Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families
Abstract
1. Introduction
2. Methods and Patients
2.1. Participants
2.2. Sequencing
2.3. Literature Search
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Gorman, C.; Lin, R.; Stankovich, J.; Broadley, S. Genetic Susceptibility to Multiple Sclerosis: Modelling the Risk with Family Data and Exploring the Effects of Latitude (P05. 129); AAN Enterprises: Haryana, India, 2013. [Google Scholar]
- Eichhorst, H. Über infantile und hereditäre multiple Sklerose. Virchows Arch. 1896, 146, 173–192. [Google Scholar] [CrossRef]
- Sawcer, S.; Franklin, R.J.; Ban, M. Multiple sclerosis genetics. Lancet. Neurol. 2014, 13, 700–709. [Google Scholar] [CrossRef]
- The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2; Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365. [Google Scholar] [CrossRef]
- Hollenbach, J.A.; Oksenberg, J.R. The immunogenetics of multiple sclerosis: A comprehensive review. J. Autoimmun. 2015, 64, 13–25. [Google Scholar] [CrossRef]
- Lill, C.M. Recent advances and future challenges in the genetics of multiple sclerosis. Front. Neurol. 2014, 5, 130. [Google Scholar] [CrossRef]
- Mitrovič, M.; Patsopoulos, N.A.; Beecham, A.H.; Dankowski, T.; Goris, A.; Dubois, B.; D’Hooghe, M.B.; Lemmens, R.; Van Damme, P.; Søndergaard, H.B.; et al. International Multiple Sclerosis Genetics Consortium. Electronic address, c.c.y.e.; International Multiple Sclerosis Genetics, C. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018, 175, 1679–1687.e1677. [Google Scholar] [CrossRef]
- Kuokkanen, S.; Gschwend, M.; Rioux, J.D.; Daly, M.J.; Terwilliger, J.D.; Tienari, P.J.; Wikstrom, J.; Palo, J.; Stein, L.D.; Hudson, T.J.; et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am. J. Hum. Genet. 1997, 61, 1379–1387. [Google Scholar] [CrossRef]
- Mescheriakova, J.Y.; Verkerk, A.J.; Amin, N.; Uitterlinden, A.G.; van Duijn, C.M.; Hintzen, R.Q. Linkage analysis and whole exome sequencing identify a novel candidate gene in a Dutch multiple sclerosis family. Mult. Scler. 2019, 25, 909–917. [Google Scholar] [CrossRef]
- Wang, Z.; Sadovnick, A.D.; Traboulsee, A.L.; Ross, J.P.; Bernales, C.Q.; Encarnacion, M.; Yee, I.M.; de Lemos, M.; Greenwood, T.; Lee, J.D. Nuclear receptor NR1H3 in familial multiple sclerosis. Neuron 2016, 90, 948–954. [Google Scholar] [CrossRef]
- Reinthaler, E.M.; Graf, E.; Zrzavy, T.; Wieland, T.; Hotzy, C.; Kopecky, C.; Pferschy, S.; Schmied, C.; Leutmezer, F.; Keilani, M.; et al. TPP2 mutation associated with sterile brain inflammation mimicking MS. Neurol. Genet. 2018, 4, e285. [Google Scholar] [CrossRef] [PubMed]
- Ban, M.; Caillier, S.; Mero, I.L.; Myhr, K.M.; Celius, E.G.; Aarseth, J.; Torkildsen, O.; Harbo, H.F.; Oksenberg, J.; Hauser, S.L.; et al. No evidence of association between mutant alleles of the CYP27B1 gene and multiple sclerosis. Ann. Neurol. 2013, 73, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Antel, J.; Ban, M.; Baranzini, S.; Barcellos, L.; Barizzone, N.; Beecham, A.; Berge, T.; Bernardinelli, L.; Booth, D.; Bos, S. NR1H3 p. Arg415Gln is not associated to multiple sclerosis risk. Neuron 2016, 92, 333–335. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vilarino-Guell, C.; Zimprich, A.; Martinelli-Boneschi, F.; Herculano, B.; Wang, Z.; Matesanz, F.; Urcelay, E.; Vandenbroeck, K.; Leyva, L.; Gris, D.; et al. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet. 2019, 15, e1008180. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Haeussler, M.; Gerner, M.; Bergman, C.M. Annotating genes and genomes with DNA sequences extracted from biomedical articles. Bioinformatics 2011, 27, 980–986. [Google Scholar] [CrossRef]
- Pihlstrøm, L.; Wiethoff, S.; Houlden, H. Genetics of neurodegenerative diseases: An overview. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 145, pp. 309–323. [Google Scholar]
- Sawcer, S.; Ban, M.; Maranian, M.; Yeo, T.W.; Compston, A.; Kirby, A.; Daly, M.J.; De Jager, P.L.; Walsh, E.; Lander, E.S.; et al. A high-density screen for linkage in multiple sclerosis. Am. J. Hum. Genet. 2005, 77, 454–467. [Google Scholar] [CrossRef]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8, a028951. [Google Scholar] [CrossRef]
- Vilariño-Güell, C.; Encarnacion, M.; Bernales, C.Q.; Sadovnick, A.D. Analysis of Canadian multiple sclerosis patients does not support a role for FKBP6 in disease. Mult. Scler. J. 2019, 25, 1011–1013. [Google Scholar] [CrossRef]
- MacArthur, D.G.; Manolio, T.A.; Dimmock, D.P.; Rehm, H.L.; Shendure, J.; Abecasis, G.R.; Adams, D.R.; Altman, R.B.; Antonarakis, S.E.; Ashley, E.A.; et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014, 508, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Su, X.; Dzikovski, B.; Dando, E.E.; Zhu, X.; Du, J.; Freed, J.H.; Lin, H. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J. Am. Chem. Soc. 2014, 136, 1754–1757. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bachran, C.; Gupta, P.; Miller-Randolph, S.; Wang, H.; Crown, D.; Zhang, Y.; Wein, A.N.; Singh, R.; Fattah, R.; et al. Diphthamide modification on eukaryotic elongation factor 2 is needed to assure fidelity of mRNA translation and mouse development. Proc. Natl. Acad. Sci. USA 2012, 109, 13817–13822. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, S.; Camandola, S.; Cutler, R.G.; Ayala, A.; Mattson, M.P. Elongation factor 2 diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions. Free Radic. Biol. Med. 2014, 67, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wucherpfennig, K.W.; Strominger, J.L. Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995, 80, 695–705. [Google Scholar] [CrossRef]
- Zhao, Z.; Bi, W.; Zhou, W.; VandeHaar, P.; Fritsche, L.G.; Lee, S. UK Biobank Whole-Exome Sequence Binary Phenome Analysis with Robust Region-Based Rare-Variant Test. Am. J. Hum. Genet. 2020, 106, 3–12. [Google Scholar] [CrossRef]
- Lemcke, S.; Muller, S.; Moller, S.; Schillert, A.; Ziegler, A.; Cepok-Kauffeld, S.; Comabella, M.; Montalban, X.; Rulicke, T.; Nandakumar, K.S.; et al. Nerve conduction velocity is regulated by the inositol polyphosphate-4-phosphatase II gene. Am. J. Pathol. 2014, 184, 2420–2429. [Google Scholar] [CrossRef]
- Goedde, R.; Sawcer, S.; Boehringer, S.; Miterski, B.; Sindern, E.; Haupts, M.; Schimrigk, S.; Compston, A.; Epplen, J.T. A genome screen for linkage disequilibrium in HLA-DRB1*15-positive Germans with multiple sclerosis based on 4666 microsatellite markers. Hum. Genet. 2002, 111, 270–277. [Google Scholar] [CrossRef]
- Bergsteinsdottir, K.; Yang, H.T.; Pettersson, U.; Holmdahl, R. Evidence for common autoimmune disease genes controlling onset, severity, and chronicity based on experimental models for multiple sclerosis and rheumatoid arthritis. J. Immunol. 2000, 164, 1564–1568. [Google Scholar] [CrossRef]
- Blankenhorn, E.P.; Butterfield, R.J.; Rigby, R.; Cort, L.; Giambrone, D.; McDermott, P.; McEntee, K.; Solowski, N.; Meeker, N.D.; Zachary, J.F.; et al. Genetic analysis of the influence of pertussis toxin on experimental allergic encephalomyelitis susceptibility: An environmental agent can override genetic checkpoints. J. Immunol. 2000, 164, 3420–3425. [Google Scholar] [CrossRef]
- Fujita, T.; Kitaura, F.; Fujii, H. A critical role of the Thy28-MYH9 axis in B cell-specific expression of the Pax5 gene in chicken B cells. PLoS ONE 2015, 10, e0116579. [Google Scholar] [CrossRef]
- Toyota, H.; Sudo, K.; Kojima, K.; Yanase, N.; Nagao, T.; Takahashi, R.H.; Iobe, H.; Kuwabara, T.; Kakiuchi, T.; Mizuguchi, J. Thy28 protects against anti-CD3-mediated thymic cell death in vivo. Apoptosis 2015, 20, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium chloride drives autoimmune disease by the induction of pathogenic T H 17 cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H. Does salt exacerbate multiple sclerosis? Clin. Exp. Neuroimmunol. 2013, 4, 5–6. [Google Scholar] [CrossRef]
- Wang, W.; Ren, S.; Wang, Z.; Zhang, C.; Huang, J. Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level. Int. Immunopharmacol. 2020, 78, 106077. [Google Scholar] [CrossRef] [PubMed]
Family | Patient | Age (years) | Disease Course | Age at Onset | Year of Last EDSS | EDSS | Av.Cov. | 20X |
---|---|---|---|---|---|---|---|---|
MS 12 | II. 1 | 70 * | SPMS | 43 | 2015 | 9 | 146 | 98.03 |
II. 4 | 67 | RRMS | 45 | 2020 | 7 | 134 | 97.71 | |
II. 5 | 63 | RRMS | 50 | 2015 | 6 | 147 | 96.32 | |
MS 13 | IV. 1 | 67 | RRMS | 31 | 2019 | 1.5 | 132 | 97.56 |
IV. 2 | 71 | SPMS | 18 | 2015 | 8 | 218 | 99.18 | |
IV. 3 | 63 | RRMS | 42 | 2015 | 1.5 | 145 | 97.76 | |
MS 21 | III. 1 | 20 | RRMS | 14 | 2017 | 2 | 143 | 99.04 |
III. 2 | 39 | RRMS | 31 | 2017 | 0 | 147 | 99.07 | |
III. 3 | 36 | RRMS | 25 | 2017 | 1 | 151 | 99.00 | |
III. 4 | 32 | RRMS | 24 | 2020 | 1 | 158 | 98.99 | |
MS 24 | I. 1 | 71 | RRMS | 48 | 2020 | 1.5 | 159 | 99.19 |
II. 1 | 49 | RRMS | 35 | 2017 | 1 | 139 | 99.01 | |
II. 3 | 45 | RRMS | 31 | 2014 | 0 | 134 | 98.73 | |
III. 1 | 21 | RRMS | 18 | 2017 | 1 | 152 | 98.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zrzavy, T.; Leutmezer, F.; Kristoferitsch, W.; Kornek, B.; Schneider, C.; Rommer, P.; Berger, T.; Zimprich, A. Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families. Genes 2020, 11, 988. https://doi.org/10.3390/genes11090988
Zrzavy T, Leutmezer F, Kristoferitsch W, Kornek B, Schneider C, Rommer P, Berger T, Zimprich A. Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families. Genes. 2020; 11(9):988. https://doi.org/10.3390/genes11090988
Chicago/Turabian StyleZrzavy, Tobias, Fritz Leutmezer, Wolfgang Kristoferitsch, Barbara Kornek, Christine Schneider, Paulus Rommer, Thomas Berger, and Alexander Zimprich. 2020. "Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families" Genes 11, no. 9: 988. https://doi.org/10.3390/genes11090988
APA StyleZrzavy, T., Leutmezer, F., Kristoferitsch, W., Kornek, B., Schneider, C., Rommer, P., Berger, T., & Zimprich, A. (2020). Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families. Genes, 11(9), 988. https://doi.org/10.3390/genes11090988