-Phosphate Dehydrogenase Genes in Giardia Lamblia. Parasitol. Res. 2002, 88, 646–650. [Google Scholar] [CrossRef] [PubMed]
- ROZARIO, C.; MORIN, L.; ROGER, A.J.; SMITH, M.W.; MÜLLER, M. Primary Structure and Phylogenetic Relationships of Glyceraldehyde-3-Phosphate Dehydrogenase Genes of Free-Living and Parasitic Diplomonad Flagellates. J. Eukaryot. Microbiol. 1996, 43, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Riches, A.; Hart, C.J.S.; Trenholme, K.R.; Skinner-Adams, T.S. Anti-Giardia Drug Discovery: Current Status and Gut Feelings. J. Med. Chem. 2020, 63, 13330–13354. [Google Scholar] [CrossRef]
- Paget, T.A.; Macechko, P.T.; Jarroll, E.L. Metabolic Changes in Giardia Intestinalis during Differentiation. J. Parasitol. 1998, 84, 222. [Google Scholar] [CrossRef]
- CHAVEZ-MUNGUIA, B.; CEDILLO-RIVERA, R.; MARTINEZ-PALOMO, A. The Ultrastructure of the Cyst Wall of Giardia Lamblia. J. Eukaryot. Microbiol. 2004, 51, 220–226. [Google Scholar] [CrossRef]
- Cernikova, L.; Faso, C.; Hehl, A.B. Phosphoinositide-Binding Proteins Mark, Shape and Functionally Modulate Highly-Diverged Endocytic Compartments in the Parasitic Protist Giardia Lamblia. PLoS Pathog. 2020, 16, e1008317. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.S.; van der Giezen, M.; Tarr, S.J.; Crompton, M.R.; Tovar, J. Evidence from Bioinformatics, Expression and Inhibition Studies of Phosphoinositide-3 Kinase Signalling in Giardia Intestinalis. BMC Microbiol. 2006, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peirasmaki, D.; Ma’ayeh, S.Y.; Xu, F.; Ferella, M.; Campos, S.; Liu, J.; Svärd, S.G. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front. Genet. 2020, 11, 11. [Google Scholar] [CrossRef]
- Paget, T.A.; Kelly, M.L.; Jarroll, E.L.; Lindmark, D.G.; Lloyd, D. The Effects of Oxygen on Fermentation in Giardia Lamblia. Mol. Biochem. Parasitol. 1993, 57, 65–71. [Google Scholar] [CrossRef]
- Paget, T.A.; Raynor, M.H.; Shipp, D.W.E.; Lloyd, D. Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Mol. Biochem. Parasitol. 1990, 42, 63–67. [Google Scholar] [CrossRef]
- Weidemüller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription Factors: Bridge between Cell Signaling and Gene Regulation. Proteomics 2021, 2000034. [Google Scholar] [CrossRef]
- van Biljon, R.; van Wyk, R.; Painter, H.J.; Orchard, L.; Reader, J.; Niemand, J.; Llinás, M.; Birkholtz, L.-M. Hierarchical Transcriptional Control Regulates Plasmodium Falciparum Sexual Differentiation. BMC Genom. 2019, 20, 920. [Google Scholar] [CrossRef] [Green Version]
- George, O.; Ness, S. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis. Cancers 2014, 6, 2049–2071. [Google Scholar] [CrossRef]
- Prucca, C.G.; Lujan, H.D. Antigenic Variation in Giardia Lamblia. Cell. Microbiol. 2009, 11, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Davids, B.J.; Reiner, D.S.; Birkeland, S.R.; Preheim, S.P.; Cipriano, M.J.; McArthur, A.G.; Gillin, F.D. A New Family of Giardial Cysteine-Rich Non-VSP Protein Genes and a Novel Cyst Protein. PLoS ONE 2006, 1, e44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time | Up | Down |
---|---|---|
3.5 | 6 | 14 |
7 | 21 | 12 |
10.5 | 78 | 9 |
14 | 200 | 23 |
17.5 | 382 | 130 |
21 | 598 | 414 |
24.5 | 700 | 575 |
28 | 905 | 770 |
31.5 | 1015 | 934 |
Cyst | 1786 | 1623 |
T2 | 2 | 1 |
Cluster | E-Score | No. Genes |
---|---|---|
Up-regulated | ||
10.5–14 h | ||
Fatty acid metabolism | 1.9 | 3 |
17.5–21 h | ||
Fatty acid metabolism | 1.3 | 3 |
24.5–28 h | ||
Lipid metabolic process | 1.7 | 7 |
ATP binding | 1.5 | 90 |
31.5–Cyst | ||
EGF-like | 12.4 | 102 |
Amino acid transporter | 1.4 | 9 |
Down-regulated | ||
17.5–21 h | ||
Nucleotide binding | 5.4 | 35 |
Protein biosynthesis | 2.9 | 8 |
Regulation of gene expression | 1.9 | 3 |
ATP binding | 1.5 | 73 |
24.5–28 h | ||
Nucleotide binding | 4.5 | 49 |
Protein folding | 4.4 | 10 |
Protein phosphorylation | 1.8 | 24 |
31.5–Cyst | ||
Translation | 4.23 | 41 |
ATP binding | 3.6 | 237 |
Protein biosynthesis | 1.8 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-López, L.; Krakovka, S.; Einarsson, E.; Ribacke, U.; Xu, F.; Jerlström-Hultqvist, J.; Svärd, S.G. A Detailed Gene Expression Map of Giardia Encystation. Genes 2021, 12, 1932. https://doi.org/10.3390/genes12121932
Rojas-López L, Krakovka S, Einarsson E, Ribacke U, Xu F, Jerlström-Hultqvist J, Svärd SG. A Detailed Gene Expression Map of Giardia Encystation. Genes. 2021; 12(12):1932. https://doi.org/10.3390/genes12121932
Chicago/Turabian StyleRojas-López, Laura, Sascha Krakovka, Elin Einarsson, Ulf Ribacke, Feifei Xu, Jon Jerlström-Hultqvist, and Staffan G. Svärd. 2021. "A Detailed Gene Expression Map of Giardia Encystation" Genes 12, no. 12: 1932. https://doi.org/10.3390/genes12121932