Multiple Sclerosis: Shall We Target CD33?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Molecular Genetics
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Mokdad, A.H. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Baranzini, S.E.; Oksenberg, J.R. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. TIG 2017, 33, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Dyment, D.A.; Risch, N.J.; Sadovnick, A.D.; Ebers, G.C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12877–12882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waubant, E.; Lucas, R.; Mowry, E.; Graves, J.; Olsson, T.; Alfredsson, L.; Langer-Gould, A. Environmental and genetic risk factors for MS: An integrated review. Ann. Clin. Transl. Neurol. 2019, 6, 1905–1922. [Google Scholar] [CrossRef]
- Hansen, T.; Skytthe, A.; Stenager, E.; Petersen, H.C.; Kyvik, K.O.; Brønnum-Hansen, H. Risk for multiple sclerosis in dizygotic and monozygotic twins. Mult. Scler. 2005, 11, 500–503. [Google Scholar] [CrossRef]
- Sawcer, S.; Franklin, R.J.; Ban, M. Multiple sclerosis genetics. Lancet. Neurol. 2014, 13, 700–709. [Google Scholar] [CrossRef]
- Harding, K.E.; Robertson, N.P. New rare genetic variants in multiple sclerosis. J. Neurol. 2019, 266, 278–280. [Google Scholar] [CrossRef] [Green Version]
- International Multiple Sclerosis Genetics Consortium. Electronic address ccye, International Multiple Sclerosis Genetics, C. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018, 175, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Andravizou, A.; Dardiotis, E.; Artemiadis, A.; Sokratous, M.; Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Nikolaidis, I.; Bakirtzis, C.; Tsivgoulis, G.; et al. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Auto Immun. Highlights 2019, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Andravizou, A.; Artemiadis, A.; Bakirtzis, C.; Siokas, V.; Aloizou, A.M.; Peristeri, E.; Kapsalaki, E.; Tsimourtou, V.; Hadjigeorgiou, G.M.; Dardiotis, E. Brain volume dynamics in multiple sclerosis: A case-control study. Neurol. Res. 2019, 41, 936–942. [Google Scholar] [CrossRef]
- Andravizou, A.; Siokas, V.; Artemiadis, A.; Bakirtzis, C.; Aloizou, A.M.; Grigoriadis, N.; Kosmidis, M.H.; Nasios, G.; Messinis, L.; Hadjigeorgiou, G.; et al. Clinically reliable cognitive decline in relapsing remitting multiple sclerosis: Is it the tip of the iceberg? Neurol. Res. 2020, 42, 575–586. [Google Scholar] [CrossRef]
- Hernández-Caselles, T.; Martínez-Esparza, M.; Pérez-Oliva, A.B.; Quintanilla-Cecconi, A.M.; García-Alonso, A.; Alvarez-López, D.M.; García-Peñarrubia, P. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: Two isoforms of CD33 are generated by alternative splicing. J. Leukoc. Biol. 2006, 79, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Hermans, S.J.; Crespi, G.A.N.; Gooi, J.H.; Doughty, L.; Nero, T.L.; Markulić, J.; Ebneth, A.; Wroblowski, B.; Oehlrich, D.; et al. Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Aβ Phagocytosis. Iscience 2019, 19, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero, B.L.; Sicotte, N.L. Microglia in Multiple Sclerosis: Friend or Foe? Front. Immunol. 2020, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.T.; Sharma, R.; Lim, J.L.; Haider, L.; Frischer, J.M.; Drexhage, J.; Mahad, D.; Bradl, M.; van Horssen, J.; Lassmann, H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 2012, 135, 886–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-J.; Lee, J.J.; Fan, W.-L.; Hsu, C.-W.; Tsai, N.-W.; Lu, C.-H.; Chang, W.-N.; Tsai, M.-H. A CD33 frameshift variant is associated with neuromyelitis optica spectrum disorders. Biomed. J. 2020. [Google Scholar] [CrossRef]
- Yokote, H.; Mizusawa, H. Multiple sclerosis and neuromyelitis optica spectrum disorders: Some similarities in two distinct diseases. Neural Regen Res. 2016, 11, 410–411. [Google Scholar] [CrossRef]
- Walker, D.G.; Whetzel, A.M.; Serrano, G.; Sue, L.I.; Beach, T.G.; Lue, L.-F. Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol. Aging 2015, 36, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Siokas, V.; Aslanidou, P.; Aloizou, A.M.; Peristeri, E.; Stamati, P.; Liampas, I.; Arseniou, S.; Drakoulis, N.; Aschner, M.; Tsatsakis, A.; et al. Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J. Mol. Neurosci. 2020, 70, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Rikos, D.; Siokas, V.; Aloizou, A.M.; Tsouris, Z.; Aslanidou, P.; Koutsis, G.; Anagnostouli, M.; Bogdanos, D.P.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. TREM2 R47H (rs75932628) variant is unlikely to contribute to Multiple Sclerosis susceptibility and severity in a large Greek MS cohort. Mult. Scler. Relat. Disord. 2019, 35, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Asproudis, I.; Boboridis, K.G.; Papageorgiou, E.; Hadjigeorgiou, G.M.; Tsironi, E.E.; Dardiotis, E. BDNF rs6265 (Val66Met) Polymorphism as a Risk Factor for Blepharospasm. Neuromolecular Med. 2019, 21, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Asproudis, I.; Boboridis, K.G.; Papageorgiou, E.; Spandidos, D.A.; Tsatsakis, A.; Tsironi, E.E.; Dardiotis, E. Lack of Association of the rs11655081 ARSG Gene with Blepharospasm. J. Mol. Neurosci. 2019, 67, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Skol, A.D.; Scott, L.J.; Abecasis, G.R.; Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 2006, 38, 209–213. [Google Scholar] [CrossRef]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef]
- Canto, E.; Oksenberg, J.R. Multiple sclerosis genetics. Mult. Scler. 2018, 24, 75–79. [Google Scholar] [CrossRef]
- Katsavos, S.; Artemiadis, A.; Gontika, M.; Skarlis, C.; Markoglou, N.; Davaki, P.; Stamboulis, E.; Kilindireas, K.; Stefanis, L.; Anagnostouli, M. HLA-DRB1 differences in allelic distribution between familial and sporadic multiple sclerosis in a Hellenic cohort. Postgrad. Med. 2019, 131, 490–495. [Google Scholar] [CrossRef]
- Zrzavy, T.; Leutmezer, F.; Kristoferitsch, W.; Kornek, B.; Schneider, C.; Rommer, P.; Berger, T.; Zimprich, A. Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families. Genes 2020, 11, 988. [Google Scholar] [CrossRef]
- Dardiotis, E.; Panayiotou, E.; Siokas, V.; Aloizou, A.M.; Christodoulou, K.; Hadjisavvas, A.; Pantzaris, M.; Grigoriadis, N.; Hadjigeorgiou, G.M.; Kyriakides, T. Gene variants of adhesion molecules predispose to MS: A case-control study. Neurology. Genet. 2019, 5, e304. [Google Scholar] [CrossRef] [Green Version]
- Hadjigeorgiou, G.M.; Kountra, P.M.; Koutsis, G.; Tsimourtou, V.; Siokas, V.; Dardioti, M.; Rikos, D.; Marogianni, C.; Aloizou, A.M.; Karadima, G.; et al. Replication study of GWAS risk loci in Greek multiple sclerosis patients. Neurol. Sci. 2019, 40, 253–260. [Google Scholar] [CrossRef]
- Dardiotis, E.; Panayiotou, E.; Provatas, A.; Christodoulou, K.; Hadjisavvas, A.; Antoniades, A.; Lourbopoulos, A.; Pantzaris, M.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. Gene variants of adhesion molecules act as modifiers of disease severity in MS. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresle, M.M.; Jordan, M.A.; Stankovich, J.; Spelman, T.; Johnson, L.J.; Laverick, L.; Hamlett, A.; Smith, L.D.; Jokubaitis, V.G.; Baker, J.; et al. Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells. Life Sci Alliance 2020, 3, e202000650. [Google Scholar] [CrossRef] [PubMed]
- Sokratous, M.; Dardiotis, E.; Bellou, E.; Tsouris, Z.; Michalopoulou, A.; Dardioti, M.; Siokas, V.; Rikos, D.; Tsatsakis, A.; Kovatsi, L.; et al. CpG Island Methylation Patterns in Relapsing-Remitting Multiple Sclerosis. J. Mol. Neurosci. 2018, 64, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Sokratous, M.; Dardiotis, E.; Tsouris, Z.; Bellou, E.; Michalopoulou, A.; Siokas, V.; Arseniou, S.; Stamati, T.; Tsivgoulis, G.; Bogdanos, D.; et al. Deciphering the role of DNA methylation in multiple sclerosis: Emerging issues. Auto Immun. Highlights 2016, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature reviews. Neurology 2017, 13, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L. CD33 in Alzheimer’s Disease–Biology, Pathogenesis, and Therapeutics: A Mini-Review. Gerontology 2019, 65, 323–331. [Google Scholar] [CrossRef]
- Mishra, M.K.; Yong, V.W. Myeloid cells-targets of medication in multiple sclerosis. Nat. Rev. Neurol. 2016, 12, 539–551. [Google Scholar] [CrossRef]
- Borot, F.; Wang, H.; Ma, Y.; Jafarov, T.; Raza, A.; Ali, A.M.; Mukherjee, S. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc. Natl. Acad. Sci. USA 2019, 116, 11978–11987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, C.; Yacko, L.R.; Glode, A.E. Gemtuzumab Ozogamicin: Back Again. J. Adv. Pract. Oncol. 2019, 10, 68–82. [Google Scholar] [PubMed]
- Hartley, J.A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.K.; Yu, C.; Lewis, T.S.; Miyamoto, J.B.; Morris-Tilden, C.A.; Jonas, M.; Sutherland, J.; Nesterova, A.; Gerber, H.-P.; Sievers, E.L.; et al. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. In Mabs; Taylor & Francis: Abingdon, UK, 2009; Volume 1, pp. 481–490. [Google Scholar] [CrossRef] [Green Version]
- Hardy, T.A.; Reddel, S.W.; Barnett, M.H.; Palace, J.; Lucchinetti, C.F.; Weinshenker, B.G. Atypical inflammatory demyelinating syndromes of the CNS. Lancet Neurol. 2016, 15, 967–981. [Google Scholar] [CrossRef]
- Dos Passos, G.R.; Sato, D.K.; Becker, J.; Fujihara, K. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications. Mediat. Inflamm 2016, 2016, 5314541. [Google Scholar] [CrossRef]
- Raj, T.; Ryan, K.J.; Replogle, J.M.; Chibnik, L.B.; Rosenkrantz, L.; Tang, A.; Rothamel, K.; Stranger, B.E.; Bennett, D.A.; Evans, D.A.; et al. CD33: Increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum. Mol. Genet. 2014, 23, 2729–2736. [Google Scholar] [CrossRef] [Green Version]
- Van Bergeijk, P.; Seneviratne, U.; Aparicio-Prat, E.; Stanton, R.; Hasson, S.A. SRSF1 and PTBP1 Are trans-Acting Factors That Suppress the Formation of a CD33 Splicing Isoform Linked to Alzheimer’s Disease Risk. Mol. Cell. Biol. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Beecham, A.H.; Patsopoulos, N.A.; Xifara, D.K.; Davis, M.F.; Kemppinen, A.; Cotsapas, C.; Shah, T.S.; Spencer, C.; Booth, D.; Goris, A.; et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 2013, 45, 1353–1360. [Google Scholar] [CrossRef]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [CrossRef]
- Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365. [CrossRef] [Green Version]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.; Van Steen, K.; Wellek, S. Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis. Breast Cancer Res. Treat. 2011, 128, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.L.; Hutton, J.L.; Binks, K. Removal of radiation dose response effects: An example of over-matching. BMJ 2002, 325, 327–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy Controls | MS Patients | |
---|---|---|
n | 400 | 1396 |
Female, n (%) | 257 (64.25) | 868 (62.18) |
Male, n (%) | 143 (35.75) | 528 (37.82) |
Female/Male ratio | 1.79 | 1.64 |
Age at time of analysis, mean (years) | 40.12 | 39.17 |
SNP | Genotypes/Alleles | Healthy Controls (n = 400) | MS (n = 1396) | Whole Sample (n = 1796) |
---|---|---|---|---|
rs3865444 | n (%) | n (%) | n (%) | |
Genotype | G/G | 215 (0.54) | 807 (0.60) | 1022 (0.58) |
G/T | 156 (0.39) | 449 (0.33) | 605 (0.35) | |
T/T | 27 (0.07) | 94 (0.07) | 121 (0.07) | |
Allele | G | 586 (0.74) | 2063 (0.76) | 2649 (0.76) |
T | 210 (0.26) | 637 (0.24) | 847 (0.24) |
Mode | Genotype | OR (95% CI) | p-Value |
---|---|---|---|
Co-dominant | G/G | 1.00 | 0.089 |
T/G | 0.77 (0.61–0.97) | ||
T/T | 0.93 (0.59–1.46) | ||
Dominant | G/G | 1.00 | 0.041 |
T/G-T/T | 0.79 (0.63–0.99) | ||
Recessive | G/G-T/G | 1.00 | 0.9 |
T/T | 1.03 (0.66–1.60) | ||
Over-dominant | G/G-T/T | 1.00 | 0.03 |
T/G | 0.77 (0.61–0.97) | ||
Log-additive | --- | 0.87 (0.73–1.04) | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siokas, V.; Tsouris, Z.; Aloizou, A.-M.; Bakirtzis, C.; Liampas, I.; Koutsis, G.; Anagnostouli, M.; Bogdanos, D.P.; Grigoriadis, N.; Hadjigeorgiou, G.M.; et al. Multiple Sclerosis: Shall We Target CD33? Genes 2020, 11, 1334. https://doi.org/10.3390/genes11111334
Siokas V, Tsouris Z, Aloizou A-M, Bakirtzis C, Liampas I, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, et al. Multiple Sclerosis: Shall We Target CD33? Genes. 2020; 11(11):1334. https://doi.org/10.3390/genes11111334
Chicago/Turabian StyleSiokas, Vasileios, Zisis Tsouris, Athina-Maria Aloizou, Christos Bakirtzis, Ioannis Liampas, Georgios Koutsis, Maria Anagnostouli, Dimitrios P. Bogdanos, Nikolaos Grigoriadis, Georgios M. Hadjigeorgiou, and et al. 2020. "Multiple Sclerosis: Shall We Target CD33?" Genes 11, no. 11: 1334. https://doi.org/10.3390/genes11111334
APA StyleSiokas, V., Tsouris, Z., Aloizou, A.-M., Bakirtzis, C., Liampas, I., Koutsis, G., Anagnostouli, M., Bogdanos, D. P., Grigoriadis, N., Hadjigeorgiou, G. M., & Dardiotis, E. (2020). Multiple Sclerosis: Shall We Target CD33? Genes, 11(11), 1334. https://doi.org/10.3390/genes11111334