Association of Vitamin D Pathway Genetic Variation and Thyroid Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genetic Studies
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Maniakas, A.; Davies, L.; Zafereo, M.E. Thyroid Disease Around the World. Otolaryngol. Clin. N. Am. 2018, 51, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Robledo, M. Association studies in thyroid cancer susceptibility: Are we on the right track? J. Mol. Endocrinol. 2011, 47, R43–R58. [Google Scholar] [CrossRef] [PubMed]
- Saenko, V.A.; Rogounovitch, T.I. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the Genome-Wide Association Studies. Endocrinol. Metab. 2018, 33, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.J.; Zhang, Q.; Liang, L.; Wang, S.Y.; Zheng, X.C.; Zhou, M.M.; Yang, Y.W.; Zhong, Q.; Huang, F. Association between vitamin D deficiency and risk of thyroid cancer: A case-control study and a meta-analysis. J. Endocrinol. Investig. 2018, 41, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, H.; Zhang, Z.; Zhou, X.; Yao, J.; Zhang, R.; Liao, L.; Dong, J. Vitamin D deficiency as a risk factor for thyroid cancer: A meta-analysis of case-control studies. Nutrition 2019, 57, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.J.; Trump, D.L. Vitamin D Receptor Signaling and Cancer. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1009–1038. [Google Scholar] [CrossRef] [PubMed]
- Clinckspoor, I.; Verlinden, L.; Mathieu, C.; Bouillon, R.; Verstuyf, A.; Decallonne, B. Vitamin D in thyroid tumorigenesis and development. Prog. Histochem. Cytochem. 2013, 48, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Genetic and Racial Differences in the Vitamin D Endocrine System. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1119–1135. [Google Scholar] [CrossRef]
- Bahrami, A.; Sadeghnia, H.R.; Tabatabaeizadeh, S.A.; Bahrami-Taghanaki, H.; Behboodi, N.; Esmaeili, H.; Ferns, G.A.; Mobarhan, M.G.; Avan, A. Genetic and epigenetic factors influencing vitamin D status. J. Cell Physiol. 2018, 233, 4033–4043. [Google Scholar] [CrossRef]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Raimundo, J.; Alvelos, M.I.; Azevedo, T.; Martins, T.; Rodrigues, F.J.; Lemos, M.C. Association of FOXE1 polyalanine repeat region with thyroid cancer is dependent on tumour size. Clin. Endocrinol. 2017, 86, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 2019. [Google Scholar] [CrossRef]
- Lemos, M.C.; Regateiro, F.J. N-acetyltransferase genotypes in the Portuguese population. Pharmacogenetics 1998, 8, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [PubMed]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed]
- Dupont, W.D.; Plummer, W.D., Jr. Power and sample size calculations for studies involving linear regression. Control Clin. Trials 1998, 19, 589–601. [Google Scholar] [CrossRef]
- Theodoratou, E.; Palmer, T.; Zgaga, L.; Farrington, S.M.; McKeigue, P.; Din, F.V.; Tenesa, A.; Davey-Smith, G.; Dunlop, M.G.; Campbell, H. Instrumental variable estimation of the causal effect of plasma 25-hydroxy-vitamin D on colorectal cancer risk: A mendelian randomization analysis. PLoS ONE 2012, 7, e37662. [Google Scholar] [CrossRef]
- Hiraki, L.T.; Qu, C.; Hutter, C.M.; Baron, J.A.; Berndt, S.I.; Bezieau, S.; Brenner, H.; Caan, B.J.; Casey, G.; Chang-Claude, J.; et al. Genetic predictors of circulating 25-hydroxyvitamin d and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2037–2046. [Google Scholar] [CrossRef]
- Dimitrakopoulou, V.I.; Tsilidis, K.K.; Haycock, P.C.; Dimou, N.L.; Al-Dabhani, K.; Martin, R.M.; Lewis, S.J.; Gunter, M.J.; Mondul, A.; Shui, I.M.; et al. Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. BMJ 2017, 359, j4761. [Google Scholar] [CrossRef]
- Mondul, A.M.; Shui, I.M.; Yu, K.; Travis, R.C.; Stevens, V.L.; Campa, D.; Schumacher, F.R.; Ziegler, R.G.; Bueno-de-Mesquita, H.B.; Berndt, S.; et al. Genetic variation in the vitamin d pathway in relation to risk of prostate cancer—Results from the breast and prostate cancer cohort consortium. Cancer Epidemiol. Biomark. Prev. 2013, 22, 688–696. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Brumpton, B.M.; Bonilla, C.; Lewis, S.J.; Burgess, S.; Skorpen, F.; Chen, Y.; Nilsen, T.I.L.; Romundstad, P.R.; Mai, X.M. Serum 25-hydroxyvitamin D levels and risk of lung cancer and histologic types: A Mendelian randomisation analysis of the HUNT study. Eur. Respir. J. 2018, 51. [Google Scholar] [CrossRef]
- Ong, J.S.; Gharahkhani, P.; An, J.; Law, M.H.; Whiteman, D.C.; Neale, R.E.; MacGregor, S. Vitamin D and overall cancer risk and cancer mortality: A Mendelian randomization study. Hum. Mol. Genet. 2018, 27, 4315–4322. [Google Scholar] [CrossRef]
- Penna-Martinez, M.; Ramos-Lopez, E.; Stern, J.; Kahles, H.; Hinsch, N.; Hansmann, M.L.; Selkinski, I.; Grunwald, F.; Vorlander, C.; Bechstein, W.O.; et al. Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma. Thyroid 2012, 22, 709–716. [Google Scholar] [CrossRef]
- Santos, M.; Azevedo, T.; Martins, T.; Rodrigues, F.J.; Lemos, M.C. Association of RET genetic polymorphisms and haplotypes with papillary thyroid carcinoma in the Portuguese population: A case-control study. PLoS ONE 2014, 9, e109822. [Google Scholar] [CrossRef] [PubMed]
- Jendrzejewski, J.; Liyanarachchi, S.; Nagy, R.; Senter, L.; Wakely, P.E.; Thomas, A.; Nabhan, F.; He, H.; Li, W.; Sworczak, K.; et al. Papillary Thyroid Carcinoma: Association Between Germline DNA Variant Markers and Clinical Parameters. Thyroid 2016, 26, 1276–1284. [Google Scholar] [CrossRef]
- Anic, G.M.; Thompson, R.C.; Nabors, L.B.; Olson, J.J.; Browning, J.E.; Madden, M.H.; Murtagh, F.R.; Forsyth, P.A.; Egan, K.M. An exploratory analysis of common genetic variants in the vitamin D pathway including genome-wide associated variants in relation to glioma risk and outcome. Cancer Causes Control 2012, 23, 1443–1449. [Google Scholar] [CrossRef]
- Kim, D. The Role of Vitamin D in Thyroid Diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Luu, W.; Li, D.; Sharpe, L.J.; Brown, A.J. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog. Lipid Res. 2016, 64, 138–151. [Google Scholar] [CrossRef]
- Kuzu, O.F.; Noory, M.A.; Robertson, G.P. The Role of Cholesterol in Cancer. Cancer Res. 2016, 76, 2063–2070. [Google Scholar] [CrossRef]
- Elkum, N.; Alkayal, F.; Noronha, F.; Ali, M.M.; Melhem, M.; Al-Arouj, M.; Bennakhi, A.; Behbehani, K.; Alsmadi, O.; Abubaker, J. Vitamin D insufficiency in Arabs and South Asians positively associates with polymorphisms in GC and CYP2R1 genes. PLoS ONE 2014, 9, e113102. [Google Scholar] [CrossRef] [PubMed]
Genotypes, n (%) | Alleles, n (%) | ||||
---|---|---|---|---|---|
TT | TG | GG | T | G | |
All | |||||
Controls (n = 500) | 197 (39.4) | 234 (46.8) | 69 (13.8) | 628 (62.8) | 372 (37.2) |
Patients (n = 500) | 150 (30.0) | 251 (50.2) | 99 (19.8) | 551(55.1) | 449 (44.9) |
OR (95% CI) § | 1.00 | 1.41 (1.07–1.86) p = 0.0021 (a) | 1.88 (1.30–2.74) p = 0.0021 (a) | 1.38 (1.15–1.65) p = 0.0004 (b) | |
OR (95% CI) # | 1.00 | 1.35 (1.01–1.81) p = 0.0058 (a) | 1.84 (1.25–2.72) p = 0.0058 (a) | 1.36 (1.13–1.64) p = 0.0013 (b) | |
Tumor Type | |||||
FTC (n = 58) | 14 (24.1) | 31 (53.5) | 13 (22.4) | 59 (50.9) | 57 (49.1) |
PTC (n = 442) | 136 (30.8) | 220 (49.8) | 86 (19.5) | 492 (55.7) | 392 (44.3) |
OR (95% CI) § | 1.00 | 0.73 (0.38–1.42) | 0.68 (0.31–1.52) | 0.82 (0.56–1.22) | |
OR (95% CI) # | 1.00 | 0.76 (0.39–1.49) | 0.71 (0.32–1.60) | 0.84 (0.57–1.25) | |
Tumor Size | |||||
>1 cm (n = 362) | 110 (30.4) | 174 (48.1) | 78 (21.6) | 394 (54.4) | 330 (45.6) |
≤1 cm (n = 138) | 40 (29.0) | 77 (55.8) | 21 (15.2) | 157 (56.9) | 119 (43.1) |
OR (95% CI) § | 1.00 | 1.22 (0.78–1.91) | 0.74 (0.41–1.35) | 0.90 (0.68–1.20) | |
OR (95% CI) # | 1.00 | 1.21 (0.77–1.91) | 0.73 (0.39–1.33) | 0.89 (0.67–1.19) | |
Lymph Node or Distant Metastasis | |||||
No (n = 385) | 113 (29.4) | 198 (51.4) | 74 (19.2) | 424 (55.1) | 346 (44.9) |
Yes (n = 115) | 37 (22.2) | 53 (46.1) | 25 (21.7) | 127 (55.2) | 103 (44.8) |
OR (95% CI) § | 1.00 | 0.82 (0.51–1.32) | 1.03 (0.57–1.85) | 0.99 (0.74–1.34) | |
OR (95% CI) # | 1.00 | 0.83 (0.51–1.34) | 1.06 (0.59–1.91) | 1.01 (0.75–1.36) |
Genotypes, n (%) | Alleles, n (%) | ||||
---|---|---|---|---|---|
GG | GA | AA | G | A | |
All | |||||
Controls (n = 500) | 183 (36.6) | 256 (51.2) | 61 (12.2) | 622 (62.2) | 378 (37.8) |
Patients (n = 500) | 189 (37.8) | 236 (47.2) | 75 (15.0) | 614 (61.4) | 386 (38.6) |
OR (95% CI) § | 1.00 | 0.89 (0.68–1.17) | 1.19(0.80–1.77) | 1.04 (0.86–1.25) | |
OR (95% CI) # | 1.00 | 0.88 (0.66–1.16) | 1.11 (0.74–1.68) | 1.01 (0.83–1.22) | |
Tumor Type | |||||
FTC (n = 58) | 23 (39.7) | 23 (39.7) | 12 (20.7) | 69 (59.5) | 47 (40.5) |
PTC (n = 442) | 116 (37.6) | 213 (48.2) | 63 (14.2) | 545 (61.7) | 339 (38.3) |
OR (95% CI) § | 1.00 | 1.28 (0.70–2.37) | 0.73 (0.34–1.55) | 0.91 (0.62–1.91) | |
OR (95% CI) # | 1.00 | 1.32 (0.71–2.46) | 0.72 (0.33–1.54) | 0.91 (0.61–1.36) | |
Tumor Size | |||||
>1 cm (n = 362) | 131 (36.2) | 172 (47.5) | 59 (16.3) | 434 (59.9) | 290 (40.1) |
≤1 cm (n = 138) | 58 (42.0) | 64 (46.4) | 16 (11.6) | 180 (65.2) | 96 (34.8) |
OR (95% CI) § | 1.00 | 0.84 (0.55–1.28) | 0.61 (0.33–1.15) | 0.80 (0.60–1.07) | |
OR (95% CI) # | 1.00 | 0.83 (0.54–1.27) | 0.58 (0.31–1.10) | 0.78 (0.58–1.05) | |
Lymph Node or Distant Metastasis | |||||
No (n = 385) | 135 (35.1) | 188 (48.8) | 62 (16.1) | 458 (59.5) | 312 (40.5) |
Yes (n = 115) | 54 (47.0) | 48 (41.7) | 13 (11.3) | 156 (67.8) | 74 (32.2) |
OR (95% CI) § | 1.00 | 0.64 (0.41–1.00) | 0.52 (0.27–1.03) 0.61 (0.40–0.93) p = 0.022 (a) | 0.70 (0.51–0.95) p = 0.022 (b) | |
OR (95% CI) # | 1.00 | 0.64 (0.41–1.01) | 0.54 (0.27-1.07) 0.62 (0.40–0.94) p = 0.027 (a) | 0.71 (0.51–0.97) p = 0.028 (b) |
Genotypes, n (%) | Alleles, n (%) | ||||
---|---|---|---|---|---|
TT | TA | AA | T | A | |
All | |||||
Controls (n = 500) | 310 (62.1) | 171 (34.3) | 18 (3.6) | 791 (79.3) | 207 (20.7) |
Patients (n = 500) | 302 (60.4) | 170 (34.0) | 28 (5.6) | 774 (77.4) | 226 (22.6) |
OR (95% CI) § | 1.00 | 1.02 (0.78–1.33) | 1.06 (0.87–2.95) | 1.12 (0.90–1.38) | |
OR (95% CI) # | 1.00 | 1.03 (0.78–1.35) | 1.66 (0.88–3.14) | 1.13 (0.91–1.41) | |
Tumor Type | |||||
FTC (n = 58) | 34 (58.6) | 19 (32.8) | 5 (8.6) | 87 (75.0) | 29 (25.0) |
PTC (n = 442) | 268 (60.6) | 151 (34.2) | 23 (5.2) | 687 (77.7) | 197 (22.3) |
OR (95% CI) § | 1.00 | 1.01 (0.56–1.83) | 0.58 (0.21–1.64) | 0.86 (0.55–1.35) | |
OR (95% CI) # | 1.00 | 1.04 (0.57–1.89) | 0.56 (0.20–1.57) | 0.86 (0.55–1.36) | |
Tumor Size | |||||
>1 cm (n = 362) | 214 (59.1) | 130 (35.9) | 18 (5.0) | 558 (77.1) | 166 (22.9) |
≤1 cm (n = 138) | 88 (63.8) | 40 (29.0) | 10 (7.2) | 216 (78.3) | 60 (21.7) |
OR (95% CI) § | 1.00 | 0.75 (0.49–1.15) | 1.35 (0.60–3.04) | 0.94 (0.67–1.30) | |
OR (95% CI) # | 1.00 | 0.75 (0.49–1.17) | 1.39 (0.61–3.15) | 0.95 (0.68–1.32) | |
Lymph Node or Distant Metastasis | |||||
No (n = 385) | 231 (60.0) | 130 (33.8) | 24 (6.2) | 592 (76.9) | 178 (23.1) |
Yes (n = 115) | 71 (61.7) | 40 (34.8) | 4 (3.5) | 182 (79.1) | 48 (20.9) |
OR (95% CI) § | 1.00 | 1.00 (0.64–1.56) | 0.54 (0.18–1.62) | 0.88 (0.62–1.26) | |
OR (95% CI) # | 1.00 | 0.99 (0.64–1.55) | 0.52 (0.18–1.57) | 0.87 (0.61–1.24) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, I.S.; Gonçalves, C.I.; Almeida, J.T.; Azevedo, T.; Martins, T.; Rodrigues, F.J.; Lemos, M.C. Association of Vitamin D Pathway Genetic Variation and Thyroid Cancer. Genes 2019, 10, 572. https://doi.org/10.3390/genes10080572
Carvalho IS, Gonçalves CI, Almeida JT, Azevedo T, Martins T, Rodrigues FJ, Lemos MC. Association of Vitamin D Pathway Genetic Variation and Thyroid Cancer. Genes. 2019; 10(8):572. https://doi.org/10.3390/genes10080572
Chicago/Turabian StyleCarvalho, Isabel S., Catarina I. Gonçalves, Joana T. Almeida, Teresa Azevedo, Teresa Martins, Fernando J. Rodrigues, and Manuel C. Lemos. 2019. "Association of Vitamin D Pathway Genetic Variation and Thyroid Cancer" Genes 10, no. 8: 572. https://doi.org/10.3390/genes10080572
APA StyleCarvalho, I. S., Gonçalves, C. I., Almeida, J. T., Azevedo, T., Martins, T., Rodrigues, F. J., & Lemos, M. C. (2019). Association of Vitamin D Pathway Genetic Variation and Thyroid Cancer. Genes, 10(8), 572. https://doi.org/10.3390/genes10080572