Gene-Environment Interactions in Schizophrenia: A Literature Review
Abstract
:1. Introduction
2. Genetic Risk of Schizophrenia
3. Environmental Risk Factors of Schizophrenia
4. Gene-Environment (GxE) Interactions
4.1. Infection
4.2. Cannabis Use
4.3. Psychosocial Stress and Childhood Adversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Roy, A. Depression, attempted suicide, and suicide in patients with chronic schizophrenia. Psychiatr. Clin. N. Am. 1986, 9, 193–206. [Google Scholar] [CrossRef]
- Jablensky, A.; Sartorius, N.; Ernberg, G.; Anker, M.; Korten, A.; Cooper, J.E.; Day, R.; Bertelsen, A. Schizophrenia: Manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol. Med. Monogr. Suppl. 1992, 20, 1–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avramopoulos, D. Recent Advances in the Genetics of Schizophrenia. Mol. Neuropsychiatry 2018, 4, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Stilo, S.A.; Murray, R.M. Non-Genetic Factors in Schizophrenia. Curr. Psychiatry Rep. 2019, 21, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, K.; Murray, R.M. Environmental risk factors for psychosis. Dialogues Clin. Neurosci. 2005, 7, 69–80. [Google Scholar]
- Lindsay, E.A.; Morris, M.A.; Gos, A.; Nestadt, G.; Wolyniec, P.S.; Lasseter, V.K.; Shprintzen, R.; Antonarakis, S.E.; Baldini, A.; Pulver, A.E. Schizophrenia and chromosomal deletions within 22q11.2. Am. J. Hum. Genet. 1995, 56, 1502–1503. [Google Scholar]
- Takata, A.; Xu, B.; Ionita-Laza, I.; Roos, J.L.; Gogos, J.A.; Karayiorgou, M. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 2014, 82, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.; McClellan, J.M.; McCarthy, S.E.; Addington, A.M.; Pierce, S.B.; Cooper, G.M.; Nord, A.S.; Kusenda, M.; Malhotra, D.; Bhandari, A.; et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008, 320, 539–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Neale, B.M.; Daly, M.J. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. medRxiv 2020. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Casper, K. Congestive heart failure: Clinical management by use of continuous nasoenteric feeding. Am. J. Clin. Nutr. 1989, 50, 539–544. [Google Scholar] [CrossRef] [PubMed]
- The Schizophrenia Working Group of the Psychiatric Genomics Consortium; Ripke, S.; Walters, J.T.; O’Donovan, M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv 2020. [Google Scholar] [CrossRef]
- Samson, J.N.; Wong, A.H.C. CHAPTER 1. The Genetics of Schizophrenia. In Drug Discovery for Schizophrenia; The Royal Society of Chemistry: London, United Kingdom, 2015; pp. 1–27. [Google Scholar]
- Wray, N.R.; Gottesman, I.I. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 2012, 3, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, P.; Yip, B.H.; Björk, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 2009, 373, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Yolken, R.H.; Torrey, E.F. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol. Psychiatry 2008, 13, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. Am. J. Psychiatry 2010, 167, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.M.; Watson, A.M.; Dickerson, F.B.; Yolken, R.H.; Nimgaonkar, V.L. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr. Bull. 2012, 38, 1137–1148. [Google Scholar] [CrossRef]
- Dickerson, F.; Schroeder, J.R.; Nimgaonkar, V.; Gold, J.; Yolken, R. The association between exposure to herpes simplex virus type 1 (HSV-1) and cognitive functioning in schizophrenia: A meta-analysis. Psychiatry Res. 2020, 291, 113157. [Google Scholar] [CrossRef]
- Kim, J.J.; Shirts, B.H.; Dayal, M.; Bacanu, S.A.; Wood, J.; Xie, W.; Zhang, X.; Chowdari, K.V.; Yolken, R.; Devlin, B.; et al. Are exposure to cytomegalovirus and genetic variation on chromosome 6p joint risk factors for schizophrenia? Ann. Med. 2007, 39, 145–153. [Google Scholar] [CrossRef]
- Torrey, E.F.; Leweke, M.F.; Schwarz, M.J.; Mueller, N.; Bachmann, S.; Schroeder, J.; Dickerson, F.; Yolken, R.H. Cytomegalovirus and schizophrenia. CNS Drugs 2006, 20, 879–885. [Google Scholar] [CrossRef]
- Børglum, A.D.; Demontis, D.; Grove, J.; Pallesen, J.; Hollegaard, M.V.; Pedersen, C.B.; Hedemand, A.; Mattheisen, M.; Uitterlinden, A.; Nyegaard, M.; et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol. Psychiatry 2014, 19, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, D.; Viswanath, B. Neuropsychiatric manifestations of COVID-19 and possible pathogenic mechanisms: Insights from other coronaviruses. Asian J. Psychiatry 2020, 54, 102350. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Singh, N.; Singh, A.; Kar, S.K. COVID-19 and Psychotic Symptoms: The View from Psychiatric Immunology. Curr. Behav. Neurosci. Rep. 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dalman, C.; Allebeck, P.; Cullberg, J.; Grunewald, C.; Köster, M. Obstetric complications and the risk of schizophrenia: A longitudinal study of a national birth cohort. Arch. Gen. Psychiatry 1999, 56, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.; Jones, P.B.; Murray, R.M. Obstetric complications and schizophrenia: Historical and meta-analytic review. Am. J. Psychiatry 2002, 159, 1080–1092. [Google Scholar] [CrossRef] [Green Version]
- Hoek, H.W.; Brown, A.S.; Susser, E. The Dutch famine and schizophrenia spectrum disorders. Soc. Psychiatry Psychiatr. Epidemiol. 1998, 33, 373–379. [Google Scholar] [CrossRef]
- Susser, E.; Neugebauer, R.; Hoek, H.W.; Brown, A.S.; Lin, S.; Labovitz, D.; Gorman, J.M. Schizophrenia after prenatal famine. Further evidence. Arch. Gen. Psychiatry 1996, 53, 25–31. [Google Scholar] [CrossRef]
- Henquet, C.; Murray, R.; Linszen, D.; van Os, J. The environment and schizophrenia: The role of cannabis use. Schizophr. Bull. 2005, 31, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Henquet, C.; Di Forti, M.; Morrison, P.; Kuepper, R.; Murray, R.M. Gene-environment interplay between cannabis and psychosis. Schizophr. Bull. 2008, 34, 1111–1121. [Google Scholar] [CrossRef]
- Vaucher, J.; Keating, B.J.; Lasserre, A.M.; Gan, W.; Lyall, D.M.; Ward, J.; Smith, D.J.; Pell, J.P.; Sattar, N.; Pare, G.; et al. Cannabis use and risk of schizophrenia: A Mendelian randomization study. Mol. Psychiatry 2018, 23, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, V.; Chang, W.J.; Liston, M.B.; McAuley, J.H.; Schabrun, S. The role of psychosocial stress in the development of chronic musculoskeletal pain disorders: Protocol for a systematic review and meta-analysis. Syst. Rev. 2017, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Thomson, P.; Jaque, S.V. Childhood Adversity and the Creative Experience in Adult Professional Performing Artists. Front. Psychol. 2018, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escott-Price, V.; Smith, D.J.; Kendall, K.; Ward, J.; Kirov, G.; Owen, M.J.; Walters, J.; O’Donovan, M.C. Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort. Psychol. Med. 2019, 49, 2499–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrey, E.F.; Miller, J.; Rawlings, R.; Yolken, R.H. Seasonality of births in schizophrenia and bipolar disorder: A review of the literature. Schizophr. Res. 1997, 28, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, P.B.; Pedersen, C.B.; Westergaard, T.; Wohlfahrt, J.; Ewald, H.; Mors, O.; Andersen, P.K.; Melbye, M. Effects of family history and place and season of birth on the risk of schizophrenia. N. Engl. J. Med. 1999, 340, 603–608. [Google Scholar] [CrossRef]
- Vilain, J.; Galliot, A.M.; Durand-Roger, J.; Leboyer, M.; Llorca, P.M.; Schurhoff, F.; Szoke, A. Environmental risk factors for schizophrenia: A review. Encephale 2013, 39, 19–28. [Google Scholar] [CrossRef]
- Jaaro-Peled, H.; Sawa, A. Neurodevelopmental Factors in Schizophrenia. Psychiatr. Clin. N. Am. 2020, 43, 263–274. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Loy, E.Y.; Poulton, R.; Chia, K.S. Researching genetic versus nongenetic determinants of disease: A comparison and proposed unification. Sci. Transl. Med. 2009, 1, 7ps8. [Google Scholar] [CrossRef]
- Guloksuz, S.; Rutten, B.P.F.; Pries, L.K.; Have, M.T.; de Graaf, R.; van Dorsselaer, S.; Klingenberg, B.; van Os, J.; Ioannidis, J.P.A. The Complexities of Evaluating the Exposome in Psychiatry: A Data-Driven Illustration of Challenges and Some Propositions for Amendments. Schizophr. Bull. 2018, 44, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Guloksuz, S.; van Os, J.; Rutten, B.P.F. The Exposome Paradigm and the Complexities of Environmental Research in Psychiatry. JAMA Psychiatry 2018, 75, 985–986. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Zimbron, J.; Dalman, C.; Lewis, G.; Jones, P.B. Childhood infection and adult schizophrenia: A meta-analysis of population-based studies. Schizophr. Res. 2012, 139, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minakova, E.; Warner, B.B. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res. 2018, 110, 1539–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergdolt, L.; Dunaevsky, A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog. Neurobiol. 2019, 175, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Robinson, N.; Bergen, S.E. Environmental Risk Factors for Schizophrenia and Bipolar Disorder and Their Relationship to Genetic Risk: Current Knowledge and Future Directions. Front. Genet. 2021, 12, 686666. [Google Scholar] [CrossRef]
- Sutterland, A.L.; Fond, G.; Kuin, A.; Koeter, M.W.; Lutter, R.; van Gool, T.; Yolken, R.; Szoke, A.; Leboyer, M.; de Haan, L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: Systematic review and meta-analysis. Acta Psychiatr. Scand. 2015, 132, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.W.; Avramopoulos, D.; Lori, A.; Mulle, J.; Conneely, K.; Powers, A.; Duncan, E.; Almli, L.; Massa, N.; McGrath, J.; et al. Genome-wide association study in two populations to determine genetic variants associated with Toxoplasma gondii infection and relationship to schizophrenia risk. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 133–147. [Google Scholar] [CrossRef]
- Lori, A.; Avramopoulos, D.; Wang, A.W.; Mulle, J.; Massa, N.; Duncan, E.J.; Powers, A.; Conneely, K.; Gillespie, C.F.; Jovanovic, T.; et al. Polygenic risk scores differentiate schizophrenia patients with Toxoplasma gondii compared to toxoplasma seronegative patients. Compr. Psychiatry 2021, 107, 152236. [Google Scholar] [CrossRef]
- Avramopoulos, D.; Pearce, B.D.; McGrath, J.; Wolyniec, P.; Wang, R.; Eckart, N.; Hatzimanolis, A.; Goes, F.S.; Nestadt, G.; Mulle, J.; et al. Infection and inflammation in schizophrenia and bipolar disorder: A genome wide study for interactions with genetic variation. PLoS ONE 2015, 10, e0116696. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Yang, S.; Yolken, R. C-reactive protein is elevated in schizophrenia. Schizophr. Res. 2013, 143, 198–202. [Google Scholar] [CrossRef]
- El Mouhawess, A.; Hammoud, A.; Zoghbi, M.; Hallit, S.; Haddad, C.; El Haddad, K.; El Khoury, S.; Tannous, J.; Obeid, S.; Halabi, M.A.; et al. Relationship between Toxoplasma gondii seropositivity and schizophrenia in the Lebanese population: Potential implication of genetic polymorphism of MMP-9. BMC Psychiatry 2020, 20, 264. [Google Scholar] [CrossRef]
- Ansari-Lari, M.; Zendehboodi, Z.; Masoudian, M.; Mohammadi, F. Additive effect of glutathione S-transferase T1 active genotype and infection with Toxoplasma gondii for increasing the risk of schizophrenia. Nord. J. Psychiatry 2021, 75, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Severance, E.G.; Leister, F.; Lea, A.; Yang, S.; Dickerson, F.; Yolken, R.H. Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia. Schizophr. Res. 2021, 234, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Bamne, M.; Wood, J.; Chowdari, K.; Watson, A.M.; Celik, C.; Mansour, H.; Klei, L.; Gur, R.C.; Bradford, L.D.; Calkins, M.E.; et al. Evaluation of HLA polymorphisms in relation to schizophrenia risk and infectious exposure. Schizophr. Bull. 2012, 38, 1149–1154. [Google Scholar] [CrossRef]
- Demontis, D.; Nyegaard, M.; Buttenschøn, H.N.; Hedemand, A.; Pedersen, C.B.; Grove, J.; Flint, T.J.; Nordentoft, M.; Werge, T.; Hougaard, D.M.; et al. Association of GRIN1 and GRIN2A-D with schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.P.; Namboodiri, A.M.; Elston, R.C. Immunoglobulin G genotypes and the risk of schizophrenia. Hum. Genet. 2016, 135, 1175–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirts, B.H.; Kim, J.J.; Reich, S.; Dickerson, F.B.; Yolken, R.H.; Devlin, B.; Nimgaonkar, V.L. Polymorphisms in MICB are associated with human herpes virus seropositivity and schizophrenia risk. Schizophr. Res. 2007, 94, 342–353. [Google Scholar] [CrossRef]
- Shirts, B.H.; Wood, J.; Yolken, R.H.; Nimgaonkar, V.L. Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 343–350. [Google Scholar] [CrossRef]
- Moni, M.A.; Lin, P.I.; Quinn, J.M.W.; Eapen, V. COVID-19 patient transcriptomic and genomic profiling reveals comorbidity interactions with psychiatric disorders. Transl. Psychiatry 2021, 11, 160. [Google Scholar] [CrossRef]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm. Res. 2020, 69, 825–839. [Google Scholar] [CrossRef]
- Brown, A.S.; Hooton, J.; Schaefer, C.A.; Zhang, H.; Petkova, E.; Babulas, V.; Perrin, M.; Gorman, J.M.; Susser, E.S. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am. J. Psychiatry 2004, 161, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.M.; Englund, A.; Abi-Dargham, A.; Lewis, D.A.; Di Forti, M.; Davies, C.; Sherif, M.; McGuire, P.; D’Souza, D.C. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017, 124, 89–104. [Google Scholar] [CrossRef]
- Misiak, B.; Stramecki, F.; Gaweda, L.; Prochwicz, K.; Sasiadek, M.M.; Moustafa, A.A.; Frydecka, D. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: A Systematic Review. Mol. Neurobiol. 2018, 55, 5075–5100. [Google Scholar] [CrossRef] [PubMed]
- McGuire, P.K.; Jones, P.; Harvey, I.; Williams, M.; McGuffin, P.; Murray, R.M. Morbid risk of schizophrenia for relatives of patients with cannabis-associated psychosis. Schizophr. Res. 1995, 15, 277–281. [Google Scholar] [CrossRef]
- Caspi, A.; Moffitt, T.E.; Cannon, M.; McClay, J.; Murray, R.; Harrington, H.; Taylor, A.; Arseneault, L.; Williams, B.; Braithwaite, A.; et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biol. Psychiatry 2005, 57, 1117–1127. [Google Scholar] [CrossRef]
- Zammit, S.; Spurlock, G.; Williams, H.; Norton, N.; Williams, N.; O’Donovan, M.C.; Owen, M.J. Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: Interactions with tobacco and cannabis use. Br. J. Psychiatry 2007, 191, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henquet, C.; Rosa, A.; Krabbendam, L.; Papiol, S.; Fananas, L.; Drukker, M.; Ramaekers, J.G.; van Os, J. An experimental study of catechol-o-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 2006, 31, 2748–2757. [Google Scholar] [CrossRef]
- Colizzi, M.; Iyegbe, C.; Powell, J.; Ursini, G.; Porcelli, A.; Bonvino, A.; Taurisano, P.; Romano, R.; Masellis, R.; Blasi, G.; et al. Interaction Between Functional Genetic Variation of DRD2 and Cannabis Use on Risk of Psychosis. Schizophr. Bull. 2015, 41, 1171–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bioque, M.; Mas, S.; Costanzo, M.C.; Cabrera, B.; Lobo, A.; Gonzalez-Pinto, A.; Rodriguez-Toscano, E.; Corripio, I.; Vieta, E.; Baeza, I.; et al. Gene-environment interaction between an endocannabinoid system genetic polymorphism and cannabis use in first episode of psychosis. Eur. Neuropsychopharmacol. 2019, 29, 786–794. [Google Scholar] [CrossRef] [PubMed]
- van Winkel, R.; van Beveren, N.J.; Simons, C. AKT1 moderation of cannabis-induced cognitive alterations in psychotic disorder. Neuropsychopharmacology 2011, 36, 2529–2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Forti, M.; Iyegbe, C.; Sallis, H.; Kolliakou, A.; Falcone, M.A.; Paparelli, A.; Sirianni, M.; La Cascia, C.; Stilo, S.A.; Marques, T.R.; et al. Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users. Biol. Psychiatry 2012, 72, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Hindocha, C.; Quattrone, D.; Freeman, T.P.; Murray, R.M.; Mondelli, V.; Breen, G.; Curtis, C.; Morgan, C.J.A.; Curran, H.V.; Di Forti, M. Do AKT1, COMT and FAAH influence reports of acute cannabis intoxication experiences in patients with first episode psychosis, controls and young adult cannabis users? Transl. Psychiatry 2020, 10, 143. [Google Scholar] [CrossRef]
- Gouvea, E.S.; Santos, A.F.F.; Ota, V.K.; Mrad, V.; Gadelha, A.; Bressan, R.A.; Cordeiro, Q.; Belangero, S.I. The role of the CNR1 gene in schizophrenia: A systematic review including unpublished data. Braz. J. Psychiatry 2017, 39, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, H.; Horiuchi, Y.; Ishikawa, M.; Koga, M.; Imai, K.; Suzuki, Y.; Morikawa, M.; Inada, T.; Watanabe, Y.; Takahashi, M.; et al. Brain cannabinoid CB2 receptor in schizophrenia. Biol. Psychiatry 2010, 67, 974–982. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdani, N.; Tabeze, J.P.; Ramoz, N.; Ades, J.; Hamon, M.; Sarfati, Y.; Boni, C.; Gorwood, P. The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur. Neuropsychopharmacol. 2008, 18, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Ujike, H.; Takaki, M.; Nakata, K.; Tanaka, Y.; Takeda, T.; Kodama, M.; Fujiwara, Y.; Sakai, A.; Kuroda, S. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol. Psychiatry 2002, 7, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Ho, B.C.; Wassink, T.H.; Ziebell, S.; Andreasen, N.C. Cannabinoid receptor 1 gene polymorphisms and marijuana misuse interactions on white matter and cognitive deficits in schizophrenia. Schizophr. Res. 2011, 128, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Seifert, J.; Ossege, S.; Emrich, H.M.; Schneider, U.; Stuhrmann, M. No association of CNR1 gene variations with susceptibility to schizophrenia. Neurosci. Lett. 2007, 426, 29–33. [Google Scholar] [CrossRef]
- French, L.; Gray, C.; Leonard, G.; Perron, M.; Pike, G.B.; Richer, L.; Seguin, J.R.; Veillette, S.; Evans, C.J.; Artiges, E.; et al. Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence. JAMA Psychiatry 2015, 72, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Wainberg, M.; Jacobs, G.R.; di Forti, M.; Tripathy, S.J. Cannabis, schizophrenia genetic risk, and psychotic experiences: A cross-sectional study of 109,308 participants from the UK Biobank. Transl. Psychiatry 2021, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Guloksuz, S.; Pries, L.K.; Delespaul, P.; Kenis, G.; Luykx, J.J.; Lin, B.D.; Richards, A.L.; Akdede, B.; Binbay, T.; Altinyazar, V.; et al. Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: Results from the EUGEI study. World Psychiatry 2019, 18, 173–182. [Google Scholar] [CrossRef]
- Sarris, J.; Sinclair, J.; Karamacoska, D.; Davidson, M.; Firth, J. Medicinal cannabis for psychiatric disorders: A clinically-focused systematic review. BMC Psychiatry 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoch, E.; Niemann, D.; von Keller, R.; Schneider, M.; Friemel, C.M.; Preuss, U.W.; Hasan, A.; Pogarell, O. How effective and safe is medical cannabis as a treatment of mental disorders? A systematic review. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 87–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiemstra, M.; Nelemans, S.A.; Branje, S.; van Eijk, K.R.; Hottenga, J.J.; Vinkers, C.H.; van Lier, P.; Meeus, W.; Boks, M.P. Genetic vulnerability to schizophrenia is associated with cannabis use patterns during adolescence. Drug Alcohol Depend. 2018, 190, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, K.J.; Abdellaoui, A.; Nivard, M.G.; Cort, A.S.; Ligthart, L.; Draisma, H.H.; Minica, C.C.; Gillespie, N.A.; Willemsen, G.; International Cannabis Consortium; et al. Short communication: Genetic association between schizophrenia and cannabis use. Drug Alcohol Depend. 2017, 171, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Power, R.A.; Verweij, K.J.; Zuhair, M.; Montgomery, G.W.; Henders, A.K.; Heath, A.C.; Madden, P.A.; Medland, S.E.; Wray, N.R.; Martin, N.G. Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol. Psychiatry 2014, 19, 1201–1204. [Google Scholar] [CrossRef] [Green Version]
- Kogler, L.; Muller, V.I.; Chang, A.; Eickhoff, S.B.; Fox, P.T.; Gur, R.C.; Derntl, B. Psychosocial versus physiological stress-Meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage 2015, 119, 235–251. [Google Scholar] [CrossRef] [Green Version]
- van Winkel, R.; Henquet, C.; Rosa, A.; Papiol, S.; Fananás, L.; De Hert, M.; Peuskens, J.; van Os, J.; Myin-Germeys, I. Evidence that the COMT(Val158Met) polymorphism moderates sensitivity to stress in psychosis: An experience-sampling study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147b, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Collip, D.; van Winkel, R.; Peerbooms, O.; Lataster, T.; Thewissen, V.; Lardinois, M.; Drukker, M.; Rutten, B.P.; Van Os, J.; Myin-Germeys, I. COMT Val158Met-stress interaction in psychosis: Role of background psychosis risk. CNS Neurosci. Ther. 2011, 17, 612–619. [Google Scholar] [CrossRef]
- van Winkel, R.; Stefanis, N.C.; Myin-Germeys, I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr. Bull. 2008, 34, 1095–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanis, N.C.; Henquet, C.; Avramopoulos, D.; Smyrnis, N.; Evdokimidis, I.; Myin-Germeys, I.; Stefanis, C.N.; Van Os, J. COMT Val158Met moderation of stress-induced psychosis. Psychol. Med. 2007, 37, 1651–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debost, J.C.; Debost, M.; Grove, J.; Mors, O.; Hougaard, D.M.; Børglum, A.D.; Mortensen, P.B.; Petersen, L. COMT Val158Met and MTHFR C677T moderate risk of schizophrenia in response to childhood adversity. Acta Psychiatr. Scand. 2017, 136, 85–95. [Google Scholar] [CrossRef]
- Dedic, N.; Pohlmann, M.L.; Richter, J.S.; Mehta, D.; Czamara, D.; Metzger, M.W.; Dine, J.; Bedenk, B.T.; Hartmann, J.; Wagner, K.V.; et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol. Psychiatry 2018, 23, 533–543. [Google Scholar] [CrossRef]
- Desbonnet, L.; O’Tuathaigh, C.; Clarke, G.; O’Leary, C.; Petit, E.; Clarke, N.; Tighe, O.; Lai, D.; Harvey, R.; Cryan, J.F.; et al. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: A putative model of gene x environment interaction. Brain Behav. Immun. 2012, 26, 660–671. [Google Scholar] [CrossRef]
- Mihaljevic, M.; Zeljic, K.; Soldatovic, I.; Andric, S.; Mirjanic, T.; Richards, A.; Mantripragada, K.; Pekmezovic, T.; Novakovic, I.; Maric, N.P. The emerging role of the FKBP5 gene polymorphisms in vulnerability-stress model of schizophrenia: Further evidence from a Serbian population. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 527–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessner, K.D.; Mittal, V.; Walker, E.F. Longitudinal study of stressful life events and daily stressors among adolescents at high risk for psychotic disorders. Schizophr. Bull. 2011, 37, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pries, L.K.; Klingenberg, B.; Menne-Lothmann, C.; Decoster, J.; van Winkel, R.; Collip, D.; Delespaul, P.; De Hert, M.; Derom, C.; Thiery, E.; et al. Polygenic liability for schizophrenia and childhood adversity influences daily-life emotion dysregulation and psychosis proneness. Acta Psychiatr. Scand. 2020, 141, 465–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatzimanolis, A.; Avramopoulos, D.; Arking, D.E.; Moes, A.; Bhatnagar, P.; Lencz, T.; Malhotra, A.K.; Giakoumaki, S.G.; Roussos, P.; Smyrnis, N.; et al. Stress-Dependent Association Between Polygenic Risk for Schizophrenia and Schizotypal Traits in Young Army Recruits. Schizophr. Bull. 2018, 44, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pries, L.K.; Erzin, G.; van Os, J.; Have, M.T.; de Graaf, R.; van Dorsselaer, S.; Bak, M.; Rutten, B.P.F.; Guloksuz, S. Predictive Performance of Exposome Score for Schizophrenia in the General Population. Schizophr. Bull. 2021, 47, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Pries, L.K.; van Os, J.; Have, M.T.; de Graaf, R.; van Dorsselaer, S.; Bak, M.; Lin, B.D.; van Eijk, K.R.; Kenis, G.; Richards, A.; et al. Association of Recent Stressful Life Events With Mental and Physical Health in the Context of Genomic and Exposomic Liability for Schizophrenia. JAMA Psychiatry 2020, 77, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.; Mechanic, L.E.; Amos, C.; Aschard, H.; Blair, I.A.; Chatterjee, N.; Conti, D.; Gauderman, W.J.; Hsu, L.; Hutter, C.M.; et al. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am. J. Epidemiol. 2017, 186, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Zwicker, A.; Denovan-Wright, E.M.; Uher, R. Gene-environment interplay in the etiology of psychosis. Psychol. Med. 2018, 48, 1925–1936. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahbeh, M.H.; Avramopoulos, D. Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes 2021, 12, 1850. https://doi.org/10.3390/genes12121850
Wahbeh MH, Avramopoulos D. Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes. 2021; 12(12):1850. https://doi.org/10.3390/genes12121850
Chicago/Turabian StyleWahbeh, Marah H., and Dimitrios Avramopoulos. 2021. "Gene-Environment Interactions in Schizophrenia: A Literature Review" Genes 12, no. 12: 1850. https://doi.org/10.3390/genes12121850
APA StyleWahbeh, M. H., & Avramopoulos, D. (2021). Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes, 12(12), 1850. https://doi.org/10.3390/genes12121850